PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 100(114) (2016), 95–99

DOI: 10.2298/PIM1614095C

ON THE NUMBER OF EQUIVALENCE CLASSES OF INVERTIBLE BOOLEAN FUNCTIONS UNDER ACTION OF PERMUTATION OF VARIABLES ON DOMAIN AND RANGE

Marko Carić and Miodrag Živković

ABSTRACT. Let V_n be the number of equivalence classes of invertible maps from $\{0,1\}^n$ to $\{0,1\}^n$, under action of permutation of variables on domain and range. So far, the values V_n have been known for $n \leq 6$. This paper describes the procedure by which the values of V_n are calculated for $n \leq 30$.

1. Introduction

Let V_n be the number of equivalence classes of invertible maps from $\{0, 1\}^n$ to $\{0, 1\}^n$, under action of permutation of variables on domain and range. Lorens [1] gave a method for calculating the number of equivalence classes of invertible Boolean functions under the following group operations on the input and output variables: complementation, permutation, composition of complementation and permutation, linear transformations and affine transformations. In particular, he calculated the values V_n for $n \leq 5$. Irvine [4] in 2011 calculated V_6 (the sequence A000653). In this paper using a more efficient procedure, the values V_n are calculated for $n \leq 30$.

2. Notation

Let S_r denote symmetric group on r letters. Consider a set of vectorial invertible Boolean functions (hereinafter referred to as functions), i.e., the set S_N of permutations of $B_n = \{0, 1\}^n$ where $N = 2^n$. The function $F \in S_N$ maps the n-tuple $X = (x_1, \ldots, x_n) \in B_n$ into $Y = (y_1, \ldots, y_n) = F(X)$. For some permutation $\sigma \in S_n$, the result of its action on $X = (x_1, \ldots, x_n) \in B_n$ is $\sigma'(X) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)}) \in B_n$.

An arbitrary pair $(\rho, \sigma) \in S_n^2$ determines mapping $T_{\rho,\sigma} : S_N \to S_N$, defined by $T_{\rho,\sigma}(F) = \rho' \circ F \circ \sigma'$ where $F \in S_N$; in other words, if $F' = T_{\rho,\sigma}(F)$ then

2010 Mathematics Subject Classification: Primary 05A15; Secondary 06E30.

Communicated by Žarko Mijajlović.

 $Key\ words\ and\ phrases:$ invertible Boolean functions, number of equivalence classes, permutation group.

 $F'(X) = \rho'(F(\sigma'(X)))$ for all $X \in B_n$. The set of all mappings $T_{\rho,\sigma}$ with respect to composition is a subgroup of $S_{N!}$.

The two functions $F, H \in S_N$ are considered equivalent if there exist permutations $\rho, \sigma \in S_n$ such that $H = T_{\rho,\sigma}(F)$, i.e., if they differ only by a permutation of input or output variables.

Let ι denote the identity permutation. Every permutation $\sigma \in S_n$ uniquely determines the permutation $\sigma' \in S_N$. Let S'_n denote the subgroup of S_N consisting of all permutations σ' corresponding to permutations $\sigma \in S_n$. The mapping $\sigma \mapsto \sigma'$ is a monomorphism from S_n to S_N (see [2]).

Let $\sigma \in S_r$. Let p_i , $1 \leq i \leq r$, denote the number of cycles of length iin a cycle decomposition of σ ; here $\sum_{i=1}^r ip_i = r$. The cycle index monomial of σ is the product $\prod_{i=1}^r t_i^{p_i}$ where t_i , $1 \leq i \leq r$, are independent variables. It can be equivalently described by the vector spec $(\sigma) = p = (p_1, p_2, \ldots, p_r)$. For an arbitrary positive integer n let $P_n = \{(p_1, p_2, \ldots, p_n) \mid p_i \geq 0, \sum_{i=1}^n ip_i = n\}$ denote the set of partitions of n. For some $p \in P_n$ let $S_{n,p} = \{\sigma \in S_n \mid \text{spec}(\sigma) = p\}$. An arbitrary partition p corresponds to the decomposition $n = k_{p,1} + k_{p,2} + \cdots + k_{p,m(p)}$ into positive summands $k_{p,1} \geq k_{p,2} \geq \cdots \geq k_{p,m(p)} > 0$ where summand $i = n, n-1, \ldots, 1$ in this sum appears p_i times.

Let $\langle r, s \rangle$ and (r, s) denote the least common multiple and the greatest common divisor of r and s, respectively.

3. Preliminaries

The calculation of V_n is based on the following known facts (see e.g., [1-3]):

(1) The cardinality of $S_{n,p}$ equals to

$$|S_{n,p}| = \frac{n!}{\prod_i i^{p_i} p_i!}.$$

- (2) Let $\sigma_1, \sigma_2 \in S_n$ be permutations such that $\operatorname{spec}(\sigma_1) = \operatorname{spec}(\sigma_2)$. Then $\operatorname{spec}(\sigma'_1) = \operatorname{spec}(\sigma'_2)$. In other words, permutations with the same cycle index in S_n induce the permutations with the same cycle index in S'_n .
- (3) The permutation $T_{\rho,\sigma}$ has at least one fixed point if and only if $\operatorname{spec}(\sigma) = \operatorname{spec}(\rho)$.
- (4) Let $\sigma \in S_{n,p}$ and let $\operatorname{spec}(\sigma') = p' = (p'_1, p'_2, \dots, p'_N)$. The number of fixed points of $T_{\sigma,\sigma}$ is

$$N_p = \prod_i i^{p'_i} p'_i!.$$

(5) If $\sigma \in S_n$ is a cyclic permutation (a permutation having only one cycle of the length n), then the cycle index monomial of the permutation σ' is

$$\prod_{d|n} f_d^{e(d)}$$

where the numbers $e(k), k \ge 1$ are defined by the recurrent relation

$$e(k) = \frac{1}{k} \Big(2^k - \sum_{d \mid k, d < k} d \cdot e(d) \Big), \quad k > 1.$$

with the initial value e(1) = 2.

(6) If α is a permutation on a set X with |X| = a and α has a cycle index monomial $f_1^{j_1} \cdots f_a^{j_a}$, and β is a permutation on Y with |Y| = b and β has a cycle index monomial $f_1^{k_1} \cdots f_b^{k_b}$, then the permutation (α, β) acting on $X \times Y$ by the rule

$$(\alpha, \beta)(x, y) = (\alpha(x), \beta(y))$$

has cycle index monomial given by

$$\left(\prod_{p=1}^{a} f_p^{j_p}\right) \bigotimes \left(\prod_{q=1}^{b} f_q^{k_q}\right) = \prod_{p=1}^{a} \prod_{q=1}^{b} (f_p^{j_p} \times f_q^{k_q}) = \prod_{p=1}^{a} \prod_{q=1}^{b} f_{\langle p,q \rangle}^{j_p k_q(p,q)}.$$

4. The number of equivalence classes

The value of V_n is determined by the following theorem.

THEOREM 4.1. For an arbitrary $p \in P_n$ let $\sigma \in S_{n,p}$. If $\operatorname{spec}(\sigma') = (p'_1, \ldots, p'_n)$, then

(4.1)
$$V_n = \sum_{p \in P_n} \frac{\prod_i i^{p'_i} p'_i!}{\left(\prod_i i^{p_i} p_i!\right)^2}.$$

PROOF. The permutation $F \in S_N$ is a fixed point of $T_{\rho,\sigma}$ if $T_{\rho,\sigma}(F(X)) = F(X)$ holds for all $X \in B_n$. Let $I(\rho, \sigma)$ be a number of fixed points of $T_{\rho,\sigma}$. By the Frobenius lemma (see e.g. [1]) the number of equivalence classes is equal to

$$V_n = \frac{1}{(n!)^2} \sum_{\sigma \in S_n} \sum_{\rho \in S_n} I(\rho, \sigma) = \frac{1}{(n!)^2} \sum_{\rho \in P_n} \sum_{\rho \in S_{n,p}} \sum_{q \in P_n} \sum_{\sigma \in S_{n,q}} I(\rho, \sigma)$$

By the facts (2)–(4) from Preliminaries, the number of fixed points of $T_{\rho,\sigma}$ corresponding to fixed permutations $\rho \in S_{n,p}$, $\sigma \in S_{n,q}$ is equal to

$$I(\rho,\sigma) = \begin{cases} 0, & p \neq q \\ N_p, & p = q \end{cases}$$

Therefore

$$V_{n} = \frac{1}{(n!)^{2}} \sum_{p \in P_{n}} \sum_{\rho \in S_{n,p}} \sum_{q \in \{p\}} \sum_{\sigma \in S_{n,p}} N_{p} = \frac{1}{(n!)^{2}} \sum_{p \in P_{n}} \sum_{\rho \in S_{n,p}} \sum_{\sigma \in S_{n,p}} N_{p}$$
$$= \frac{1}{(n!)^{2}} \sum_{p \in P_{n}} N_{p} \sum_{\rho \in S_{n,p}} \sum_{\sigma \in S_{n,p}} 1 = \frac{1}{(n!)^{2}} \sum_{p \in P_{n}} N_{p} \cdot |S_{n,p}|^{2}$$
$$= \sum_{p \in P_{n}} \frac{\prod_{i} i^{p'_{i}} p'_{i}!}{(\prod_{i} i^{p_{i}} p_{i}!)^{2}}.$$

By induction the following generalization of the fact (6) can be proved. If α_i is permutation on Z_i , $|Z_i| = k_i$, i = 1, ..., n, and if the cycle index monomial of α_i is $f_1^{y_{i,1}} \cdots f_{k_i}^{y_{i,k_i}}$, then the permutation $(\alpha_1, \ldots, \alpha_n)$ acting on $Z_1 \times Z_2 \times \cdots \times Z_n$ by the rule

$$(\alpha_1, \ldots, \alpha_n)(z_1, \ldots, z_n) = (\alpha_1(z_1), \ldots, \alpha_n(z_n))$$

has cycle index monomial given by

(4.2)
$$\sum_{i=1}^{n} \left(\prod_{z_{i}=1}^{k_{i}} f_{z_{i}}^{y_{i},z_{i}} \right) = \prod_{z_{1}=1}^{k_{1}} \prod_{z_{2}=1}^{k_{2}} \cdots \prod_{z_{n}=1}^{k_{n}} \sum_{i=1}^{n} f_{z_{i}}^{y_{i},z_{i}}$$
$$= \prod_{z_{1}=1}^{k_{1}} \prod_{z_{2}=1}^{k_{2}} \cdots \prod_{z_{n}=1}^{k_{n}} f_{\langle z_{1},z_{2},...,z_{n} \rangle}^{\prod_{i=1}^{n} (z_{i}y_{i},z_{i})/\langle z_{1},z_{2},...,z_{n} \rangle}$$

The proof is based on the fact, also proved by induction, that the cycle index monomial of the direct product of n permutations with cycle index monomials $f_{z_i}^{y_i}$, $1 \leq i \leq n$ is equal to

$$\sum_{i=1}^{n} f_{z_{i}}^{y_{i}} = f_{\langle z_{1}, z_{2}, \dots, z_{n} \rangle}^{\prod_{i=1}^{n} (z_{i}y_{i})/\langle z_{1}, z_{2}, \dots, z_{n} \rangle}$$

Using this generalization, the following theorem shows how to obtain the cycle index p' of σ' , used in previous theorem.

THEOREM 4.2. Let $p \in P_n$ be an arbitrary partition and let $\sigma \in S_{n,p}$. Let $\sigma = \alpha_1 \alpha_2 \dots \alpha_m$ be a decomposition of σ into disjoint cycles. Let the length of α_i be k_i , $1 \leq i \leq m$. The cycle index monomial $\prod_i f_i^{p'_i}$ of the corresponding σ' is given by

$$\bigotimes_{i=1}^{m} \left(\prod_{z_i|k_i} f_{z_i}^{e(z_i)}\right) = \prod_{z_1|k_1} \prod_{z_2|k_2} \cdots \prod_{z_m|k_m} f_{\langle z_1, z_2, \dots, z_m \rangle}^{\prod_{i=1}^{m} z_i e(z_i)/\langle z_1, z_2, \dots, z_m \rangle} \equiv \prod_i f_i^{p'_i}.$$

PROOF. The cycle of length k_i in σ induces the product of cycles in σ' with the cycle index monomial $\prod_{z_i|k_i} f_{z_i}^{e(z_i)}$. The product of permutations with cycle index monomial $\prod_{i=1}^{n} t_i^{p_i} = \prod_{i=1}^{m} t_{k_i}$ in σ induces a permutation with the cycle index monomial $\bigotimes_{i=1}^{m} \prod_{z_i|k_i} f_{z_i}^{e(z_i)}$ in σ' . The cycle index of σ' is then obtained using (4.2)

$$\prod_{i} f_{i}^{p_{i}'} = \prod_{z_{1}|k_{1}} \prod_{z_{2}|k_{2}} \cdots \prod_{z_{m}|k_{m}} f_{\langle z_{1}, z_{2}, \dots, z_{m} \rangle}^{\prod_{i=1}^{m} z_{i}e(z_{i})/\langle z_{1}, z_{2}, \dots, z_{m} \rangle}.$$

The following diagram displays the dependence of the computation time on n. More precisely, the natural logarithms of the two times (in seconds), denoted by T_n and T'_n , respectively, are displayed—the time needed to compute V_n , and the time needed to compute only cycle indexes of $\sigma \in S_{n,p}$ and σ' for all partitions $p \in P_n$. It is seen that the most time-consuming part of the algorithm is the calculation including large numbers.

FIGURE 1. Computation time.

5. Acknowledgement

We are greatly indebted to the anonymous referee for many useful comments.

References

- 1. C.S. Lorens, *Invertible Boolean functions*, IEEE Trans. Electron. Comput. **EC-13** (1964), 529–541.
- M.A. Harrison, The number of transitivity sets of boolean functions, J. Soc. Ind. Appl. Math. 11(3) (1963), 806–828.
- 3. M.A. Harrison, Counting theorems and their applications to switching theory, Chapter 4 in A. Mukhopadyay (ed.), Recent Developments in Switching Functions, Academic Press, New York, 1971, 85–120.
- 4. The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.

Advanced School of Electrical Engineering Applied Studies (Received 06 01 2016) Belgrade (Revised 03 02 2016 and 23 04 2016) Serbia

caric.marko@gmail.com

Faculty of Mathematics Department of Informatics University of Belgrade Serbia ezivkovm@matf.bg.ac.rs