THE FOURTH POWER MOMENT OF THE DOUBLE ZETA-FUNCTION

Isao Kiuchi

Abstract

We prove the fourth power moment of the Euler-Zagier type double zeta-function $\zeta_{2}\left(s_{1}, s_{2}\right)$ and provide an improvement on the Ω results of Kiuchi, Tanigawa, and Zhai. We also calculate the double integral under certain conditions.

1. Introduction

Let $s_{j}=\sigma_{j}+i t_{j}\left(\sigma_{j}, t_{j} \in \mathbb{R}, j=1,2\right)$ be complex variables, and let $\zeta(s)$ be the Riemann zeta function, which is defined as $\sum_{n=1}^{\infty} n^{-s}$ for Res >1. The double zeta-function of the Euler-Zagier type is defined by

$$
\begin{equation*}
\zeta_{2}\left(s_{1}, s_{2}\right)=\sum_{1 \leqslant m<n} \frac{1}{m^{s_{1}} n^{s_{2}}} \tag{1.1}
\end{equation*}
$$

which is absolutely convergent for $\sigma_{2}>1$ and $\sigma_{1}+\sigma_{2}>2$. The proof of Atkinson's formula for the mean value theorem of the Riemann zeta-function $\zeta(s)$ (see Atkinson [2] or Ivić [7]) is applied applies to series (1.1). Double zeta-function (1.1) has many applications to mathematical physics. In particular, some algebraic relations among the values of double zeta-function (1.1) at positive integers have been extensively studied by Ohno $[\mathbf{1 7}]$. Some analytic properties of this function have been obtained by Akiyama, Egami, and Tanigawa [1], Ishikawa and Matsumoto [6], Kiuchi and Tanigawa [12], Kiuchi, Tanigawa, and Zhai [13], Matsumoto [14, 15], Zhao [19], and others.
1.1. Mean square formula. Matsumoto and Tsumura [16] were the first to study a new type of the mean value formula for $\int_{2}^{T}\left|\zeta\left(s_{1}, s_{2}\right)\right|^{2} d t_{2}$ with a fixed complex number s_{1}. They conjectured that when $\sigma_{1}+\sigma_{2}=\frac{3}{2}$, the form of the main term of the mean square formula would not be $C T$ with a constant C, and

[^0]that, most probably, some log-factor would appear. Their results were considered by Ikeda, Matsuoka, and Nagata [5], who showed that
\[

$$
\begin{align*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}= & \left(\sum_{m=1}^{\infty} \frac{1}{m^{2 \sigma_{1}}}\left|\zeta\left(s_{2}\right)-\sum_{n=1}^{m} \frac{1}{n^{s_{2}}}\right|^{2}\right) T \\
& + \begin{cases}O\left(\log ^{2} T\right) & \text { if } \sigma_{1}+\sigma_{2}=2 \\
O\left(T^{4-2 \sigma_{1}-2 \sigma_{2}}\right) & \text { if } \frac{3}{2}<\sigma_{1}+\sigma_{2}<2\end{cases} \tag{1.2}
\end{align*}
$$
\]

Here, the coefficient of the main term on the right-hand side of (1.2) converges if $\sigma_{1}+\sigma_{2}>\frac{3}{2}$. Ikeda, Matsuoka, and Nagata deduced that the asymptotic formula

$$
\begin{equation*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}=\frac{1}{\left|s_{2}-1\right|^{2}} T \log T+O(T) \tag{1.3}
\end{equation*}
$$

holds on the line $\sigma_{1}+\sigma_{2}=\frac{3}{2}$. This result implied that the conjecture of Matsumoto and Tsumura on the line $\sigma_{1}+\sigma_{2}=\frac{3}{2}$ was true. Ikeda, Matsuoka, and Nagata made use of the mean value theorem for Dirichlet polynomials and suitable approximations to the Euler-Maclaurin summation formula to obtain formulas (1.2) and (1.3). Assuming that $2 \leqslant t_{1} \leqslant T, 0<\sigma_{1}<1,0<\sigma_{2}<1$ and $0<\sigma_{1}+\sigma_{2}<\frac{3}{2}$, Kiuchi and Minamide [11] recently considered five formulas for the mean square of the double zeta-function $\zeta_{2}\left(s_{1}, s_{2}\right)$ concerning the variable t_{1} and showed that, for any sufficiently large positive number $T>2$,

$$
\begin{gathered}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}=(2 \pi)^{2 \sigma_{1}+2 \sigma_{2}-3} \frac{\zeta\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(4-2 \sigma_{1}-2 \sigma_{2}\right)\left|s_{2}-1\right|^{2}} T^{4-2 \sigma_{1}-2 \sigma_{2}} \\
+O\left(t_{2}^{-\frac{1}{2}} T^{\frac{5}{2}-\sigma_{1}-\sigma_{2}}\right)
\end{gathered}
$$

with $1<\sigma_{1}+\sigma_{2}<\frac{3}{2}$ and $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3}\left(\sigma_{1}+\sigma_{2}\right)}$,

$$
\begin{equation*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}=\frac{\zeta(2)}{4 \pi\left|s_{2}-1\right|^{2}} T^{2}+O\left(t_{2}^{-\frac{1}{2}}\left(\log t_{2}\right) T^{\frac{3}{2}}\right) \tag{1.5}
\end{equation*}
$$

with $\sigma_{1}+\sigma_{2}=1$ and $2 \leqslant t_{2} \leqslant \frac{T^{\frac{1}{3}}}{\log T}$,

$$
\begin{align*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}= & (2 \pi)^{2 \sigma_{1}+2 \sigma_{2}-3} \frac{\zeta\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(4-2 \sigma_{1}-2 \sigma_{2}\right)\left|s_{2}-1\right|^{2}} T^{4-2 \sigma_{1}-2 \sigma_{2}} \tag{1.6}\\
& +O\left(t_{2}^{\frac{1}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{5}{2}-\sigma_{1}-\sigma_{2}}\right)
\end{align*}
$$

with $\frac{1}{2}<\sigma_{1}+\sigma_{2}<1$, and $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$, and

$$
\begin{align*}
& \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}=\frac{\zeta(3)}{12 \pi^{2}\left|s_{2}-1\right|^{2}} T^{3} \tag{1.7}\\
& \quad+ \begin{cases}O\left(T^{2}\right) & \text { if } \sigma_{1}+\sigma_{2}=\frac{1}{2} \text { and } \sqrt{\log T} \leqslant t_{2} \leqslant T^{\frac{1}{2}} \\
O\left(t_{2}^{-1} T^{2} \sqrt{\log T}\right) & \text { if } \sigma_{1}+\sigma_{2}=\frac{1}{2} \text { and } 2 \leqslant t_{2} \leqslant \sqrt{\log T}\end{cases}
\end{align*}
$$

Furthermore, they derived the formula

$$
\begin{align*}
& \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{2} d t_{1}=(2 \pi)^{2 \sigma_{1}+2 \sigma_{2}-3} \frac{\zeta\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(4-2 \sigma_{1}-2 \sigma_{2}\right)\left|s_{2}-1\right|^{2}} T^{4-2 \sigma_{1}-2 \sigma_{2}} \tag{1.8}\\
& \quad+ \begin{cases}O\left(t_{2}^{\frac{1}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{5}{2}-\sigma_{1}-\sigma_{2}}\right) & \text { if } T^{\frac{1-2 \sigma_{1}-2 \sigma_{2}}{3-2 \sigma_{1}-2 \sigma_{2}}} \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}} \\
O\left(t_{2}^{-1} T^{3-2 \sigma_{1}-2 \sigma_{2}}\right) & \text { if } 2 \leqslant t_{2} \leqslant T^{\frac{1-2 \sigma_{1}-2 \sigma_{2}}{3-2 \sigma_{1}-2 \sigma_{2}}}\end{cases}
\end{align*}
$$

for $0<\sigma_{1}+\sigma_{2}<\frac{1}{2}$. They used the mean value formula for $|\zeta(\sigma+i t)|$ and a weak form of Kiuchi, Tanigawa, and Zhai's approximate formula for $\zeta_{2}\left(s_{1}, s_{2}\right)$ to obtain formulas (1.4)-(1.8). Kiuchi and Minamide also showed that

$$
\begin{equation*}
\zeta_{2}\left(\sigma_{1}+i t_{1}, \sigma_{2}+i t_{2}\right)=\Omega\left(\frac{t_{1}^{\frac{3}{2}-\sigma_{1}-\sigma_{2}}}{t_{2}}\right) \tag{1.9}
\end{equation*}
$$

for $1 \leqslant \sigma_{1}+\sigma_{2}<\frac{3}{2}, 2 \leqslant t_{1} \leqslant T$ and $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3} \sigma_{1}-\frac{2}{3} \sigma_{2}-\varepsilon}$, and

$$
\begin{equation*}
\zeta_{2}\left(\sigma_{1}+i t_{1}, \sigma_{2}+i t_{2}\right)=\Omega\left(\frac{t_{1}^{\frac{3}{2}-\sigma_{1}-\sigma_{2}}}{t_{2}}\right) \tag{1.10}
\end{equation*}
$$

for $0<\sigma_{1}+\sigma_{2}<1,2 \leqslant t_{1} \leqslant T$, and $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}-\varepsilon}$, with ε being any small positive constant. Formulas (1.9) and (1.10) provide a certain improvement on the Ω-results of Kiuchi, Tanigawa, and Zhai [13].
1.2. Fourth power moment. Before the introduction of our theorems, let us recall the $2 k$-th power moment of the Riemann zeta-function $\zeta(\sigma+i t)$. It is well known that

$$
\int_{2}^{T}|\zeta(\sigma+i t)|^{2 k} d t=\left(\sum_{n=1}^{\infty} \frac{d_{k}^{2}(n)}{n^{2 \sigma}}\right) T+O\left(T^{2-\sigma+\varepsilon}\right)+O(1)
$$

holds, when $\sigma>1$ is fixed and $k \geqslant 1$ is a fixed integer (see Theorem 1.10 in [$\mathbf{7}]$, or $[8])$, where the divisor function $d_{k}(n)$ is the number of ways n can be written as a product of k fixed factors. Then, in the case $k=2$, we have

$$
\begin{equation*}
\int_{2}^{T}|\zeta(\sigma+i t)|^{4} d t=\frac{\zeta^{4}(2 \sigma)}{\zeta(4 \sigma)} T+O\left(T^{2-\sigma+\varepsilon}\right)+O(1) \tag{1.11}
\end{equation*}
$$

for $\sigma>1$ and any small positive number ε. The higher power moment for the Riemann zeta-function $\zeta(1+i t)$ was derived by Balasubramanian, Ivić, and Ramachandra (see Theorem 1 in [3]), who showed that

$$
\int_{2}^{T}\left|(\zeta(1+i t))^{k}\right|^{2} d t=\left(\sum_{n=1}^{\infty} \frac{\left|d_{k}(n)\right|^{2}}{n^{2}}\right) T+O\left((\log T)^{\left|k^{2}\right|}\right)
$$

holds for any complex number k and $(\zeta(s))^{k}=\sum_{n=1}^{\infty} \frac{d_{k}(n)}{n^{s}}$ in $\sigma \geqslant 2$. For the case of $k=2$ in the above expression, we have

$$
\begin{equation*}
\int_{2}^{T}|\zeta(1+i t)|^{4} d t=\frac{\zeta^{4}(2)}{\zeta(4)} T+O\left(\log ^{4} T\right) \tag{1.12}
\end{equation*}
$$

Ivić $[\mathbf{9}, 10]$ obtained the formula

$$
\begin{equation*}
\int_{2}^{T}|\zeta(\sigma+i t)|^{4} d t=\frac{\zeta^{4}(2 \sigma)}{\zeta(4 \sigma)} T+O\left(T^{2-2 \sigma} \log ^{3} T\right) \tag{1.13}
\end{equation*}
$$

for $\frac{1}{2}<\sigma<1$. The fourth power moment for the Riemann zeta-function $\zeta\left(\frac{1}{2}+i t\right)$ in the critical line was obtained by Heath-Brown [4], who showed that

$$
\begin{equation*}
\int_{2}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} d t=T \sum_{k=0}^{4} c_{k}(\log T)^{4-k}+O\left(T^{\frac{7}{8}+\varepsilon}\right) \tag{1.14}
\end{equation*}
$$

holds with $c_{0}=\frac{1}{2 \pi^{2}}$, and the other constants c_{k} being computable.
The main purpose of this paper is to prove the fourth power moment for the double zeta-function $\zeta_{2}\left(s_{1}, s_{2}\right)$ within the region $0<\sigma_{1}<1,0<\sigma_{2}<1$, and $0<$ $\sigma_{1}+\sigma_{2}<2$ without using the mean square formulas (1.4)-(1.8). We use formulas (1.11)-(1.14) for the fourth power moment of $|\zeta(\sigma+i t)|$ and Lemma 3 below, as well as Lemma 2 below, which was derived from a weak form of the approximate formula of Kiuchi and Minamide [11] for $\zeta_{2}\left(s_{1}, s_{2}\right)$ to obtain the following formula.

Theorem 1.1. Suppose that $2 \leqslant t_{1} \leqslant T, 0<\sigma_{1}<1,0<\sigma_{2}<1$ and $\sigma_{1}+\sigma_{2}=1$. Then, for any sufficiently large positive number $T>2$, we have

$$
\begin{equation*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}=\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)} \frac{T^{3}}{\left|s_{2}-1\right|^{4}}+O\left(t_{2}^{-\frac{5}{2}}\left(\log t_{2} T^{\frac{5}{2}}\right)\right. \tag{1.15}
\end{equation*}
$$

with $2 \leqslant t_{2} \leqslant \frac{T^{\frac{1}{3}}}{\log T}$.
REmARK 1.1. Inserting $t_{2}=\frac{T^{\frac{1}{3}}}{\log T}$ into (1.15), the right-hand side of the formula (1.15) is estimated by $T^{\frac{5}{3}} \log ^{4} T$, but if we can take $t_{2}=\frac{T^{\frac{1}{2}}}{\log T}$, we can estimate that $T \log ^{4} T$. The main term of this theorem is not $T \log ^{A} T(A>0)$, but T^{3} since the analytic behavior of the double zeta-function $\zeta_{2}\left(s_{1}, s_{2}\right)$ depends on both s_{1} and s_{2}. This observation in fact supports the result of Kiuchi, Tanigawa, and Zhai.

As an application of (1.15), we consider the evaluation of the double integral

$$
\int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2}
$$

and then we deduce the following.
Corollary 1.1. Let $0<\sigma_{1}<1,0<\sigma_{2}<1$ and $\sigma_{1}+\sigma_{2}=1$. Within the region $2 \leqslant N \leqslant \frac{T^{\frac{1}{3}}}{\log T}$, we obtain

$$
\frac{1}{T^{3}} \int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2} \rightarrow \frac{5 \pi^{2}}{1728 \sigma_{1}^{3}}\left(\frac{\pi}{2}-\operatorname{Tan}^{-1} \frac{2}{\sigma_{1}}-\frac{2 \sigma_{1}}{4+\sigma_{1}^{2}}\right)+O\left(\frac{1}{N}\right)
$$

as $T \rightarrow \infty$.

Hence, this observation may be regarded as an average order of magnitude for the double zeta-function, which is

$$
\frac{5 \pi^{2}}{1728 \sigma_{1}^{3}}\left(\frac{\pi}{2}-\operatorname{Tan}^{-1} \frac{2}{\sigma_{1}}-\frac{2 \sigma_{1}}{4+\sigma_{1}^{2}}\right)
$$

if $0<\sigma_{1}<1,0<\sigma_{2}<1, \sigma_{1}+\sigma_{2}=1$, and $2 \leqslant N \leqslant \frac{T^{\frac{1}{3}}}{\log T}$.
TheOrem 1.2. Suppose that $2 \leqslant t_{1} \leqslant T, 0<\sigma_{1}<1,0<\sigma_{2}<1, \frac{1}{2} \leqslant$ $\sigma_{1}+\sigma_{2}<\frac{3}{2}$, and $\sigma_{1}+\sigma_{2} \neq 1$. Then, for any sufficiently large positive number $T>2$, we have

$$
\begin{align*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}= & \frac{(2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6}}{7-4 \sigma_{1}-4 \sigma_{2}} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{T^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \tag{1.16}\\
& +O\left(t_{2}^{-\frac{5}{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right)
\end{align*}
$$

for $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3}\left(\sigma_{1}+\sigma_{2}\right)}$ and $1<\sigma_{1}+\sigma_{2}<\frac{3}{2}$, and

$$
\begin{align*}
& \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}=\frac{(2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6}}{7-4 \sigma_{1}-4 \sigma_{2}} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{T^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \tag{1.17}\\
& \quad+ \begin{cases}O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right) & \text { if } 2 \leqslant t_{2} \leqslant T^{\frac{1}{5-2 \sigma_{1}-2 \sigma_{2}}+\varepsilon} \\
O\left(t_{2}^{-\frac{3}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right) & \text { if } T^{\frac{1}{5-2 \sigma_{1}-2 \sigma_{2}}+\varepsilon} \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}\end{cases}
\end{align*}
$$

for $\frac{1}{2} \leqslant \sigma_{1}+\sigma_{2}<1$.
THEOREM 1.3. Suppose that $2 \leqslant t_{1} \leqslant T, 0<\sigma_{1}<1,0<\sigma_{2}<1$, and $0<\sigma_{1}+\sigma_{2}<\frac{1}{2}$. Then, for any sufficiently large positive number $T>2$, we have,

$$
\begin{align*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}= & \frac{(2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6} \zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(7-4 \sigma_{1}-4 \sigma_{2}\right) \zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{T^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \tag{1.18}\\
& +O\left(t_{2}^{6-4 \sigma_{1}-4 \sigma_{2}} T\right)+O\left(t_{2}^{-3} T^{6-4 \sigma_{1}-4 \sigma_{2}}\right) \\
& +O\left(t_{2}^{-\frac{3}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right)+O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right)
\end{align*}
$$

for $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$.
Remark 1.2. An average order of magnitude for double zeta-function (1.1) derived from the asymptotic behavior of the integrals of the double zeta-function with (1.15)-(1.18) holds when the ratio of the order of t_{1} to that of t_{2} is small. However, it is often difficult to determine their analytic behavior for a general ratio of the order of t_{1} to the order of t_{2}.

From Theorems 1.1, 1.2, and 1.3, we are able to determine an additional proof for the Ω-result of Kiuchi, Tanigawa, and Zhai [13], and Kiuchi and Minamide [11].

Corollary 1.2. Let $0<\sigma_{1}<1,0<\sigma_{2}<1$, and $2 \leqslant t_{1} \leqslant T$. Then, we have

$$
\begin{equation*}
\zeta_{2}\left(\sigma_{1}+i t_{1}, \sigma_{2}+i t_{2}\right)=\Omega\left(\frac{t_{1}^{\frac{3}{2}-\sigma_{1}-\sigma_{2}}}{t_{2}}\right) \tag{1.19}
\end{equation*}
$$

for $1 \leqslant \sigma_{1}+\sigma_{2}<\frac{3}{2}$ and $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3}\left(\sigma_{1}+\sigma_{2}\right)-\varepsilon}$, and

$$
\begin{equation*}
\zeta_{2}\left(\sigma_{1}+i t_{1}, \sigma_{2}+i t_{2}\right)=\Omega\left(\frac{t_{1}^{\frac{3}{2}-\sigma_{1}-\sigma_{2}}}{t_{2}}\right) \tag{1.20}
\end{equation*}
$$

for $0<\sigma_{1}+\sigma_{2}<1$ and $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}-\varepsilon}$, where ε is any small positive constant.

Formulas (1.19) and (1.20) are equivalent to (1.9) and (1.10), respectively, and Corollary 1.2 provides an improvement upon the Ω-result of Kiuchi, Tanigawa, and Zhai [13].

Theorem 1.4. Suppose that $2 \leqslant t_{1} \leqslant T, 0<\sigma_{1}<1,0<\sigma_{2}<1$, and $\frac{3}{2} \leqslant \sigma_{1}+\sigma_{2}<2$. Then, for any sufficiently large positive number $T>2$, we have

$$
\begin{equation*}
\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}=O\left(t_{2}^{2} T\right) \tag{1.21}
\end{equation*}
$$

for $\frac{3}{2}<\sigma_{1}+\sigma_{2}<2$, and
(1.22) $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}= \begin{cases}\frac{1}{2 \pi^{2} \frac{T \log ^{4} T}{\left|s_{2}-1\right|^{4}}+O\left(t_{2}^{-\frac{5}{2}} T \log ^{3} T\right)} & \text { if } 2 \leqslant t_{2} \leqslant(\log T)^{\frac{2}{3}}, \\ O\left(t_{2}^{2} T\right) & \text { if } t_{2} \geqslant(\log T)^{\frac{2}{3}}\end{cases}$
for $\sigma_{1}+\sigma_{2}=\frac{3}{2}$.
To improve our theorems, we must obtain a sharper estimate for the integral $\int_{2}^{T}\left|E\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ in Lemma 2.2 below, but this is very difficult.

Notations. When $g(x)$ is a positive function of x for $x \geqslant x_{0}, f(x)=\Omega(g(x))$ means that $f(x)=o(g(x))$ does not hold as $x \rightarrow \infty$. In what follows, ε denotes any arbitrarily small positive number, not necessarily the same ones at each occurrence.

2. Some lemmas

Let a be any complex number and $\chi\left(s_{2}\right)=2(2 \pi)^{s_{2}-1} \sin \left(\frac{\pi}{2} s_{2}\right) \Gamma\left(1-s_{2}\right)$. The generalized divisor function $\sigma_{a}(n)$ is defined by $\sum_{d \mid n} d^{a}$. We use a weak form of the approximate formula of Kiuchi, Tanigawa, and Zhai [13] to prove our theorems. For our purpose, it is enough to quote the following weak form, which follows from Lemma 1 of Kiuchi and Minamide [11].

Lemma 2.1 ([11]). Suppose that $0<\sigma_{1}<1$ and $0<\sigma_{2}<1$. Then, we have

$$
\begin{equation*}
\zeta_{2}\left(s_{1}, s_{2}\right)=\frac{\zeta\left(s_{1}+s_{2}-1\right)}{s_{2}-1}-\frac{1}{2} \zeta\left(s_{1}+s_{2}\right)+E\left(s_{1}, s_{2}\right) \tag{2.1}
\end{equation*}
$$

where the error term $E\left(s_{1}, s_{2}\right)$ is estimated as

$$
E\left(s_{1}, s_{2}\right) \ll \begin{cases}\left|t_{2}\right|^{\frac{3}{2}-\sigma_{1}-\sigma_{2}} & \text { if } 0<\sigma_{1}+\sigma_{2}<1 \tag{2.2}\\ \left|t_{2}\right|^{\frac{1}{2}} \log \left|t_{2}\right| & \text { if } \sigma_{1}+\sigma_{2}=1, \\ \left|t_{2}\right|^{\frac{1}{2}} & \text { if } \sigma_{1}+\sigma_{2}>1\end{cases}
$$

Note that the error term in this lemma is independent of t_{1}. We establish a formula for the fourth power moment of $\zeta_{2}\left(s_{1}, s_{2}\right)$. Using (2.1), (2.2), and Hölder's inequality, we deduce the following:

Lemma 2.2. For $0<\sigma_{1}<1,0<\sigma_{2}<1$ and any sufficiently large number $T>2$, we have

$$
\begin{align*}
& \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} \tag{2.3}\\
& \quad=I_{1}+I_{2}+I_{3}+O\left(I_{1}^{\frac{3}{4}} I_{2}^{\frac{1}{4}}+I_{1}^{\frac{3}{4}} I_{3}^{\frac{1}{4}}+I_{2}^{\frac{3}{4}} I_{3}^{\frac{1}{4}}+I_{2}^{\frac{3}{4}} I_{1}^{\frac{1}{4}}+I_{3}^{\frac{3}{4}} I_{1}^{\frac{1}{4}}+I_{3}^{\frac{3}{4}} I_{2}^{\frac{1}{4}}\right)
\end{align*}
$$

where

$$
\begin{gather*}
I_{1}=\frac{1}{\left|s_{2}-1\right|^{4}} \int_{2}^{T}\left|\zeta\left(s_{1}+s_{2}-1\right)\right|^{4} d t_{1}, \tag{2.4}\\
I_{2}=\frac{1}{16} \int_{2}^{T}\left|\zeta\left(s_{1}+s_{2}\right)\right|^{4} d t_{1} \tag{2.5}\\
I_{3}=\int_{2}^{T}\left|E\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} \ll, \begin{cases}T\left|t_{2}\right|^{6-4 \sigma_{1}-4 \sigma_{2}} & \text { if } 0<\sigma_{1}+\sigma_{2}<1, \\
T\left|t_{2}\right|^{2} \log ^{4}\left|t_{2}\right| & \text { if } \sigma_{1}+\sigma_{2}=1, \\
T\left|t_{2}\right|^{2} & \text { if } \sigma_{1}+\sigma_{2}>1 .\end{cases} \tag{2.6}
\end{gather*}
$$

Kiuchi and Minamide [11] suggested that

$$
\begin{align*}
E\left(s_{1}, s_{2}\right) & =\chi\left(s_{2}\right) \sum_{n \leqslant \frac{\left|t_{2}\right|}{2 \pi}} \frac{\left(\mathbf{1} * \mathrm{id}^{1-s_{1}-s_{2}}\right)(n)}{n^{1-s_{2}}}+O\left(\left|t_{2}\right|^{\max \left(0,1-\sigma_{1}-\sigma_{2}\right)+\varepsilon}\right) \tag{2.7}\\
& =\chi\left(s_{2}\right) \sum_{m l \leqslant \frac{\left|t_{2}\right|}{2 \pi}} \frac{1}{m^{1-s_{2}}} \cdot \frac{1}{l^{s_{1}}}+O\left(\left|t_{2}\right|^{\max \left(0,1-\sigma_{1}-\sigma_{2}\right)+\varepsilon}\right)
\end{align*}
$$

holds, where $*$ denotes the Dirichlet convolution. The first term on the right-hand side of (2.7) can be written as

$$
\chi\left(s_{2}\right) \sum_{m \leqslant M} \frac{1}{m^{1-s_{2}}} \sum_{l \leqslant L} \frac{1}{l^{s_{1}}}+O(\cdots)
$$

with $M \geqslant 1, L \geqslant 1$ and $M L=\frac{\left|t_{2}\right|}{2 \pi}$. We use the approximate functional equation of the Riemann zeta-function [18, Theorem 4.13] and the simplest form of the approximation to the Riemann zeta-function [18, Theorem 4.11] to obtain

$$
\chi\left(s_{2}\right) \sum_{m \leqslant M} \frac{1}{m^{1-s_{2}}}=\zeta\left(s_{2}\right)-\sum_{l \leqslant L} \frac{1}{l^{s_{2}}}+O\left(L^{-\sigma_{2}} \log \left|t_{2}\right|\right)+O\left(\left|t_{2}\right|^{\frac{1}{2}-\sigma_{2}} M^{\sigma_{2}-1}\right)
$$

with $0<\sigma_{2}<1$, and

$$
\sum_{l \leqslant L} \frac{1}{l^{s_{1}}}=\zeta\left(s_{1}\right)+\frac{L^{1-s_{1}}}{1-s_{1}}+O\left(L^{-\sigma_{1}}\right)
$$

with $0<\sigma_{1}<1$, respectively. Taking the product of the above formulas and using (2.7), we see that the function $E\left(s_{1}, s_{2}\right)$ is given by

$$
E\left(s_{1}, s_{2}\right)=\zeta\left(s_{2}\right) \zeta\left(s_{1}\right)-\zeta\left(s_{1}\right) \sum_{l \leqslant L} \frac{1}{l^{s_{2}}}+\frac{L^{1-s_{1}}}{1-s_{1}} \zeta\left(s_{2}\right)+\frac{L^{1-s_{1}}}{1-s_{1}} \sum_{l \leqslant L} \frac{1}{l^{s_{2}}}+O(\cdots)
$$

Roughly speaking, in the case where $\left|t_{1}\right| \asymp\left|t_{2}\right|$, the true order of magnitude of the function $E\left(s_{1}, s_{2}\right)$ may be regarded as $\left|E\left(s_{1}, s_{2}\right)\right| \asymp\left|\zeta\left(s_{1}\right)\right|\left|\zeta\left(s_{2}\right)\right|$. Thus, it follows from the above and Lemma 2.1 that $\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right| \asymp\left|\zeta\left(s_{1}\right)\right|\left|\zeta\left(s_{2}\right)\right|$. However, in the case where $\left|t_{2}\right| \ll\left|t_{1}\right|^{\alpha}\left(0<\alpha<\frac{1}{3}\right)$, the order of magnitude of the function $E\left(s_{1}, s_{2}\right)$ is smaller than that of the first term on the right-hand side of (2.1); hence, (2.7) implies the error term of (2.1).

To deal with the integrals $I_{j}(j=1,2,3)$, we shall use Lemma 2.3 and formulas (1.11)-(1.14).

Lemma 2.3. For any sufficiently large positive number $T>2$, we have

$$
\begin{equation*}
\int_{2}^{T}|\zeta(\sigma+i t)|^{4} d t=\frac{(2 \pi)^{4 \sigma-2}}{3-4 \sigma} \frac{\zeta^{4}(2-2 \sigma)}{\zeta(4-4 \sigma)} T^{3-4 \sigma}+O\left(T^{2-2 \sigma} \log ^{3} T\right) \tag{2.8}
\end{equation*}
$$

with $0<\sigma<\frac{1}{2}$,

$$
\begin{equation*}
\int_{2}^{T}|\zeta(i t)|^{4} d t=\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)} T^{3}+O\left(T^{2} \log ^{4} T\right) \tag{2.9}
\end{equation*}
$$

with $\sigma=0$, and

$$
\begin{equation*}
\int_{2}^{T}|\zeta(\sigma+i t)|^{4} d t=\frac{(2 \pi)^{4 \sigma-2}}{3-4 \sigma} \frac{\zeta^{4}(2-2 \sigma)}{\zeta(4-4 \sigma)} T^{3-4 \sigma}+O\left(T^{3-3 \sigma+\varepsilon}\right) \tag{2.10}
\end{equation*}
$$

with $-1<\sigma<0$.
Proof. Since the functional equation is $\zeta(\sigma+i t)=\chi(\sigma+i t) \zeta(1-\sigma-i t)$ (see Titchmarsh [18] or Ivić $[\mathbf{7}])$, the equality $|\zeta(1-\sigma-i t)|=|\zeta(1-\sigma+i t)|$ and the formula

$$
|\chi(\sigma+i t)|^{4}=\left(\frac{t}{2 \pi}\right)^{2-4 \sigma}+O\left(t^{1-4 \sigma}\right) \quad\left(t \geqslant t_{0}>0\right)
$$

we can integrate by parts and use (1.13) to obtain

$$
\begin{aligned}
\int_{2}^{T} & |\zeta(\sigma+i t)|^{4} d t=\int_{2}^{T}|\chi(\sigma+i t)|^{4}|\zeta(1-\sigma+i t)|^{4} d t \\
& =\left(\frac{1}{2 \pi}\right)^{2-4 \sigma} \int_{2}^{T} t^{2-4 \sigma}|\zeta(1-\sigma+i t)|^{4} d t+O\left(\int_{2}^{T} t^{1-4 \sigma}|\zeta(1-\sigma+i t)|^{4} d t\right) \\
& =\frac{(2 \pi)^{4 \sigma-2}}{3-4 \sigma} \frac{\zeta^{4}(2-2 \sigma)}{\zeta(4-4 \sigma)} T^{3-4 \sigma}+O\left(T^{2-2 \sigma} \log ^{3} T\right)
\end{aligned}
$$

for $0<\sigma<\frac{1}{2}$. Similarly in the case of $\sigma=0$, we have, by integrating by parts and using (1.12)

$$
\int_{2}^{T}|\zeta(i t)|^{4} d t=\int_{2}^{T}|\chi(i t)|^{4}|\zeta(1+i t)|^{4} d t
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi^{2}} \int_{2}^{T} t^{2}|\zeta(1+i t)|^{4} d t+O\left(\int_{2}^{T} t|\zeta(1+i t)|^{4} d t\right) \\
& =\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)} T^{3}+O\left(T^{2} \log ^{4} T\right)
\end{aligned}
$$

In a similar manner, we deduce from (1.11) that formula (2.10) holds.

3. Proofs

3.1. Proofs of Theorem $\mathbf{1 . 1}$ and Corollary 1.1. We set $2 \leqslant t_{1} \leqslant T$ and $2 \leqslant t_{2} \leqslant \frac{T^{\frac{1}{3}}}{\log T}$. We shall evaluate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ under the condition $0<\sigma_{1}<1,0<\sigma_{2}<1$, and $\sigma_{1}+\sigma_{2}=1$. From (1.12), we have

$$
\begin{equation*}
I_{2}=\frac{1}{16}\left\{\int_{2}^{T+t_{2}}|\zeta(1+i t)|^{4} d t-\int_{2}^{2+t_{2}}|\zeta(1+i t)|^{4} d t\right\}=O(T) \tag{3.1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
I_{1}=\frac{1}{\left|s_{2}-1\right|^{4}}\left\{\int_{2}^{T+t_{2}}|\zeta(i t)|^{4} d t-\int_{2}^{2+t_{2}}|\zeta(i t)|^{4} d t\right\} \tag{3.2}
\end{equation*}
$$

Inserting (2.9) into (3.2), we obtain

$$
\begin{align*}
I_{1} & =\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)} \frac{\left(T+t_{2}\right)^{3}-\left(t_{2}+2\right)^{3}}{\left|s_{2}-1\right|^{4}}+O\left(\frac{\left(T+t_{2}\right)^{2}}{\left|s_{2}-1\right|^{4}} \log ^{4} T\right) \tag{3.3}\\
& =\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)\left|s_{2}-1\right|^{4}} T^{3}+O\left(t_{2}^{-3} T^{2}\right)+O\left(t_{2}^{-4} T^{2} \log ^{4} T\right)
\end{align*}
$$

From (2.6), we have

$$
\begin{equation*}
I_{3}=O\left(\left(t_{2}^{2} \log ^{4} t_{2}\right) T\right) \tag{3.4}
\end{equation*}
$$

Substituting (3.1), (3.3), and (3.4) into (2.3), we observe that all error terms on the right-hand side of (2.3) are absorbed into $O\left(t_{2}^{-\frac{5}{2}}\left(\log t_{2}\right) T^{\frac{5}{2}}\right)$, completing the proof of (1.15).

As an application of (1.15), we shall evaluate the double integral for the double zeta-function $\zeta_{2}\left(s_{1}, s_{2}\right)$:

$$
\int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2}
$$

From (1.15), we have

$$
\begin{aligned}
& \int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2} \\
& \quad=\frac{\zeta^{4}(2)}{12 \pi^{2} \zeta(4)}\left(\int_{2}^{N} \frac{1}{\left|s_{2}-1\right|^{4}} d t_{2}\right) T^{3}+O\left(T^{\frac{5}{2}} \int_{2}^{N} t_{2}^{-\frac{5}{2}} \log t_{2} d t_{2}\right)
\end{aligned}
$$

for $2 \leqslant N \leqslant \frac{T^{\frac{1}{3}}}{\log T}$. It follows that

$$
\int_{2}^{N} \frac{1}{\left|s_{2}-1\right|^{4}} d t_{2}=\frac{1}{2\left(1-\sigma_{2}\right)^{3}}\left(\frac{\pi}{2}-\operatorname{Tan}^{-1} \frac{2}{1-\sigma_{2}}-\frac{2\left(1-\sigma_{2}\right)}{4+\left(1-\sigma_{2}\right)^{2}}\right)+O\left(\frac{1}{N}\right)
$$

and

$$
\int_{2}^{N} t_{2}^{-\frac{5}{2}} \log t_{2} d t_{2}=\int_{2}^{\infty} t_{2}^{-\frac{5}{2}} \log t_{2} d t_{2}+O\left(N^{-\frac{3}{2}} \log N\right)
$$

Then, we easily see that

$$
\begin{aligned}
& \int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2} \\
&=\frac{5 \pi^{2}}{1728\left(1-\sigma_{2}\right)^{3}}\left(\frac{\pi}{2}-\operatorname{Tan}^{-1} \frac{2}{1-\sigma_{2}}-\frac{2\left(1-\sigma_{2}\right)}{4+\left(1-\sigma_{2}\right)^{2}}\right) T^{3} \\
&+O\left(T^{\frac{5}{2}} N^{-\frac{3}{2}} \log N\right)+O\left(T^{\frac{5}{2}}\right)+O\left(T^{3} N^{-1}\right)
\end{aligned}
$$

Hence, for $0<\sigma_{1}<1,0<\sigma_{2}<1, \sigma_{1}+\sigma_{2}=1$, and $2 \leqslant N \leqslant \frac{T^{\frac{1}{3}}}{\log T}$, we obtain, as $T \rightarrow \infty$,

$$
\frac{1}{T^{3}} \int_{2}^{N} \int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1} d t_{2} \rightarrow \frac{5 \pi^{2}}{1728 \sigma_{1}^{3}}\left(\frac{\pi}{2}-\operatorname{Tan}^{-1} \frac{2}{\sigma_{1}}-\frac{2 \sigma_{1}}{4+\sigma_{1}^{2}}\right)+O\left(\frac{1}{N}\right)
$$

Therefore, we obtain the assertion of Corollary 2.1.
3.2. Proof of Theorem 1.2. Throughout this section, we assume that $0<$ $\sigma_{1}<1$ and $0<\sigma_{2}<1$. As in the proof of Theorem 1.1, we shall calculate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ under the condition that $1<\sigma_{1}+\sigma_{2}<\frac{3}{2}$ with $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3}\left(\sigma_{1}+\sigma_{2}\right)}$. From (1.11) and (2.5), we have
(3.5) $I_{2}=\frac{1}{16}\left\{\int_{2}^{T+t_{2}}\left|\zeta\left(\sigma_{1}+\sigma_{2}+i t\right)\right|^{4} d t-\int_{2}^{2+t_{2}}\left|\zeta\left(\sigma_{1}+\sigma_{2}+i t\right)\right|^{4} d t\right\}=O(T)$.

From (2.4) and (2.8), we have

$$
\begin{align*}
I_{1}= & \frac{(2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6}}{7-4 \sigma_{1}-4 \sigma_{2}} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{\left(T+t_{2}\right)^{7-4 \sigma_{1}-4 \sigma_{2}}-\left(t_{2}+2\right)^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \tag{3.6}\\
& +O\left(\frac{\left(T+t_{2}\right)^{4-2 \sigma_{1}-2 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \log ^{3} T\right) \\
= & \frac{(2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6}}{7-4 \sigma_{1}-4 \sigma_{2}} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{1}{\left|s_{2}-1\right|^{4}} T^{7-4 \sigma_{1}-4 \sigma_{2}} \\
& +O\left(t_{2}^{-3} T^{6-4 \sigma_{1}-4 \sigma_{2}}\right)+O\left(t_{2}^{-4} T^{4-2 \sigma_{1}-2 \sigma_{2}} \log ^{3} T\right) .
\end{align*}
$$

From (2.6), we have

$$
\begin{equation*}
I_{3}=O\left(t_{2}^{2} T\right) \tag{3.7}
\end{equation*}
$$

Substituting (3.5), (3.6), and (3.7) into (2.3), we observe that all error terms on the right-hand side of (2.3) are absorbed into $O\left(t_{2}^{-\frac{5}{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right)$. Hence, we derive formula (1.16) with $2 \leqslant t_{2} \leqslant T^{1-\frac{2}{3}\left(\sigma_{1}+\sigma_{2}\right)}$. In a similar manner as above, we
shall calculate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ in the case of $\frac{1}{2}<\sigma_{1}+\sigma_{2}<1$ with $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$. By (1.13) and (2.5), we have

$$
\begin{equation*}
I_{2}=O(T) \tag{3.8}
\end{equation*}
$$

and by (2.6)

$$
\begin{equation*}
I_{3}=O\left(t_{2}^{6-4 \sigma_{1}-4 \sigma_{2}} T\right) \tag{3.9}
\end{equation*}
$$

By (2.4) and (2.10) we have

$$
\begin{align*}
I_{1}= & \frac{1}{\left|s_{2}-1\right|^{4}} \int_{2}^{T}\left|\zeta\left(\sigma_{1}+\sigma_{2}-1+i\left(t_{1}+t_{2}\right)\right)\right|^{4} d t_{1} \tag{3.10}\\
= & (2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(7-4 \sigma_{1}-4 \sigma_{2}\right) \zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{T^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \\
& +O\left(t_{2}^{-3} T^{6-4 \sigma_{1}-4 \sigma_{2}}\right)+O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right)
\end{align*}
$$

Substituting (3.8), (3.9), and (3.10) into (2.3), we observe that all error terms on the right-hand side of (2.3) are absorbed into $O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right)$ if $2 \leqslant$ $t_{2} \leqslant T^{\frac{1}{5-2 \sigma_{1}-2 \sigma_{2}}+\varepsilon}$, or into $O\left(t_{2}^{-\frac{3}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right)$ if $T^{\frac{1}{5-2 \sigma_{1}-2 \sigma_{2}}+\varepsilon} \leqslant t_{2} \leqslant$ $T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$. We derive formula (1.17) with $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$. Next, we shall calculate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ in the case where $\sigma_{1}+\sigma_{2}=\frac{1}{2}$ under the assumption that $2 \leqslant t_{2} \leqslant T^{\frac{1}{2}}$. By (1.14) and (2.5), we have

$$
\begin{equation*}
I_{2}=O\left(T \log ^{4} T\right) \tag{3.11}
\end{equation*}
$$

and by (2.6), we have

$$
\begin{equation*}
I_{3}=O\left(t_{2}^{4} T\right) \tag{3.12}
\end{equation*}
$$

By (2.4) and (2.10), we have

$$
\begin{align*}
I_{1} & =\frac{1}{\left|s_{2}-1\right|^{4}} \int_{2}^{T}\left|\zeta\left(-\frac{1}{2}+i\left(t_{1}+t_{2}\right)\right)\right|^{4} d t_{1} \tag{3.13}\\
& =\frac{\zeta^{4}(3)}{80 \pi^{4} \zeta(6)} \frac{T^{5}}{\left|s_{2}-1\right|^{4}}+O\left(t_{2}^{-3} T^{4}\right)+O\left(t_{2}^{-4} T^{\frac{9}{2}+\varepsilon}\right)
\end{align*}
$$

Substituting (3.11), (3.12), and (3.13) into (2.3), we observe that all error terms on the right-hand side of (2.3) are absorbed into $O\left(t_{2}^{-4} T^{\frac{9}{2}+\varepsilon}\right)$ if $2 \leqslant t_{2} \leqslant T^{\frac{1}{4}+\varepsilon}$ and $O\left(t_{2}^{-2} T^{4}\right)$ if $T^{\frac{1}{4}+\varepsilon} \leqslant t_{2} \leqslant T^{\frac{1}{2}}$. We derive the formula (1.17) with $\sigma_{1}+\sigma_{2}=\frac{1}{2}$ and $2 \leqslant t_{2} \leqslant T^{\frac{1}{2}}$. Thus, we obtain the assertions of Theorem 1.2.
3.3. Proof of Theorem 1.3. Assuming that $0<\sigma_{1}<1,0<\sigma_{2}<1$, and $0<\sigma_{1}+\sigma_{2}<\frac{1}{2}$, we shall calculate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ with $2 \leqslant t_{2} \leqslant$ $T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$. Similar to the above theorems, (2.5) and (2.8) provide us

$$
\begin{equation*}
I_{2}=O\left(T^{3-4 \sigma_{1}-4 \sigma_{2}}\right) \tag{3.14}
\end{equation*}
$$

and by (2.6)

$$
\begin{equation*}
I_{3}=O\left(t_{2}^{6-4 \sigma_{1}-4 \sigma_{2}} T\right) \tag{3.15}
\end{equation*}
$$

By (2.4) and (2.10), we have

$$
\begin{align*}
I_{1}= & (2 \pi)^{4 \sigma_{1}+4 \sigma_{2}-6} \frac{\zeta^{4}\left(4-2 \sigma_{1}-2 \sigma_{2}\right)}{\left(7-4 \sigma_{1}-4 \sigma_{2}\right) \zeta\left(8-4 \sigma_{1}-4 \sigma_{2}\right)} \frac{T^{7-4 \sigma_{1}-4 \sigma_{2}}}{\left|s_{2}-1\right|^{4}} \tag{3.16}\\
& +O\left(t_{2}^{-3} T^{6-4 \sigma_{1}-4 \sigma_{2}}\right)+O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right)
\end{align*}
$$

Substituting (3.14), (3.15), and (3.16) into (2.3), we observe that all error terms on the right-hand side of (2.3) are given by

$$
\begin{aligned}
O\left(t_{2}^{-\frac{3}{2}-\sigma_{1}-\sigma_{2}} T^{\frac{11}{2}-3 \sigma_{1}-3 \sigma_{2}}\right) & +O\left(t_{2}^{6-4 \sigma_{1}-4 \sigma_{2}} T\right) \\
& +O\left(t_{2}^{-3} T^{6-4 \sigma_{1}-4 \sigma_{2}}\right)+O\left(t_{2}^{-4} T^{6-3 \sigma_{1}-3 \sigma_{2}+\varepsilon}\right)
\end{aligned}
$$

for $2 \leqslant t_{2} \leqslant T^{\frac{3-2 \sigma_{1}-2 \sigma_{2}}{5-2 \sigma_{1}-2 \sigma_{2}}}$. Hence, this completes the proof of Theorem 1.3.
3.4. Proof of Theorem 1.4. Throughout this section, we shall assume that $0<\sigma_{1}<1$ and $0<\sigma_{2}<1$. We shall calculate the integral $\int_{2}^{T}\left|\zeta_{2}\left(s_{1}, s_{2}\right)\right|^{4} d t_{1}$ with $\frac{3}{2} \leqslant \sigma_{1}+\sigma_{2}<2$. When $\frac{3}{2}<\sigma_{1}+\sigma_{2}<2$, (1.11), (1.13), and (2.4)-(2.6) tell us that

$$
\begin{equation*}
I_{2}=O(T), \quad I_{1}=O\left(t_{2}^{-4} T\right), \quad I_{3}=O\left(t_{2}^{2} T\right) \tag{3.17}
\end{equation*}
$$

Substituting (3.17) into (2.3), we derive formula (1.21). Similarly, in the case of $\sigma_{1}+\sigma_{2}=\frac{3}{2},(1.11),(1.14)$, and (2.4)-(2.6) tell us that
(3.18) $\quad I_{2}=O(T), \quad I_{3}=O\left(t_{2}^{2} T\right), \quad I_{1}=\frac{1}{2 \pi^{2}\left|s_{2}-1\right|^{4}} T \log ^{4} T+O\left(t_{2}^{-4} T \log ^{3} T\right)$.

Substituting (3.18) into (2.3), we observe that all error terms on the right-hand side of (2.3) are absorbed into $O\left(t_{2}^{-\frac{5}{2}} T \log ^{3} T\right)$ if $2 \leqslant t_{2} \leqslant(\log T)^{\frac{2}{3}}$, and that the right-hand side of (2.3) yields $O\left(t_{2}^{2} T\right)$ if $t_{2} \geqslant(\log T)^{\frac{2}{3}}$. Hence, we derive formula (1.22).

Acknowledgements. The author would like to thank the referee for his/her careful reading of the earlier version of this paper and giving many valuable suggestions.

References

1. S. Akiyama, S. Egami, Y. Tanigawa, An analytic continuation of multiple zeta-functions and their values at non-positive integers, Acta Arith. 98 (2001), 107-116.
2. F. V. Atkinson, The mean-value of the Riemann zeta-function, Acta Math. 81 (1949), 353-376.
3. R. Balasubramanian, A. Ivić, K. Ramachandra, The mean square of the Riemann zetafunction on the line $\sigma=1$, Enseign. Math. (2) 38 (1992), 13-25.
4. D. R. Heath-Brown, The fourth power moment of the Riemann zeta-function Proc. Lond. Math. Soc. 38(3) (1979), 385-422.
5. S. Ikeda, K. Matsuoka, Y. Nagata, On certain mean values of the double zeta-function, Nagoya Math. J. 217 (2015), 161-190.
6. H. Ishikawa, K. Matsumoto, On the estimation of the order of Euler-Zagier multiple zetafunctions, Ill. J. Math. 47 (2003), 1151-1166.
7. A. Ivić, The Riemann Zeta-Function, John Wiley and Sons, New York, 1985 (2nd ed. Dover, 2003).
8. \qquad , Mean Values of the Riemann Zeta Function, Lect. Note Ser. 82; Tata Institute of Fundamental Research, Bombay; Berlin-Heidelberg-New York; Springer 1991.
9. \qquad , Some problems on mean values of the Riemann zeta-function, J. Théor. Nombres Bordx. 8 (1996), 101-123.
10. \qquad , On mean values of some zeta-functions in the critical strip, J. Théor. Nombres Bordx. 15 (2003), 163-178.
11. I. Kiuchi, M. Minamide, Mean square formula for the double zeta-function, Funct. Approximatio, Comment. Math. 55 (2016), 31-43..
12. I. Kiuchi, Y. Tanigawa, Bounds for double zeta-functions, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 5 (2006), 445-464.
13. I. Kiuchi, Y. Tanigawa and W. Zhai, Analytic properties of double zeta-functions, Indag. Math., New Ser. 21 (2011), 16-29.
14. K. Matsumoto, On the analytic continuation of various multiple zeta-functions, In: "Number Theory for the Millennium, Proc. Millennial Conf. Number Theory", Vol. II, M. A. Bennett et al. (eds.), A K Peters 2002, 417-440.
15. \qquad , Functional equations for double zeta-functions, Math. Proc. Camb. Philos. Soc. 136 (2004), 1-7.
16. K. Matsumoto, H. Tsumura, Mean value theorems for the double zeta-function, J. Math. Soc. Japan 67 (2015), 383-406.
17. Y. Ohno, A generalization of the duality and sum formulas on the multiple zeta values, J. Number Theory 74 (1999), 39-43.
18. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second Edition, Edited and with a preface by D. R. Heath-Brown, The Clarendon Press, Oxford University Press, New York, 1986.
19. J. Q. Zhao, Analytic continuation of multiple zeta function, Proc. Am. Math. Soc. 128 (2000), 1275-1283.

Department of Mathematical Sciences
(Received 2510 2014)
Yamaguchi University
(Revised 0501 2015)
Yamaguchi
Yoshida
Japan
kiuchi@yamaguchi-u.ac.jp

[^0]: 2010 Mathematics Subject Classification: Primary 11M41; Secondary 11M06.
 Key words and phrases: double zeta-functions, fourth power moment, Riemann zeta-function. Communicated by Žarko Mijajlović.

