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PELLANS SEQUENCE AND

ITS DIOPHANTINE TRIPLES

Nurettin Irmak and Murat Alp

Abstract. We introduce a novel fourth order linear recurrence sequence {Sn}
using the two periodic binary recurrence. We call it “pellans sequence” and
then we solve the system

ab + 1 = Sx, ac + 1 = Sy bc + 1 = Sz

where a < b < c are positive integers. Therefore, we extend the order of
recurrence sequence for this variant diophantine equations by means of pellans
sequence.

1. Introduction

A Diophantine m-tuple is a set of {a1, a2, . . . , an} of positive rational numbers
or integers such that aiaj +1 = � for all 1 6 i, j 6 n. Diophantus investigated first
the problem of finding rational quadruples, and found the example { 1

16 , 33
16 , 68

16 , 105
16 }.

Then, Fermat found the first integer quadruples as {1, 3, 8, 120}. In [6], the general
form of this set was found by Hoggatt and Bergum as follows

{F2k, F2k+2, F2k+4, 4F2k+1F2k+2F2k+3},

where {Fn}n>0 denotes the Fibonacci sequence. Therefore, there exist infinitely
many quadruples. The famous theorem of Dujella [4] states that there are only
finitely many quintuples.

A variant of the problem is obtained if one replaces the squares by the terms
of given binary recurrences. This type of problem was started by Luca and Sza-
lay. Luca and Szalay replaced the squares by the terms of Fibonacci and Lucas
sequence and found that there is no Fibonacci diophantine triple and the only Lu-
cas diophantine triple is {1, 2, 3}. Similarly, Alp, Irmak and Szalay put the terms
of balancing sequences instead of the squares and they did not found any triples.
For details, see [1, 8, 9]. Moreover, Fuchs, Luca and Szalay [5] investigated the
general case for binary sequence and they gave sufficient and necessary conditions

2010 Mathematics Subject Classification: Primary 11D09; Secondary 11B39.
Key words and phrases: Diophantine triples, pell numbers, balancing numbers, pellans

sequence.
Communicated by Žarko Mijajlović.

259



260 IRMAK AND ALP

to have finitely many triples. For an integer A > 3, Irmak and Szalay [7] showed
that there is no diophantine triples for the sequence {un} where {un} satisfies the
relation un = Aun−1 − un−2 with the initial conditions u0 = 0 and u1 = 1.

Up to now, the authors have studied for the special cases of binary recurrence.
One way for this type diophantine problems is to extend the problem to recur-
rent sequences of larger orders. In this paper, we define a fourth order recurrence
sequence which we call pellans sequence since odd terms of the sequence are Pell
numbers and even terms of the sequence are balancing numbers or half of the terms
of even Pell numbers. Afterwards, we investigate its diophantine triples. Now, it
is suitable to give the definitions of Pell, Pell–Lucas and Balancing numbers. The
terms of Pell sequence {Pn}n>0 satisfy the recurrence relation Pn = 2Pn−1 + Pn−2

with initial conditions P0 = 0 and P1 = 1. The terms of Pell–Lucas sequence
{Qn}n>0 satisfy the same recurrence relation with Pell sequence together with ini-
tial conditions Q0 = 2 and Q1 = 2. The terms of Balancing sequence {Bn}n>0 are
defined by Bn = 6Bn−1 − Bn−2 together with the initial conditions B0 = 0 and
B1 = 1.

Definition 1.1. For a nonnegative integer n, the pellans sequence {Sn}n>0 is
defined by S2n = 1

2 P2n and S2n+1 = P2n+1.

The first few terms of the pellans sequence are 0, 1, 1, 5, 6, 29, 35, . . . . It is ob-
vious that the terms of pellans sequence {Sn}n>0 satisfy Sn = 6Sn−2 − Sn−4 with
S0 = 0, S1 = 1, S2 = 1 and S3 = 5.

Our main result is the following

Theorem 1.1. There is no integer solution for the system

(1.1) ab + 1 = Sx, ac + 1 = Sy, bc + 1 = Sz

where 0 < a < b < c are integers and the sequence {Sn} is the pellans sequence.

2. Preliminaries

Now, we present required properties to prove Theorem 1.1.

Lemma 2.1. Let m and n are positive integers. Then

(1) gcd(Sn, Sm) = Sgcd(n,m).

(2) P2n+1 − 1 =

{

PnQn+1, n is even

Pn+1Qn, n is odd
and P2n − 2 =

{

Pn+1Qn−1 n is even

Pn−1Qn+1 n is odd

where {Qn} is the Pell–Lucas sequence.

(3) 2Bn = P2n = PnQn.

(4) (Bn − 1)(Bn + 1) = Bn−1Bn+1.

(5) B2n+1 − 1 = BnCn+1 where {Cn} is associated sequence of {Bn}.

(6) Cn = Q2n.

(7) If n is odd integer, then Bn − 1 = 1
2 Pn−1Qn+1.

Proof. The third and sixth identities can be found in [10]. For the fourth one,
we refer to [2]. Since the terms of the sequence {Sn} are balancing and Pell numbers
and special cases of the Lucas sequence, we can write easily the first identity by
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means of [3]. In order to prove the seventh one, we use the Binet formulas for the
Pell and associated Pell sequences. Since n is an odd integer, we get

1

2
Pn−1Qn+1 =

αn−1 − βn−1

α − β
(αn+1 + βn+1)

=
1

2

(α2n − β2n

α − β
+ 2

)

=
κn − τn

κ − τ
+ 1 = Bn + 1

where α and β are the roots of the equation x2 − 2x − 1 = 0 and we use the
facts κ = α2 and τ = β2. The remaining identities can be proven by using Binet
formulas. �

Lemma 2.2. For all integers n > 3, the following inequalities hold

αn−1.19 < Pn < αn−1.16

αn−0.1 < Qn < αn+0.1

α2n−1.97 < Bn < α2n−1.96

where α is the dominant root of the equation x2 − 2x − 1 = 0.

Proof. The third inequality is from [1]. For n > 3, we have

Pn >
αn −

∣

∣β3
∣

∣

α − β
> αn 1 −

(

|β|/α
)3

α − β
> αn−1.19,

which gives the lower bound for the sequence {Pn}. Similarly,

Pn 6
αn +

∣

∣β3
∣

∣

α − β
6 αn 1 +

(

|β|/α
)3

α − β
6 αn−1.16

gives the upper bound. The bounds for the sequence {Qn} can be proven in a
similar way. �

3. Proof of Theorem 1.1

Since 0 < a < b < c, then 1 · 2 + 1 6 ab + 1 = Sx. We get that 3 6 x. From
now on, the proof is split into two parts.

Case 1. Assume that z 6 280.

In this case, we run a computer search to detect system (1.1) for each case.
Note that the balancing case has been already solved in [1]. Observe that we have

a =

√

(Sx − 1)(Sy − 1)

Sz − 1
, 3 6 x < y < z 6 280.

Going through all the eligible values for x, y and z, and we found no integer solution.

Case 2. Assume that z > 280.
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In this case, we distinguish four main cases depending on the integers y and z.
(1) Both y and z are even

If x is an even integer, then the case corresponds to [1] since the pellans se-
quence turns to balancing sequence. Assume that x is odd. The proof mainly
depends on the indices y and z apart from the case k = 2 and l = 1 in [1]. If we
take Sx = P2x−1 in the case k = 2, l = 1 in [1], then we can follow the similar way
to complete the proof of theorem. Hence, we omit this case.

(2) Both y and z are odd

Since both y and z are odd integers, then the terms of pellans sequence turn
to Pell numbers. Now, we give a lemma which gives a relation between the indices
y and z.

Lemma 3.1. The system

(3.1) ab + 1 = Sx, ac + 1 = Py, bc + 1 = Pz

satisfy z 6 2y − 2.

Proof. The last two equations of (1.1) give
√

Pz < c < Py . By Lemma 2.2,
we have

α(z−1.19)/2 <
√

Pz < c < Py < αy−1.16

which yields z 6 2y − 2. �

Put q1 = gcd(Sy − 1, Sz − 1). Since y and z are odd integers, we replace the
pellans sequence by Pell sequence according to the definition of pellans sequence.
Applying the second and fourth identities of Lemma 2.1, we get

q1 = gcd(Py − 1, Pz − 1) = gcd
(

P y−i

2

Q y+i

2

, P z−j

2

Q z+j

2

)

6 Pgcd( y−i

2
, z−j

2 )Qgcd( y−i

2
, z+j

2 )Qgcd( y+i

2
, z−j

2 )Qgcd( y+i

2
, z+j

2 )

where i, j ∈ {±1}. Let gcd
(

z+µ1j
2 , y+µ2i

2

)

= z+µ1j
2t for some µ1, µ2 ∈ {±1}. Sup-

pose that t > 5 for all quadruples (i, j, µ1, µ2) ∈ {±1}4. Since c | q1, then Lemma
2.2 implies that

α
z−1.19

2 <
√

Pz < c 6 q1 < α
z+1

10
−1.16+2 z−1

10
+0.2+ z+1

10
+0.1.

When we compare the exponents of α, we arrive at a contradiction.
Assume that t 6 4 and that

z + µ1i

2k
=

y + µ2j

2l

holds for suitable positive integers k and l such that gcd(k, l) = 1.
Suppose for the moment l > k. Then, we get z = y + 1 since y < z together

with y + µ2j > z + µ1i. As both y and z are odd integers, the equation z = y + 1
is impossible.

Now, assume that k = l. Since z + µ1i = y + µ2j, we obtain that z = y + 2.
By Lemma 2.1,

Pz − 1 = P z+i
2

Q z−i
2

, Pz−2 − 1 = P z−2−i
2

Q z−2+i
2

.
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hold for some i ∈ {±1}. If z ≡ 3 (mod 4), then we have the following, by Lemma 2.1

q1 = gcd(Pz − 1, Pz−2 − 1) = gcd
(

P z+1

2

Q z−1

2

, P z−3

2

Q z−1

2

)

= Pgcd( z+1

2
, z−3

2 )Q z−1

2

= P2Q z−1

2

= 2Q z−1

2

.

Since q1 = 2Q z−1

2

, then we have c | Q z−1

2

or c | 2Q z−1

2

. If c | Q z−1

2

, then

Q z−1

2

= c1c > c1

√

Pz,

and applying Lemma 2.2, we obtain

c1α
z−1.19

2 < c1

√

Pz < Q z−1

2

< α
z−1

2
+0.1.

So c1 < α0.2 < 1.2 which gives c1 = 1. Then, we obtain c = Q z−1

2

. When we put

c = Q z−1

2

in (3.1), we have a = P z−3

2

and b = P z+1

2

. From the first equation in

(3.1), one can easily see that ab + 1 = P z−3

2

P z+1

2

+ 1 = P 2
z−1

2

= Sx. If x is odd,

then we obtain Px = P 2
z−1

2

. When we apply the upper and lower bounds for the

sequence {Pn}, we deduce

Px = P 2
z−1

2

⇒ αx−1.19 < αz−3.32 ⇒ 2.13 < z − x

Px = P 2
z−1

2

⇒ αz−1−2.38 < αx−1.16 ⇒ z − x < 2.22.

There are no two odd integers x and y such that 2.13 < z − x < 2.22. Similarly,
we get 1.35 < z − x < 1.4 when x is even. This is impossible, too.

In the sequel, if 2Q z−1

2

= c′
1c > c′

1

√
Pz , then c′

1 < 2Q z−1

2

/
√

Pz < 2α0.2 < 2.4.

If c′
1 = 2, we get c = Q z−1

2

which is the same situation as above. If c′
1 = 1, then

we obtain that a = P z−3

2

/2 and b = P z+1

2

/2. So, P 2
z−1

2

+ 5 = 4Sx. If x is an odd

integer, then Sx = Px which yields that 3.48 < z − x < 3.8. But, this is impossible.
Similarly, if x is an even integer, then Sx = B x

2
. Using the upper and lower bounds

for the sequence, we get 2.7 < z − x < 3 which is not possible.
If z ≡ 1 (mod 4), then

q1 = gcd(Pz − 1, Pz−2 − 1) = gcd
(

P z−1

2

Q z+1

2

, P z−1

2

Q z−3

2

)

= Qgcd( z+1

2
, z−3

2 )P z−1

2

= Q1P z−1

2

= 2P z−1

2

.

Assume that q1 = 2P z−1

2

. Since c | q1, then c | P z−1

2

or c | 2P z−1

2

. If c | P z−1

2

, then

P z−1

2

= c2c > c2
√

Pz . Since P z−1

2

/
√

Pz < 1, we get c2 < P z−1

2

/
√

Pz < 1 which is

impossible. If c | 2P z−1

2

, then 2P z−1

2

= c′
2c > c′

2

√
Pz. Since 2P z−1

2

/
√

Pz < α−0.27 <

0.79, then we obtain c′
2 < 0.79, which is not possible.

In what follows, assume that k > l with k
l > 2. Here,

z =
k

l
(y + µ2i) − µ1j > 2y − 3.

Together with Lemma 3.1, we deduce that z = 2y − 3 or z = 2y − 2. Since both
y and z are odd integers, z = 2y − 2 is impossible. Therefore, there is only one
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possibility which is z = 2y − 3. Together with Lemma 2.1(4) yields that

q1 = gcd(P2y−3 − 1, Py − 1) = gcd(Py−1Qy−2, Py − 1).

If y ≡ 1 (mod 4), then

α
z−1.19

2 < q1 = gcd(Py−1Qy−2, Py − 1) = gcd
(

Py−1Qy−2, P y−1

2

Q y+1

2

)

6 gcd
(

Py−1, P y−1

2

)

gcd
(

Py−1, Q y+1

2

)

gcd
(

Qy−2, P y−1

2

)

gcd
(

Qy−2, Q y+1

2

)

6 P y−1

2

Q2Q1Q3 < α
z+1

4
+5.14

yields that z < 24, which is not possible.
If y ≡ 3 (mod 4), then

α
z−1.19

2 < q1 = gcd(Py−1Qy−2, Py − 1) = gcd
(

Py−1Qy−2, P y+1

2

Q y−1

2

)

6 gcd
(

Py−1, P y+1

2

)

gcd
(

Py−1, Q y−1

2

)

gcd
(

Qy−2, P y+1

2

)

gcd
(

Qy−2, Q y−1

2

)

6 P2Q y−1

2

Q3Q1 < α
z+1

4
+5.14.

But this is also impossible since z > 280. In the sequel, assume that k
l < 2. Note

that this condition implies k > 3. Taking any pair (µ1, µ2) 6= (µ′
1, µ′

2), then we
have z + µ′

1j = k
l (y + µ2i) − µ1j + µ′

1j. The main objective is to find an upper

bound for q
(0)
1 = gcd

( z+µ′

1j
2 ,

y+µ′

2i
2

)

. Then

q
(0)
1 =

1

2
gcd

(

z + µ′
1j, y + µ′

2i
)

6
1

2
gcd

(

k(y + µ2i) − l
(

µ1j − µ′
1j

)

, k
(

y + µ′
2j

))

6 |k + l|.

Since 2 6 l < k 6 4 and (k, l) = 1, the cases (k, l) = (4, 3), (3, 2) hold. Therefore,

α
z−1.19

2 <
√

Pz < gcd(Pz − 1, Py − 1) 6 α
z+1

4
+3(7+0.1)−1.16.

Then we get z < 84 which is not possible.
(3) y is even and z is odd

By the definition of the pellans sequence, we get that Sz = Pz and Sy = B y

2

since y is an even integer and z is an odd integer. Now, we give a lemma which
implies a relation between the integers y and z.

Lemma 3.2. The system

(3.2) ab + 1 = Sx, ac + 1 = B y

2
, bc + 1 = Pz

satisfies z 6 2y − 3.

Proof. The last two equations yields
√

Pz < c < B y

2
. By Lemma 2.2, we have

α
z−1.19

2 <
√

Pz < c < B y

2
< αy−1.96,

which yields z 6 2y − 3. �
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Put q2 = gcd(Sy − 1, Sz − 1) = gcd
(

B y

2
− 1, Pz − 1

)

. System (3.2) gives that

√

Pz < q2 = gcd
(

B y
2

− 1, Pz − 1
)

.

After applying the properties in Lemma 2.1, we obtain the following for some
i ∈ {±1}

q2 = gcd
(

B y

2
− 1, Pz − 1

)

6 gcd
(

B y

2
−1B y

2
+1, P z−i

2

Q z+i
2

)

6 gcd
(

B y

2
−1, P z−i

2

)

gcd
(

B y

2
−1, Q z+i

2

)

gcd
(

B y

2
+1, P z−i

2

)

× gcd
(

B y

2
+1, Q z+i

2

)

6 gcd
(1

2
Py−2, P z−i

2

)

gcd
(1

2
Py−2, Q z+i

2

)

gcd
(1

2
Py+2, P z−i

2

)

× gcd
(1

2
Py+2, Q z+i

2

)

6
∏

j∈{±2}

Pgcd(y+j, z−i
2

)Qgcd(y−j, z+i
2

).

Let gcd
(

y + η1j, z+η2i
2

)

= z+η2i
2t for some η1, η2, i ∈ {±1}3 and j ∈ {±2}. Firstly,

suppose that t > 4. Lemma 2.2 leads to

α
z−1.19

2 < α
z−1

8
−1.16+ z+1

8
−1.16+ z−1

8
+0.1+ z+1

8
+0.1.

When we compare the exponents of α, we arrive at a contradiction.
Now, assume that t = 3. Since gcd

(

y + η1j, z+η2i
2

)

= z+η2i
6 , then one of the

equations z+η2i
6 = y + η1j, z+η2i

3 = y + η1j, z+η2i
3 = y+η1j

2 and z+η2i
6 = y+η1j

5
holds where η1, η2, i ∈ {±1}3 and j ∈ {±2}. If y + η1j = z+η2i

6 , then Lemma 3.2
yields that z = 6y + 6η1j − η2i 6 2y − 3. Thus 2z + 6 6 4y 6 η2i − 6η1j − 3 6 10,
contradicting the fact z > 280. If y + η1j = z+η2i

3 , then we get z = 3y + 3η1j − η2i.
Together with Lemma 3.2, we obtain that y 6 η2i − 3η1j − 3 6 4. Therefore z 6 5,
which is impossible.

Assume that z+η2i
3 = y+η1j

2 = t. The facts z = 3t − η2i and y = 2t − η1j yield
that

q2 < Pgcd(2t−η1j−2,
3t−η2i−i

2 )Qgcd(2t−η1j−2,
3t−η2i+i

2 )

× Pgcd(2t−η1j+2,
3t−η2i−i

2 )Qgcd(2t−η1j+2,
3t−η2i+i

2 )

< α2(16−1.16)+16+0.1+ z+1

3
+0.1.(3.3)

As α
z−1.19

2 < q2, we get z < 280.53 together with (3.3). Similarly, for the case
z+η2i

6 = y+η1j
5 , we find that the upper bound of z is 150. Both cases contradict

with the assumption z > 280. In the sequel, suppose that t = 2. The possibilities
are y + η1j = z+η2i

4 and y+η1j
3 = z+η2i

4 . If we continue as above, we get the upper

bound as 126.9 for the case y+η1j
3 = z+η2i

4 . This is not possible since z > 280. The

case y+η1j = z+η2i
4 yields together with Lemma 3.2 that z = 4y+4η1j−η2i 6 2y−3.

Consequently, z + 3 6 2y 6 η2i − 4η1j − 3 6 6, which is not possible.
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The case t = 1 leads to z = 2(y + η1j) − η2i. Since 2y − 5 6 z 6 2y − 3 and z is
odd integer, then there are two possibilities which are z = 2y − 3 and z = 2y − 5.
Assume that z = 2y − 3. When we divide the third equation by the second one in
system (3.2), we obtain the following inequality.

αy−2.25 <
P2y−3

Py/2
=

bc + 1

ac + 1
<

b

a
.

By multiplying both sides with a2, we get a2αy−2.25 < ab < Sx. If x is even, then
a2αy−2.25 < Sx = B x

2
< αx−1.96. Therefore,

a2 < αx−y−1.96+2.25 6 α−0.71 < 0.6.

But this is not possible since a is positive integer.
Now, assume that x is odd. The inequalities a2αy−2.25 < Sx = Px < αx−1.16

yield

a2 < αx−y−1.16+2.25
6 α0.09 < 1.09.

The only possibility is a = 1. Equation system (3.2) yields that b = Px − 1,

c =
Py

2 − 1 and (Px − 1)
(Py

2 − 1
)

= P2y−3 − 1. Since

αy−2.18 < Px − 1 =
P2y−3 − 1

Py/2 − 1
< αy−2.17,

αx−1.28 < Px − 1 =
P2y−3 − 1

Py/2 − 1
< αx−1.16,

we get that −1.03 < x − y < −0.8 which gives that y = x + 1. The equation

(Px − 1)
( Py

2 − 1
)

= P2y−3 − 1 yields that (Px − 1)
( Px+1

2 − 1
)

= P2x−1 − 1. But this

is not possible since (Px −1)
(Px+1

2 −1
)

< P2x−1 −1. Similarly to above, we see that
the case z = 2y − 5 is also impossible. In order to avoid unnecessary repetition, we
omit this case.

(4) y is odd and z is even

Now, we give a lemma.

Lemma 3.3. The system

ab + 1 = Sx, ac + 1 = Py, bc + 1 = B z
2

satisfies z 6 2y − 1.

Proof. The previous equation system gives
√

Bz/2 < c < Py. By Lemma 2.2,

we have α(z−1.97)/2 <
√

Bz/2 < c < Py < αy−1.16, which yields z 6 2y − 1. �

Put q3 = gcd(Sy − 1, Sz − 1). By the definition of the pellans sequence, we get

q3 = gcd(Sy − 1, Sz − 1) = gcd
(

Py − 1, B z
2

− 1
)

.
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The properties in Lemma 2.1 yield that

q3 6 gcd
(

P y−i
2

Q y+i
2

, B z
2

−1B z
2

+1
)

q3 6 gcd
(

P y−i

2

, B z
2

−1
)

gcd
(

P y−i

2

, B z
2

+1
)

gcd
(

Q y+i

2

, B z
2

−1
)

gcd
(

Q y+i

2

, B z
2

+1
)

6 gcd
(

P y−i
2

, Pz−2
)

gcd
(

P y−i
2

, Pz+2
)

gcd
(

Q y+i
2

, Pz−2
)

gcd
(

Q y+i
2

, Pz+2
)

=
∏

j∈
{

±2
}

gcd
(

P y−i
2

, Pz+j

)

gcd
(

Q y+i
2

, Pz−j

)

=
∏

j∈{±2}

Pgcd( y−i

2
,z+j)Qgcd( y+i

2
,z−j)

for some i ∈ {±1}. Let gcd
(

y+ξ1i
2 , z + ξ2j

)

= z+ξ2j
w where ξ1, ξ2 ∈ {±1}. First

assume that w > 8. Then we have

α
z−1.97

2 <
√

B z
2

< c < q3 6 α( z−j

8
−1.16)+( z+j

8
−1.16)+( z−j

8
+0.1)+( z−j

8
+0.1).

The above formula leads to z
2 − 0.99 < z

2 − 2.12 which is an absurdity.

Now, assume that w 6 7. Further assume that y+ξ1i
2k = z+ξ2j

l holds for a
suitable positive integer l coprime to k. If k > l, then according to y < z,

y + ξ2j < z + ξ2j 6
y + ξ1i

2

yields that y 6 5. The inequality z 6 2y −1 implies that z 6 9 which is impossible.
Assume that k < l. First we analyze the case 2 6 l

2k . Then,

z =
l

2k
(y + ξ1i) − ξ2j > 2(y − 1) − 2 = 2y − 4,

which together with z 6 2y − 1 implies the following possibilities.
If z = 2y − 4, then by Lemma 2.1 we have the following for some i ∈ {±1}

α
z−1.97

2 < gcd(Py − 1, B z
2

− 1) = gcd(Py − 1, By−2 − 1)

= gcd
(

P y−i
2

Q y+i
2

,
1

2
Py−3Qy−1

)

< gcd
(

P y−i
2

Q y+i
2

, Py−3Qy−1

)

6 Pgcd( y−i

2
,y−3)Qgcd( y−i

2
,y−1)Qgcd( y+i

2
,y−3)Qgcd( y+i

2
,y−1).

If i = 1, then

α
z−1.97

2 = α
2y−5.97

2

6 Pgcd( y−1

2
,y−3)Qgcd( y−1

2
,y−1)Qgcd( y+1

2
,y−3)Qgcd( y+1

2
,y−1)

6 P2Q y−1

2

Q4Q2 < α
y
2

+7.14

leads to y 6 20. Then z 6 36 which is a contradiction.



268 IRMAK AND ALP

If i = −1, then

α
z−1.97

2 = α
2y−5.97

2

6 Pgcd( y+1

2
,y−3)Qgcd( y+1

2
,y−1)Qgcd( y−1

2
,y−3)Qgcd( y−1

2
,y−1)

6 P4Q2Q4Q y−1

2

< α
y

2
+7.14.

When we compare the exponents of α, we arrive at a contradiction.
Assume that z = 2y − 2. Then

α
z−1.97

2 = α
2y−3.97

2 <
∏

j∈{±2}

Pgcd( y−i

2
,2y−2+j)Qgcd( y+i

2
,2y−2−j)

6 P6P4Q6Q4 < α17.88

yields that z 6 37. But, this is impossible.
Now, assume that l

2k < 2. This implies that l > 2. If l = 2, then k = 1 as

k < l. Together with y < z and y+ξ1i
2 = z+ξ2j

2 , we get z = y + 1. If y ≡ 1 (mod 4),
then z ≡ 1 (mod 4). So,

α
z−1.19

2 < c < q3 = gcd
(

Py − 1,
Pz

2
− 1

)

< gcd(Py − 1, Py+1 − 2) = gcd
(

P y−1

2

Q y+1

2

, P y+1−2

2

Q y+1+2

2

)

= P y−1

2

Q1.

The inequality z−1.19
2 < y−1

2 −1.16+0.8 yields that −0.19 < −3.16 since z = y +1.
But this is false.

If y ≡ 3 (mod 4), then z ≡ 0 (mod 4). Therefore,

α
z−1.19

2 < c < q3 = gcd
(

Py − 1,
Pz

2
− 1

)

< gcd(Py − 1, Py+1 − 2) = gcd
(

P y+1

2

Q y−1

2

, P y+1+2

2

Q y+1−2

2

)

= Q y−1

2

P1.

When we compare the exponents of α, we get z−1.19
2 < y−1

2 +0.1. As z = y +1,
we arrive at a contradiction.

In the sequel, assume that l > 3. Taking any pair (ξ′
1, ξ′

2) 6= (ξ1, ξ2), we have

z + ξ′
2j =

l

2k
(y + ξ1i) − ξ2j + ξ′

2j.

When we evaluate the upper bound for q
(0)
3 = gcd

( y+ξ′

1i
2 , z + ξ′

2j
)

, we have

q
(0)
3 = gcd

(y + ξ′
1i

2
, z + ξ′

2j
)

= gcd
(y + ξ′

1i

2
,

l

2k
(y + ξ1i) − ξ2j + ξ′

2j
)

6 gcd
(

l
(

y + ξ′
1i

)

, l(y + ξ1i) − 2k
(

ξ2j − ξ′
2j

))

6
∣

∣l
(

ξ′
1i − ξ1i

)

− 2k
(

ξ2j − ξ′
2j

)
∣

∣.
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The three cases ξ′
1 6= ξ1, ξ′

2 6= ξ2 and ξ′
1 6= ξ1, ξ′

2 = ξ2 and ξ′
1 = ξ1, ξ′

2 6= ξ2 imply

that q
(0)
3 6 2(2k + l). Then

α
z−1.97

2 < q3 = gcd
(

Py − 1, B z
2

− 1
)

6
∏

j∈{±2}

Pgcd( y−i

2
,z+j)Qgcd( y+i

2
,z−j) < α

z+2

l
+2(2k+l)+2·0.1−2·1.16.

But none of these pairs satisfies the inequality l
2k < 2. The eligible pairs are

(l, k) = P (3, 1), (3, 2), (4, 3), (5, 2), (5, 3), (5, 4),

(6, 5), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6).

The previous argument provides the upper bounds

z < 57.19, 81.19, 77.46, 57.55, 70.89, 84.22,

93.6, 59.23, 70.43, 81.63, 92.83, 104.03,

respectively. But this is impossible since z > 280. Hence, the proof of Theorem 1.1
is completed.

Acknowledgements. The authors express their gratitude to the anonymous
referee for the instructive suggestions.
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