# ON THE NUMBER OF EQUIVALENCE CLASSES OF INVERTIBLE BOOLEAN FUNCTIONS UNDER ACTION OF PERMUTATION OF VARIABLES ON DOMAIN AND RANGE 

Marko Carić and Miodrag Živković


#### Abstract

Let $V_{n}$ be the number of equivalence classes of invertible maps from $\{0,1\}^{n}$ to $\{0,1\}^{n}$, under action of permutation of variables on domain and range. So far, the values $V_{n}$ have been known for $n \leqslant 6$. This paper describes the procedure by which the values of $V_{n}$ are calculated for $n \leqslant 30$.


## 1. Introduction

Let $V_{n}$ be the number of equivalence classes of invertible maps from $\{0,1\}^{n}$ to $\{0,1\}^{n}$, under action of permutation of variables on domain and range. Lorens [1] gave a method for calculating the number of equivalence classes of invertible Boolean functions under the following group operations on the input and output variables: complementation, permutation, composition of complementation and permutation, linear transformations and affine transformations. In particular, he calculated the values $V_{n}$ for $n \leqslant 5$. Irvine [4] in 2011 calculated $V_{6}$ (the sequence A000653). In this paper using a more efficient procedure, the values $V_{n}$ are calculated for $n \leqslant 30$.

## 2. Notation

Let $S_{r}$ denote symmetric group on $r$ letters. Consider a set of vectorial invertible Boolean functions (hereinafter referred to as functions), i.e., the set $S_{N}$ of permutations of $B_{n}=\{0,1\}^{n}$ where $N=2^{n}$. The function $F \in S_{N}$ maps the $n$-tuple $X=\left(x_{1}, \ldots, x_{n}\right) \in B_{n}$ into $Y=\left(y_{1}, \ldots, y_{n}\right)=F(X)$. For some permutation $\sigma \in S_{n}$, the result of its action on $X=\left(x_{1}, \ldots, x_{n}\right) \in B_{n}$ is $\sigma^{\prime}(X)=$ $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) \in B_{n}$.

An arbitrary pair $(\rho, \sigma) \in S_{n}^{2}$ determines mapping $T_{\rho, \sigma}: S_{N} \rightarrow S_{N}$, defined by $T_{\rho, \sigma}(F)=\rho^{\prime} \circ F \circ \sigma^{\prime}$ where $F \in S_{N}$; in other words, if $F^{\prime}=T_{\rho, \sigma}(F)$ then

[^0]$F^{\prime}(X)=\rho^{\prime}\left(F\left(\sigma^{\prime}(X)\right)\right)$ for all $X \in B_{n}$. The set of all mappings $T_{\rho, \sigma}$ with respect to composition is a subgroup of $S_{N!}$.

The two functions $F, H \in S_{N}$ are considered equivalent if there exist permutations $\rho, \sigma \in S_{n}$ such that $H=T_{\rho, \sigma}(F)$, i.e., if they differ only by a permutation of input or output variables.

Let $\iota$ denote the identity permutation. Every permutation $\sigma \in S_{n}$ uniquely determines the permutation $\sigma^{\prime} \in S_{N}$. Let $S_{n}^{\prime}$ denote the subgroup of $S_{N}$ consisting of all permutations $\sigma^{\prime}$ corresponding to permutations $\sigma \in S_{n}$. The mapping $\sigma \mapsto \sigma^{\prime}$ is a monomorphism from $S_{n}$ to $S_{N}$ (see [2]).

Let $\sigma \in S_{r}$. Let $p_{i}, 1 \leqslant i \leqslant r$, denote the number of cycles of length $i$ in a cycle decomposition of $\sigma$; here $\sum_{i=1}^{r} i p_{i}=r$. The cycle index monomial of $\sigma$ is the product $\prod_{i=1}^{r} t_{i}^{p_{i}}$ where $t_{i}, 1 \leqslant i \leqslant r$, are independent variables. It can be equivalently described by the vector $\operatorname{spec}(\sigma)=p=\left(p_{1}, p_{2}, \ldots, p_{r}\right)$. For an arbitrary positive integer $n$ let $P_{n}=\left\{\left(p_{1}, p_{2}, \ldots, p_{n}\right) \mid p_{i} \geqslant 0, \sum_{i=1}^{n} i p_{i}=n\right\}$ denote the set of partitions of $n$. For some $p \in P_{n}$ let $S_{n, p}=\left\{\sigma \in S_{n} \mid \operatorname{spec}(\sigma)=p\right\}$. An arbitrary partition $p$ corresponds to the decomposition $n=k_{p, 1}+k_{p, 2}+\cdots+k_{p, m(p)}$ into positive summands $k_{p, 1} \geqslant k_{p, 2} \geqslant \cdots \geqslant k_{p, m(p)}>0$ where summand $i=$ $n, n-1, \ldots, 1$ in this sum appears $p_{i}$ times.

Let $\langle r, s\rangle$ and $(r, s)$ denote the least common multiple and the greatest common divisor of $r$ and $s$, respectively.

## 3. Preliminaries

The calculation of $V_{n}$ is based on the following known facts (see e.g., [1-3]):
(1) The cardinality of $S_{n, p}$ equals to

$$
\left|S_{n, p}\right|=\frac{n!}{\prod_{i} i^{p_{i}} p_{i}!}
$$

(2) Let $\sigma_{1}, \sigma_{2} \in S_{n}$ be permutations such that $\operatorname{spec}\left(\sigma_{1}\right)=\operatorname{spec}\left(\sigma_{2}\right)$. Then $\operatorname{spec}\left(\sigma_{1}^{\prime}\right)=\operatorname{spec}\left(\sigma_{2}^{\prime}\right)$. In other words, permutations with the same cycle index in $S_{n}$ induce the permutations with the same cycle index in $S_{n}^{\prime}$.
(3) The permutation $T_{\rho, \sigma}$ has at least one fixed point if and only if $\operatorname{spec}(\sigma)=$ $\operatorname{spec}(\rho)$.
(4) Let $\sigma \in S_{n, p}$ and let $\operatorname{spec}\left(\sigma^{\prime}\right)=p^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{N}^{\prime}\right)$. The number of fixed points of $T_{\sigma, \sigma}$ is

$$
N_{p}=\prod_{i} i^{p_{i}^{\prime}} p_{i}^{\prime}!
$$

(5) If $\sigma \in S_{n}$ is a cyclic permutation (a permutation having only one cycle of the length $n$ ), then the cycle index monomial of the permutation $\sigma^{\prime}$ is

$$
\prod_{d \mid n} f_{d}^{e(d)}
$$

where the numbers $e(k), k \geqslant 1$ are defined by the recurrent relation

$$
e(k)=\frac{1}{k}\left(2^{k}-\sum_{d \mid k, d<k} d \cdot e(d)\right), \quad k>1
$$

with the initial value $e(1)=2$.
(6) If $\alpha$ is a permutation on a set $X$ with $|X|=a$ and $\alpha$ has a cycle index monomial $f_{1}^{j_{1}} \cdots f_{a}^{j_{a}}$, and $\beta$ is a permutation on $Y$ with $|Y|=b$ and $\beta$ has a cycle index monomial $f_{1}^{k_{1}} \cdots f_{b}^{k_{b}}$, then the permutation $(\alpha, \beta)$ acting on $X \times Y$ by the rule

$$
(\alpha, \beta)(x, y)=(\alpha(x), \beta(y))
$$

has cycle index monomial given by

$$
\left(\prod_{p=1}^{a} f_{p}^{j_{p}}\right) \searrow\left(\prod_{q=1}^{b} f_{q}^{k_{q}}\right)=\prod_{p=1}^{a} \prod_{q=1}^{b}\left(f_{p}^{j_{p}} \times f_{q}^{k_{q}}\right)=\prod_{p=1}^{a} \prod_{q=1}^{b} f_{\langle p, q\rangle}^{j_{p} k_{q}(p, q)}
$$

## 4. The number of equivalence classes

The value of $V_{n}$ is determined by the following theorem.
Theorem 4.1. For an arbitrary $p \in P_{n}$ let $\sigma \in S_{n, p}$. If $\operatorname{spec}\left(\sigma^{\prime}\right)=\left(p_{1}^{\prime}, \ldots, p_{n}^{\prime}\right)$, then

$$
\begin{equation*}
V_{n}=\sum_{p \in P_{n}} \frac{\prod_{i} i^{p_{i}^{\prime}} p_{i}^{\prime}!}{\left(\prod_{i} i^{p_{i}} p_{i}!\right)^{2}} \tag{4.1}
\end{equation*}
$$

Proof. The permutation $F \in S_{N}$ is a fixed point of $T_{\rho, \sigma}$ if $T_{\rho, \sigma}(F(X))=$ $F(X)$ holds for all $X \in B_{n}$. Let $I(\rho, \sigma)$ be a number of fixed points of $T_{\rho, \sigma}$. By the Frobenius lemma (see e.g. [1]) the number of equivalence classes is equal to

$$
V_{n}=\frac{1}{(n!)^{2}} \sum_{\sigma \in S_{n}} \sum_{\rho \in S_{n}} I(\rho, \sigma)=\frac{1}{(n!)^{2}} \sum_{p \in P_{n}} \sum_{\rho \in S_{n, p}} \sum_{q \in P_{n}} \sum_{\sigma \in S_{n, q}} I(\rho, \sigma) .
$$

By the facts (2)-(4) from Preliminaries, the number of fixed points of $T_{\rho, \sigma}$ corresponding to fixed permutations $\rho \in S_{n, p}, \sigma \in S_{n, q}$ is equal to

$$
I(\rho, \sigma)= \begin{cases}0, & p \neq q \\ N_{p}, & p=q\end{cases}
$$

Therefore

$$
\begin{aligned}
V_{n} & =\frac{1}{(n!)^{2}} \sum_{p \in P_{n}} \sum_{\rho \in S_{n, p}} \sum_{q \in\{p\}} \sum_{\sigma \in S_{n, p}} N_{p}=\frac{1}{(n!)^{2}} \sum_{p \in P_{n}} \sum_{\rho \in S_{n, p}} \sum_{\sigma \in S_{n, p}} N_{p} \\
& =\frac{1}{(n!)^{2}} \sum_{p \in P_{n}} N_{p} \sum_{\rho \in S_{n, p}} \sum_{\sigma \in S_{n, p}} 1=\frac{1}{(n!)^{2}} \sum_{p \in P_{n}} N_{p} \cdot\left|S_{n, p}\right|^{2} \\
& =\sum_{p \in P_{n}} \frac{\prod_{i} i^{p_{i}^{\prime}} p_{i}^{\prime}!}{\left(\prod_{i} i^{p_{i}} p_{i}!\right)^{2}} .
\end{aligned}
$$

By induction the following generalization of the fact (6) can be proved. If $\alpha_{i}$ is permutation on $Z_{i},\left|Z_{i}\right|=k_{i}, i=1, \ldots, n$, and if the cycle index monomial of $\alpha_{i}$ is $f_{1}^{y_{i, 1}} \cdots f_{k_{i}}^{y_{i, k_{i}}}$, then the permutation $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ acting on $Z_{1} \times Z_{2} \times \cdots \times Z_{n}$ by the rule

$$
\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(z_{1}, \ldots, z_{n}\right)=\left(\alpha_{1}\left(z_{1}\right), \ldots, \alpha_{n}\left(z_{n}\right)\right)
$$

has cycle index monomial given by

$$
\begin{align*}
\bigotimes_{i=1}^{n}\left(\prod_{z_{i}=1}^{k_{i}} f_{z_{i}}^{y_{i, z_{i}}}\right) & =\prod_{z_{1}=1}^{k_{1}} \prod_{z_{2}=1}^{k_{2}} \cdots \prod_{z_{n}=1}^{k_{n}} \searrow_{i=1}^{n} f_{z_{i}}^{y_{i}, z_{i}}  \tag{4.2}\\
& =\prod_{z_{1}=1}^{k_{1}} \prod_{z_{2}=1}^{k_{2}} \cdots \prod_{z_{n}=1}^{k_{n}} f_{\left\langle z_{1}, z_{2}, \ldots, z_{n}\right\rangle}^{\prod_{i=1}^{n}\left(z_{i} y_{i, z_{i}}\right) /\left\langle z_{1}, z_{2}, \ldots, z_{n}\right\rangle}
\end{align*}
$$

The proof is based on the fact, also proved by induction, that the cycle index monomial of the direct product of $n$ permutations with cycle index monomials $f_{z_{i}}^{y_{i}}, 1 \leqslant i \leqslant n$ is equal to

$$
\chi_{i=1}^{n} f_{z_{i}}^{y_{i}}=f_{\left\langle z_{1}, z_{2}, \ldots, z_{n}\right\rangle}^{\prod_{i=1}^{n}\left(z_{i} y_{i}\right) /\left\langle z_{1}, z_{2}, \ldots, z_{n}\right\rangle}
$$

Using this generalization, the following theorem shows how to obtain the cycle index $p^{\prime}$ of $\sigma^{\prime}$, used in previous theorem.

Theorem 4.2. Let $p \in P_{n}$ be an arbitrary partition and let $\sigma \in S_{n, p}$. Let $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{m}$ be a decomposition of $\sigma$ into disjoint cycles. Let the length of $\alpha_{i}$ be $k_{i}, 1 \leqslant i \leqslant m$. The cycle index monomial $\prod_{i} f_{i}^{p_{i}^{\prime}}$ of the corresponding $\sigma^{\prime}$ is given by

$$
\searrow_{i=1}^{m}\left(\prod_{z_{i} \mid k_{i}} f_{z_{i}}^{e\left(z_{i}\right)}\right)=\prod_{z_{1} \mid k_{1}} \prod_{z_{2} \mid k_{2}} \cdots \prod_{z_{m} \mid k_{m}} f_{\left\langle z_{1}, z_{2}, \ldots, z_{m}\right\rangle}^{\prod_{i=1}^{m} z_{i} e\left(z_{i}\right) /\left\langle z_{1}, z_{2}, \ldots, z_{m}\right\rangle} \equiv \prod_{i} f_{i}^{p_{i}^{\prime}}
$$

Proof. The cycle of length $k_{i}$ in $\sigma$ induces the product of cycles in $\sigma^{\prime}$ with the cycle index monomial $\prod_{z_{i} \mid k_{i}} f_{z_{i}}^{e\left(z_{i}\right)}$. The product of permutations with cycle index monomial $\prod_{i=1}^{n} t_{i}^{p_{i}}=\prod_{i=1}^{m} t_{k_{i}}$ in $\sigma$ induces a permutation with the cycle index monomial $X_{i=1}^{m} \prod_{z_{i} \mid k_{i}} f_{z_{i}}^{e\left(z_{i}\right)}$ in $\sigma^{\prime}$. The cycle index of $\sigma^{\prime}$ is then obtained using (4.2)

$$
\prod_{i} f_{i}^{p_{i}^{\prime}}=\prod_{z_{1} \mid k_{1}} \prod_{z_{2} \mid k_{2}} \cdots \prod_{z_{m} \mid k_{m}} f_{\left\langle z_{1}, z_{2}, \ldots, z_{m}\right\rangle}^{\prod_{i=1}^{m} z_{i} e\left(z_{i}\right) /\left\langle z_{1}, z_{2}, \ldots, z_{m}\right\rangle}
$$

The following diagram displays the dependence of the computation time on $n$. More precisely, the natural logarithms of the two times (in seconds), denoted by $T_{n}$ and $T_{n}^{\prime}$, respectively, are displayed - the time needed to compute $V_{n}$, and the time needed to compute only cycle indexes of $\sigma \in S_{n, p}$ and $\sigma^{\prime}$ for all partitions $p \in P_{n}$. It is seen that the most time-consuming part of the algorithm is the calculation including large numbers.


Figure 1. Computation time.

## 5. Acknowledgement

We are greatly indebted to the anonymous referee for many useful comments.

## References

1. C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Comput. EC-13 (1964), 529-541.
2. M. A. Harrison, The number of transitivity sets of boolean functions, J. Soc. Ind. Appl. Math. 11(3) (1963), 806-828.
3. M. A. Harrison, Counting theorems and their applications to switching theory, Chapter 4 in A. Mukhopadyay (ed.), Recent Developments in Switching Functions, Academic Press, New York, 1971, 85-120.
4. The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

Advanced School of Electrical Engineering Applied Studies
(Received 0601 2016)
Belgrade
(Revised 03022016 and 2304 2016)
Serbia
caric.marko@gmail.com
Faculty of Mathematics
Department of Informatics
University of Belgrade
Serbia
ezivkovm@matf.bg.ac.rs


[^0]:    2010 Mathematics Subject Classification: Primary 05A15; Secondary 06E30.
    Key words and phrases: invertible Boolean functions, number of equivalence classes, permutation group.

    Communicated by Žarko Mijajlović.

