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ON THE NUMBER OF EQUIVALENCE CLASSES

OF INVERTIBLE BOOLEAN FUNCTIONS UNDER

ACTION OF PERMUTATION OF VARIABLES

ON DOMAIN AND RANGE

Marko Carić and Miodrag Živković

Abstract. Let Vn be the number of equivalence classes of invertible maps
from {0, 1}n to {0, 1}n, under action of permutation of variables on domain
and range. So far, the values Vn have been known for n 6 6. This paper
describes the procedure by which the values of Vn are calculated for n 6 30.

1. Introduction

Let Vn be the number of equivalence classes of invertible maps from {0, 1}n to
{0, 1}n, under action of permutation of variables on domain and range. Lorens [1]
gave a method for calculating the number of equivalence classes of invertible Boolean
functions under the following group operations on the input and output variables:
complementation, permutation, composition of complementation and permutation,
linear transformations and affine transformations. In particular, he calculated the
values Vn for n 6 5. Irvine [4] in 2011 calculated V6 (the sequence A000653). In
this paper using a more efficient procedure, the values Vn are calculated for n 6 30.

2. Notation

Let Sr denote symmetric group on r letters. Consider a set of vectorial in-
vertible Boolean functions (hereinafter referred to as functions), i.e., the set SN

of permutations of Bn = {0, 1}n where N = 2n. The function F ∈ SN maps the
n-tuple X = (x1, . . . , xn) ∈ Bn into Y = (y1, . . . , yn) = F (X). For some per-
mutation σ ∈ Sn, the result of its action on X = (x1, . . . , xn) ∈ Bn is σ′(X) =
(xσ(1), . . . , xσ(n)) ∈ Bn.

An arbitrary pair (ρ, σ) ∈ S2
n determines mapping Tρ,σ : SN → SN , defined

by Tρ,σ(F ) = ρ′ ◦ F ◦ σ′ where F ∈ SN ; in other words, if F ′ = Tρ,σ(F ) then
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F ′(X) = ρ′(F (σ′(X))) for all X ∈ Bn. The set of all mappings Tρ,σ with respect
to composition is a subgroup of SN !.

The two functions F, H ∈ SN are considered equivalent if there exist permuta-
tions ρ, σ ∈ Sn such that H = Tρ,σ(F ), i.e., if they differ only by a permutation of
input or output variables.

Let ι denote the identity permutation. Every permutation σ ∈ Sn uniquely
determines the permutation σ′ ∈ SN . Let S′

n denote the subgroup of SN consisting
of all permutations σ′ corresponding to permutations σ ∈ Sn. The mapping σ 7→ σ′

is a monomorphism from Sn to SN (see [2]).
Let σ ∈ Sr. Let pi, 1 6 i 6 r, denote the number of cycles of length i

in a cycle decomposition of σ; here
∑r

i=1 ipi = r. The cycle index monomial
of σ is the product

∏r
i=1 t

pi

i where ti, 1 6 i 6 r, are independent variables. It
can be equivalently described by the vector spec(σ) = p = (p1, p2, . . . , pr). For an
arbitrary positive integer n let Pn = {(p1, p2, . . . , pn) | pi > 0,

∑n
i=1 ipi = n} denote

the set of partitions of n. For some p ∈ Pn let Sn,p = {σ ∈ Sn | spec(σ) = p}. An
arbitrary partition p corresponds to the decomposition n = kp,1 +kp,2 + · · ·+kp,m(p)

into positive summands kp,1 > kp,2 > · · · > kp,m(p) > 0 where summand i =
n, n − 1, . . . , 1 in this sum appears pi times.

Let 〈r, s〉 and (r, s) denote the least common multiple and the greatest common
divisor of r and s, respectively.

3. Preliminaries

The calculation of Vn is based on the following known facts (see e.g., [1–3]):

(1) The cardinality of Sn,p equals to

|Sn,p| =
n!

∏

i ipi pi!
.

(2) Let σ1, σ2 ∈ Sn be permutations such that spec(σ1) = spec(σ2). Then
spec(σ′

1) = spec(σ′
2). In other words, permutations with the same cycle

index in Sn induce the permutations with the same cycle index in S′
n.

(3) The permutation Tρ,σ has at least one fixed point if and only if spec(σ) =
spec(ρ).

(4) Let σ ∈ Sn,p and let spec(σ′) = p′ = (p′
1, p′

2, . . . , p′
N ). The number of

fixed points of Tσ,σ is

Np =
∏

i

ip′

ip′
i!.

(5) If σ ∈ Sn is a cyclic permutation (a permutation having only one cycle of
the length n), then the cycle index monomial of the permutation σ′ is

∏

d|n

f
e(d)
d ,
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where the numbers e(k), k > 1 are defined by the recurrent relation

e(k) =
1

k

(

2k −
∑

d|k,d<k

d · e(d)
)

, k > 1.

with the initial value e(1) = 2.
(6) If α is a permutation on a set X with |X | = a and α has a cycle index

monomial f
j1

1 · · · f ja
a , and β is a permutation on Y with |Y | = b and β has

a cycle index monomial fk1

1 · · · fkb

b , then the permutation (α, β) acting on
X × Y by the rule

(α, β)(x, y) = (α(x), β(y))

has cycle index monomial given by
( a

∏

p=1

f jp

p

)�( b
∏

q=1

fkq

q

)

=

a
∏

p=1

b
∏

q=1

(f jp

p × fkq

q ) =

a
∏

p=1

b
∏

q=1

f
jpkq(p,q)
〈p,q〉 .

4. The number of equivalence classes

The value of Vn is determined by the following theorem.

Theorem 4.1. For an arbitrary p ∈ Pn let σ ∈ Sn,p. If spec(σ′) = (p′
1, . . . , p′

n),
then

(4.1) Vn =
∑

p∈Pn

∏

i ip′

ip′
i!

(
∏

i ipipi!
)2 .

Proof. The permutation F ∈ SN is a fixed point of Tρ,σ if Tρ,σ(F (X)) =
F (X) holds for all X ∈ Bn. Let I(ρ, σ) be a number of fixed points of Tρ,σ. By the
Frobenius lemma (see e.g. [1]) the number of equivalence classes is equal to

Vn =
1

(n!)2

∑

σ∈Sn

∑

ρ∈Sn

I(ρ, σ) =
1

(n!)2

∑

p∈Pn

∑

ρ∈Sn,p

∑

q∈Pn

∑

σ∈Sn,q

I(ρ, σ).

By the facts (2)–(4) from Preliminaries, the number of fixed points of Tρ,σ corre-
sponding to fixed permutations ρ ∈ Sn,p, σ ∈ Sn,q is equal to

I(ρ, σ) =

{

0, p 6= q

Np, p = q

Therefore

Vn =
1

(n!)2

∑

p∈Pn

∑

ρ∈Sn,p

∑

q∈{p}

∑

σ∈Sn,p

Np =
1

(n!)2

∑

p∈Pn

∑

ρ∈Sn,p

∑

σ∈Sn,p

Np

=
1

(n!)2

∑

p∈Pn

Np

∑

ρ∈Sn,p

∑

σ∈Sn,p

1 =
1

(n!)2

∑

p∈Pn

Np · |Sn,p|2

=
∑

p∈Pn

∏

i ip′

ip′
i!

(
∏

i ipipi!
)2 . �
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By induction the following generalization of the fact (6) can be proved. If αi

is permutation on Zi, |Zi| = ki, i = 1, . . . , n, and if the cycle index monomial of αi

is f
yi,1

1 · · · f
yi,ki

ki
, then the permutation (α1, . . . , αn) acting on Z1 × Z2 × · · · × Zn

by the rule

(α1, . . . , αn)(z1, . . . , zn) = (α1(z1), . . . , αn(zn))

has cycle index monomial given by

(4.2)

n�

i=1

( ki
∏

zi=1

f
yi,zi
zi

)

=

k1
∏

z1=1

k2
∏

z2=1

· · ·

kn
∏

zn=1

n�

i=1

f
yi,zi
zi

=

k1
∏

z1=1

k2
∏

z2=1

· · ·

kn
∏

zn=1

f

∏

n

i=1
(ziyi,zi

)/〈z1,z2,...,zn〉

〈z1,z2,...,zn〉

The proof is based on the fact, also proved by induction, that the cycle index
monomial of the direct product of n permutations with cycle index monomials
fyi

zi
, 1 6 i 6 n is equal to

n�

i=1

fyi

zi
= f

∏

n

i=1
(ziyi)/〈z1,z2,...,zn〉

〈z1,z2,...,zn〉

Using this generalization, the following theorem shows how to obtain the cycle
index p′ of σ′, used in previous theorem.

Theorem 4.2. Let p ∈ Pn be an arbitrary partition and let σ ∈ Sn,p. Let

σ = α1α2 . . . αm be a decomposition of σ into disjoint cycles. Let the length of αi

be ki, 1 6 i 6 m. The cycle index monomial
∏

i f
p′

i

i of the corresponding σ′ is

given by

m�

i=1

(

∏

zi|ki

fe(zi)
zi

)

=
∏

z1|k1

∏

z2|k2

· · ·
∏

zm|km

f

∏

m

i=1
zie(zi)/〈z1,z2,...,zm〉

〈z1,z2,...,zm〉 ≡
∏

i

f
p′

i

i .

Proof. The cycle of length ki in σ induces the product of cycles in σ′ with

the cycle index monomial
∏

zi|ki
f

e(zi)
zi . The product of permutations with cycle

index monomial
∏n

i=1 t
pi

i =
∏m

i=1 tki
in σ induces a permutation with the cycle

index monomial
�m

i=1
∏

zi|ki
f

e(zi)
zi in σ′. The cycle index of σ′ is then obtained

using (4.2)

∏

i

f
p′

i

i =
∏

z1|k1

∏

z2|k2

· · ·
∏

zm|km

f

∏

m

i=1
zie(zi)/〈z1,z2,...,zm〉

〈z1,z2,...,zm〉 . �

The following diagram displays the dependence of the computation time on n.
More precisely, the natural logarithms of the two times (in seconds), denoted by Tn

and T ′
n, respectively, are displayed—the time needed to compute Vn, and the time

needed to compute only cycle indexes of σ ∈ Sn,p and σ′ for all partitions p ∈ Pn.
It is seen that the most time-consuming part of the algorithm is the calculation
including large numbers.
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Figure 1. Computation time.
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