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UNIFORM DISTRIBUTION MODULO 1 AND

THE UNIVERSALITY OF ZETA-FUNCTIONS

OF CERTAIN CUSP FORMS

Antanas Laurinčikas

Abstract. An universality theorem on the approximation of analytic func-
tions by shifts ζ(s+iτ, F ) of zeta-functions of normalized Hecke-eigen forms F ,
where τ takes values from the set {kαh : k = 0, 1, 2, . . . } with fixed 0 < α < 1
and h > 0, is obtained.

1. Introduction

Denote by SL(2,Z) the full modular group, i.e.,

SL(2,Z) =
{(

a b
c d

)

: a, b, c, d ∈ Z, ad − bc = 1
}

.

The function F (z) is called a holomorphic cusp form of weight κ for SL(2,Z) if
F (z) is holomorphic in the half-plane Imz > 0, for all

(

a b
c d

)

∈ SL(2,Z) satisfies the
functional equation

F
(az + b

cz + d

)

= (cz + d)κF (z),

and at infinity has the Fourier series expansion F (z) =
∑∞

m=1 c(m)e2πimz . Assume
additionally that F (z) is a normalized Hecke-eigen form, i.e., is an eigen form of
all Hecke operators

TmF (z) = mκ−1
∑

a,d>0
ad=m

1

dκ

∑

b(mod d)

F
(az + b

d

)

, m ∈ N,

and c(1) = 1.
The associated zeta-function ζ(s, F ), s = σ + it, is defined, for σ > κ+1

2 , by the
Dirichlet series

ζ(s, F ) =

∞
∑

m=1

c(m)

ms
,
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and can be analytically continued to an entire function. Moreover, the function
ζ(s, F ) can be written, for σ > κ+1

2 , as a product over primes

ζ(s, F ) =
∏

p

(

1 −
α(p)

ps

)−1(

1 −
β(p)

ps

)−1
,

where α(p) and β(p) are conjugate complex numbers satisfying α(p) + β(p) = c(p).
The zeta-function ζ(s, F ), as the Riemann zeta-function, Dirichlet L-functions,

and some other zeta and L-functions, is universal in that sense that a wide class
of analytic functions can be approximated by shifts ζ(s + iτ, F ) with some real τ .
This was obtained in [6] by using the probabilistic approach and positive density
method. Let D = DF =

{

s ∈ C : κ
2 < σ < κ+1

2

}

. Denote by K = KF the class
of compact subsets of the strip D with connected complements, and by H0(K),
K ∈ K, the class of continuous non-vanishing functions on K which are analytic in
the interior of K. Let measA stand for the Lebesgue measure of a measurable set
A ⊂ R. Then, in [7], the following statement was proved.

Theorem 1.1. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : sup
s∈K

|ζ(s + iτ, F ) − f(s)| < ε
}

> 0.

Investigations of universality of zeta-functions of cusp forms were continued in
[8] and [6], where the analogues of Theorem 1.1 were obtained for zeta-functions
attached to new forms and for zeta-functions of primitive normalized Hecke-eigen
forms for the Hecke subgroup with character, respectively.

Theorem 1.1 and its generalizations in [8], [6] are of continuous type because the
shifts τ in ζ(s+ iτ, F ) can take arbitrary real values. Also, the discrete universality
of zeta-functions is considered. In this case, τ takes values from some discrete sets.
The discrete analogue of Theorem 1.1 was begun to study in [9], and a general
result was obtained in [11]. Denote by #A the cardinality of the set A.

Theorem 1.2. Suppose that K ∈ K, f(s) ∈ H0(K) and h > 0 is an arbitrary

fixed number. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : sup
s∈K

|ζ(s + ikh, F ) − f(s)| < ε
}

> 0.

In Theorem 1.2, the shift τ in ζ(s + iτ, F ) takes values from the arithmetical
progression {0, h, 2h, . . .} with difference h. It is an interesting problem to prove
Theorem 1.2 when τ takes values from a more complicated discrete set, and the
present paper is devoted to the case of the set {kαh : k ∈ N0 = N ∪ {0}}, where
h > 0 and 0 < α < 1 are arbitrary fixed numbers.

Theorem 1.3. Suppose that K ∈ K, f(s) ∈ H0(K), and h > 0 and 0 < α < 1
are arbitrary fixed numbers. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : sup
s∈K

|ζ(s + ikαh, F ) − f(s)| < ε
}

> 0.
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Let H(G) be the space of analytic functions on the region G ⊂ C endowed
with the topology of uniform convergence on compacta. In [10], Theorem 1.1
was generalized to composite functions Φ(ζ(s, F )) for some classes of operators
Φ : H(D) → H(D). Similarly, discrete analogues of Theorem 1.2 for Φ(ζ(s, F ))
were obtained in [11]. Theorem 1.3 also can be rewritten for composite functions.
We give only one example. For a1, . . . , ar ∈ C and Φ : H(D) → H(D), define

HΦ;a1,...,ar
(D) = {g ∈ H(D) : g(s) 6= aj , j = 1, . . . , r} ∪ {Φ(0)},

S = {g ∈ H(D) : g(s) 6= 0 or g(s) ≡ 0}.

Theorem 1.4. Suppose that Φ : H(D) → H(D) is a continuous operator such

that Φ(S) ⊃ HΦ;a1,...,ar
(D), and h > 0 and 0 < α < 1 are arbitrary fixed numbers.

If r = 1, let K ∈ K, f(s) ∈ H(K) and f(s) 6= a1 on K. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : sup
s∈K

|Φ(ζ(s + ikαh, F )) − f(s)| < ε
}

> 0.(1.1)

Let K ⊂ D be an arbitrary compact subset, and f(s) ∈ HΦ;a1,...,ar
(D). Then

inequality (1.1) holds for any ε > 0.

For example, Theorem 1.4 implies the discrete universality for the functions
eζ(s,F ), sin(ζ(s, F )), cos(ζ(s, F )), etc.

2. Probabilistic limit theorems

For the proof of Theorem 1.3, we need the weak convergence for

PN (A) =
1

N + 1
#

{

0 6 k 6 N : ζ(s + ikαh, F ) ∈ A
}

, A ∈ B(H(D)),

with explicitly given limit measure. Here the sequel, B(X) denotes the Borel σ-field
of the space X .

Let γ = {s ∈ C : |s| = 1} be the unit circle on the complex plane, and P be the
set of all prime numbers. Define Ω =

∏

p∈P γp where γp = γ for all p ∈ P. It is well
known that the torus Ω, with the product topology and pointwise multiplication,
is a compact topological Abelian group. Thus, on a measurable space (Ω, B(Ω)),
the probability Haar measure mH can be defined, and we have the probability
space (Ω, B(Ω), mH). Denote by ω(p) the projection of an element ω ∈ Ω to the
circle γp, p ∈ P. Then we have that {ω(p) : p ∈ P} is a sequence of independent
random variables defined on the probability space (Ω, B(Ω), mH). On the latter
space, define the H(D)-valued random element ζ(s, ω, F ) by

ζ(s, ω, F ) =
∏

p∈P

(

1 −
α(p)ω(p)

ps

)−1(

1 −
β(p)ω(p)

ps

)−1
,

and denote by Pζ the distribution of ζ(s, ω, F ), i.e., for A ∈ B(H(D)),

Pζ(A) = mH(ω ∈ Ω : ζ(s, ω, F ) ∈ A).

Theorem 2.1. The measure PN converges weakly to Pζ as N → ∞. Moreover,

the support of Pζ is the set S.
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The proof of Theorem 2.1 is based on individual properties of the sequence
{kα : k ∈ N0}. We recall that a sequence {xk} ⊂ R is uniformly distributed
modulo 1 if, for each interval I = [a, b) ⊂ [0, 1) of length |I|,

lim
n→∞

1

n

n
∑

k=1

χI({xk}) = |I|,

where {u} denotes the fractional part of u ∈ R, and χI is the indicator function
of I.

Lemma 2.1. For an arbitrary fixed a 6= 0 and 0 < α < 1, the sequence {kαa}
is uniformly distributed modulo 1.

The lemma is Exercise 3.10 of [4].

Lemma 2.2. Suppose that a sequence {xk} ⊂ R is such that, for every a 6= 0, the

sequence {xka} is uniformly distributed modulo 1. Then the measure QN , defined,

for h > 0, by

QN (A) =
1

N + 1
#

{

0 6 k 6 N : (p−ixkh : p ∈ P) ∈ A
}

, A ∈ B(Ω),

converges weakly to the Haar measure mH as N → ∞.

Proof. Let gN(k), k = (kp : p ∈ P) denote the Fourier transform of QN , i.e.,

gN (k) =

∫

Ω

∏

p

ωkp(p)dQN ,

where only a finite number of integers kp are distinct from zero. By the definition
of QN , we find that

(2.1) gN (k) =
1

N + 1

N
∑

k=0

∏

p

p−ixkhkp =
1

N + 1

N
∑

k=0

exp
{

− ixkh
∑

p

kp log p
}

.

It is well known that the set {log p : p ∈ P} is linearly independent over the field
of rational numbers Q. Therefore, the equality

∑

p kp log p = 0 holds if and only if
k = 0. Clearly,

(2.2) gN (0) = 1.

In the case k 6= 0, we have that h
∑

p kp log p 6= 0. Therefore, by the hypothesis on

the sequence {xk}, the sequence
{

xkh

2π

∑

p

kp log p

}

is uniformly distributed modulo 1. Hence, an application of the Weyl criterion
together with (2.1) shows that limN→∞ gN(k) = 0 for k 6= 0. This and (2.2) yield
that

(2.3) lim
N→∞

gN (k) =

{

1 if k = 0,

0 if k 6= 0.
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Since

g(k) =

{

1 if k = 0,

0 if k 6= 0,

is the Fourier transform of the Haar measure mH , a continuity theorem for prob-
ability measures on compact groups, see, for example, [3], and (2.3) prove the
lemma. �

Lemma 2.2 for the sequence {kα} with α > 0 and α 6∈ N was proved in [2].
For each ω ∈ Ω, extend the function ω(p) from the set P to the set N by

ω(m) =
∏

pl|m

pl+1∤m

ωl(p), m ∈ N.

Further, we consider two functions

ζn(s, F ) =
∞

∑

m=1

c(m)vn(m)

ms
and ζn(s, ω, F ) =

∞
∑

m=1

c(m)ω(m)vn(m)

ms
,

where, for a fixed number σ0 > 1
2 and m, n ∈ N,

vn(m) = exp
{

− (m/n)σ0
}

.

Then the series for ζn(s, F ) and ζn(s, ω, F ) are absolutely convergent for σ > κ
2 .

For A ∈ B(H(D)), define

PN,n(A) =
1

N + 1
#

{

0 6 k 6 N : ζn(s + ixkh, F ) ∈ A
}

.

Moreover, let the function un : Ω → H(D) be given by un(ω) = ζn(s, ω, F ), and

let the probability measure P̂n be defined by P̂n = mHu−1
n , i.e., for A ∈ B(H(D)),

P̂n(A) = mHu−1
n (A) = mH(u−1

n A).

Lemma 2.3. Under hypotheses of Lemma 2.2, PN,n converges weakly to P̂n as

N → ∞.

Proof. Since the series for ζn(s, ω, F ) is absolutely convergent for σ > κ
2 , we

have that the function un is a continuous one. Moreover,

un(p−ixkh : p ∈ P) = ζn(s + ixkh, F ).

Therefore, PN,n = QNu−1
n . This, Lemma 2.2, and Theorem 5.1 of [1] prove the

lemma. �

For the proof of Theorem 1.1, a limit theorem for

P̂T (A)
def
=

1

T
meas

{

τ ∈ [0, T ] : ζ(s + iτ, F ) ∈ A
}

, A ∈ B(H(D)),

as T → ∞ was applied. For our propose, we need some facts from the proof of the
above limit theorem.



136 LAURINČIKAS

Lemma 2.4. The measure Q̂T defined by

Q̂T (A) =
1

T
meas

{

τ ∈ [0, T ] : (p−iτ : p ∈ P) ∈ A
}

, A ∈ B(Ω),

converges weakly to the Haar measure mH as T → ∞.

Proof. We use the method of Fourier transform and the linear independence
over the field of rational numbers Q for the set {log p : p ∈ P}. �

Lemma 2.5. The measure P̂T,n defined by

P̂T,n(A) =
1

T
meas

{

τ ∈ [0, T ] : ζn(s + iτ, F ) ∈ A
}

, A ∈ B(H(D)),

converges weakly to P̂n as T → ∞, where P̂n is defined in Lemma 2.3.

Proof. We use Lemma 2.4 and repeat the proof of Lemma 2.3. �

Lemma 2.6. P̂T converges weakly to Pζ , and the support of Pζ is the set S.

Moreover, Pζ coincides with the limit measure P of P̂n as n → ∞.

Proof. We apply Lemma 2.5, the approximation of ζ(s, F ) and ζ(s, ω, F ) by
ζn(s, F ) and ζn(s, ω, F ), respectively, and the classical Birkhoff-Khintchine ergodic
theorem. For the investigation of the support, the positive density method is ap-
plied, see [7]. �

Our next aim is to show that the measure PN , as N → ∞, also converges
weakly to the limit measure P of P̂n as n → ∞, i.e., that PN converges weakly
to Pζ .

First we need a discrete version of approximation ζ(s, F ) by ζn(s, F ). Let
{Kl : l ∈ N} ⊂ D be a sequence of compact subsets such that D =

⋃∞
l=1 Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact subset, then K ⊂ Kl for some
l ∈ N. For g1, g2 ∈ H(D), set

ρ(g1, g2) =

∞
∑

l=1

2−l
sups∈Kl

|g1(s) − g2(s)|

1 + sups∈Kl
|g1(s) − g2(s)|

.

Then ρ is a metric on H(D) which induces its topology of uniform convergence on
compacta.

We also recall the Gallagher lemma which relates continuous and discrete mean
values of certain functions.

Lemma 2.7. Let T0 and T > δ > 0 be real numbers, and T be a finite set in

the interval [T0 + δ
2 , T0 + T − δ

2 ]. Define

Nδ(x) =
∑

t∈T
|t−x|<δ

1,



UNIFORM DISTRIBUTION MODULO 1 AND THE UNIVERSALITY ... 137

and let S(x) be a complex-valued continuous function on [T0, T + T0] having a

continuous derivative on (T0, T + T0). Then

∑

t∈T

N−1
δ (t)|S(t)|2 6

1

δ

∫ T0+T

T0

|S(x)|2dx

+

(
∫ T0+T

T0

|S(x)|2dx

∫ T0+T

T0

|S′(x)|2dx

)
1
2

.

Proof of the lemma can be found in [13], Lemma 1.4.

Lemma 2.8. Suppose that α ∈ (0, 1) and h > 0 are fixed numbers. Then

lim
n→∞

lim sup
N→∞

1

N + 1

N
∑

k=0

ρ(ζ(s + ikαh, F ), ζn(s + ikαh, F )) = 0.

Proof. It is known that, for fixed σ ∈ (κ
2 , κ+1

2 ),

(2.4)

∫ T

0
|ζ(σ + it, F )|2dt = O(T ).

This together with the Cauchy integral formula implies, for the same σ, the estimate

(2.5)

∫ T

0
|ζ′(σ + it, F )|2dt = O(T ).

Further, we will apply Lemma 2.7. For 2 6 k 6 N and sufficiently large N , we
have that

(k + 1)α − kα = kα
(

1 +
1

k

)α

− kα = kα
(

1 +
α

k
+

α(α − 1)

2k2 + · · ·
)

− kα

=
α

k1−α
+

α(α − 1)

2k2−α
+ · · · >

α

2N1−α
.

We take δ = αh
2N1−α in Lemma 2.7. Then estimates (2.4), (2.5) and Lemma 2.7, for

σ ∈ (κ
2 , κ+1

2 ), yield

(2.6)
N

∑

k=0

|ζ(σ + ikαh, F )|2 ≪ N1−α

∫ Nαh

0
|ζ(σ + it, F |2dt

+

(
∫ Nαh

0
|ζ(σ + it, F )|2dt

)
1
2
(

∫ Nαhj

0
|ζ′(σ + it, F )|2dt

)
1
2

≪ N.

Let K be a compact subset of the strip D. Then, using (2.6) and contour integra-
tion, we find similarly to the proof of Theorem 4.1 from [5] that

lim
n→∞

lim sup
N→∞

1

N + 1

N
∑

k=0

sup
s∈K

(ζ(s + ikαh, F ) − ζn(s + ikαh, F )) = 0.

This and the definition of the metric ρ prove the lemma. �
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Proof of Theorem 2.1. In view of Lemma 2.6, it suffices to show that PN

converges weakly to P as N → ∞, where P is the limit measure of P̂n as n → ∞.
Let θN be a random variable defined on a certain probability space (Ω0, A, µ),

and having the distribution

µ(θN = kαh) =
1

N + 1
, k = 0, 1, . . . , N.

Define the H(D)-valued random element XN,n by

XN,n = XN,n(s) = ζn(s + iθN , F ).

Then, by Lemmas 2.1 and 2.3, we have that XN,n converges in distribution to X̂n

XN,n
D

−−−−→
N→∞

X̂n,(2.7)

where X̂n is the H(D)-valued random element with the distribution P̂n, and P̂n

is the limit measure in Lemma 2.3. Since the series for ζn(s, F ) is absolutely
convergent for σ > κ

2 , by a standard method it is easy to show that the family

of probability measures {P̂n : n ∈ N} is tight, i.e., for every ε > 0, there exists a

compact subset K = KF (ε) ⊂ D such that P̂n(K) > 1 − ε for all n ∈ N. Hence,

by the Prokhorov theorem, see Theorem 6.1 in [1], the family {P̂n} is relatively

compact. Thus, there exists a sequence {P̂nr
} ⊂ {P̂n} such that P̂nr

converges

weakly to a certain probability measure P̂ on (H(D), B(H(D))) as r → ∞, i.e.,
using a mixed notation of [1],

X̂nr

D
−−−→
r→∞

P̂ .(2.8)

On (Ω0, A, µ), define one more H(D)-valued random element

XN = XN (s) = ζ(s + iθN , F ).

Then, by Lemma 2.8, we find that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
(

ρ(XN , XN,n) > ε
)

= lim
n→∞

lim sup
N→∞

1

N + 1
#

{

0 6 k 6 N : ρ
(

ζ(s + ikαh, F ), ζn(s + ikαh, F )
)

> ε
}

6 lim
n→∞

lim sup
N→∞

1

(N + 1)ε

N
∑

k=0

ρ
(

ζ(s + ikαh, F ), ζn(s + ikαh, F )
)

= 0.

This and relations (2.7) and (2.8) show that all hypotheses of Theorem 4.2 of [1]
are satisfied. Therefore,

XN
D

−−−−→
N→∞

P̂ ,

or equivalently, PN converges weakly to P̂ as N → ∞. Moreover, the latter relation
shows that the measure P̂ is independent of the sequence {P̂nr

}. Therefore,

X̂n
D

−−−−→
n→∞

P̂ ,
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i.e., P̂n converges weakly to P̂ as n → ∞, thus P̂ = P . Thus, we obtain that PN

converges weakly to the limit measure P of P̂n as n → ∞, and by Lemma 2.6, P
coincides with Pζ . The theorem is proved. �

3. Proof of universality theorems

Proof of Theorem 1.3. By the Mergelyan theorem on the approximation
of analytic functions by polynomials [12], there exists a polynomial p(s) such that

sup
s∈K

∣

∣f(s) − ep(s)
∣

∣ < ε/2.(3.1)

Define the set

G =
{

g ∈ H(D) : sup
s∈K

∣

∣g(s) − ep(s)
∣

∣ < ε/2
}

.

Then, by Theorem 2.1, G is an open neighbourhood of the element ep(s) of the
support of the measure Pζ . Hence, Pζ(G) > 0. This, Theorem 2.1 and an equivalent
of the weak convergence of probability measures in terms of open sets show that

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : ζ(s + ikαh, F ) ∈ G
}

> Pζ(G) > 0,

or, by the definition of G, we have that

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : sup
s∈K

∣

∣ζ(s + ikαh, F ) − ep(s)
∣

∣ < ε/2
}

> 0.

Combining this with (3.1) proves the theorem. �

Proof of Theorem 1.4. It follows from Theorem 2.1, the continuity of the
operator Φ and Theorem 5.1 of [1] that the measure

(3.2)
1

N + 1
#

{

0 6 k 6 N : Φ(ζ(s + ikαh, F )) ∈ A
}

, A ∈ B(H(D)),

converges weakly to PζΦ−1 as N → ∞. Moreover, repeating the proof of Lemma 17
from [10], we obtain that the support of PζΦ−1 includes the closure of the set
HΦ;a1,...,ar

(D).
First suppose that f(s) ∈ HΦ;a1,...,ar

(D). Then, by the above remark, f(s) is
an element of the support of PζΦ−1. Therefore, putting

G1 =
{

g ∈ H(D) : sup
s∈K

∣

∣g(s) − f(s)
∣

∣ < ε
}

,

we have that PζΦ−1(G1) > 0. This and the weak convergence of measure (3.2)
prove the theorem in this case.

Now let r = 1. Then, by the Mergelyan theorem, there exists a polynomial
p(s) such that

sup
s∈K

∣

∣f(s) − p(s)
∣

∣ < ε/4.(3.3)
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Since f(s) 6= a1 on K, by the Mergelyan theorem again, we can find a polynomial
q(s) such that

sup
s∈K

∣

∣p(s) − f1(s)
∣

∣ < ε/4,(3.4)

where f1(s) = a1 + eq(s). By the above remark, f1(s) is an element of the support
of the measure PζΦ−1. Therefore, if

G2 =
{

g ∈ H(D) : sup
s∈K

∣

∣g(s) − f1(s)
∣

∣ < ε/2
}

,

then PζΦ−1(G2) > 0. Therefore, by the weak convergence of (3.2) to PζΦ−1 as
N → ∞, we find that

lim inf
N→∞

1

N + 1
#

{

0 6 k 6 N : sup
s∈K

∣

∣Ψ(ζ(s + ikαh, F )) − f1(s)
∣

∣ < ε/2
}

> 0.

This together with (3.3) and (3.4) prove the theorem in the case r = 1. �
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5. A. Laurinčikas, R. Macaitienė, The discrete universality of the periodic Hurwitz zeta-function,

Integral Transforms Spec. Funct. 20(9–10) (2009), 673–686.
6. , On the universality of zeta-functions of certain cusp forms, Anal. Prob. Methods

Number Theory, TEV, Vilnius, 2012, 273–283.
7. A. Laurinčikas, K. Matsumoto, The universality of zeta-functions attached to certain cusp

forms, Acta Arith. 98 (2001), 345–359.
8. A. Laurinčikas, K. Matsumoto, J. Steuding, The universality of L-functions associated with

new forms, Izv. Ross. Akad. Nauk, Ser. Mat. 67(1) (2003), 83–98 ≡ Izv. Math. 67(1) (2003),
77–90.

9. , Discrete universality of L-functions of new forms, Math. Notes 78(3–4) (2005),
551–558.

10. , Universality of some functions related to zeta-functions of certain cusp forms, Osaka
J. Math. 50 (2013), 1021–1037.

11. , Discrete universality of L-functions of new forms. II, Lith. Math. J. 56(2) (2016),
207–218.

12. S. N. Mergelyan, Uniform approximations to functions of a complex variable, Usp. Mat. Nauk
7(2) (1952), 31–122 (in Russian) ≡ Amer. Math. Soc. Transl. Ser. 1, 3, Series and Approxi-
mation, Amer. Math. Soc. 1969, 294–391.

13. H. L. Montgomery, Topics in Multiplicative Number Theory, Lect. Notes Math. 227, Springer-
Verlag, Berlin, Heidelberg, New York, 1971.

Department of Mathematics and Informatics (Received 06 10 2015)
Vilnius University, Vilnius, Lithuania

Institute of Informatics, Mathematics and E. Studies
Šiauliai University, Šiauliai, Lithuania
antanas.laurincikas@mif.vu.lt


