# ABOUT A CONJECTURE ON DIFFERENCE EQUATIONS IN QUASIANALYTIC CARLEMAN CLASSES 

Hicham Zoubeir


#### Abstract

We consider the difference equation $\sum_{j=1}^{q} a_{j}(x) \varphi\left(x+\alpha_{j}\right)=\chi(x)$ where $\alpha_{1}<\cdots<\alpha_{q}(q \geqslant 3)$ are given real constants, $a_{j}(j=1, \ldots, q)$ are given holomorphic functions on a strip $\mathbb{R}_{\delta}(\delta>0)$ such that $a_{1}$ and $a_{q}$ vanish nowhere on it, and $\chi$ is a function belonging to a quasianalytic Carleman class $C_{M}\{\mathbb{R}\}$. We prove, under a growth condition on the functions $a_{j}$, that the difference equation above is solvable in $C_{M}\{\mathbb{R}\}$.


## 1. Introduction

Belitskii, Dyn'kin and Tkachenko in [1] formulated the following conjecture.
Conjecture. Let $\chi, a_{j}, j=1, \ldots, q$, be functions in a Carleman class $C_{M}\{\mathbb{R}\}$ such that $a_{1}$ and $a_{q}$ nowhere vanish on $\mathbb{R}$, and $\alpha_{1}<\cdots<\alpha_{q}$ some real numbers. Then the difference equation

$$
\begin{equation*}
\sum_{j=1}^{q} a_{j}(x) \varphi\left(x+\alpha_{j}\right)=\chi(x) \tag{1.1}
\end{equation*}
$$

is solvable in the Carleman class $C_{M}\{\mathbb{R}\}$.
In that paper, the authors, relying on a result of decomposition in Carleman classes, proved the conjecture in the particular cases where the coefficients $a_{j}$ are constants or when the coefficients are variables with $q=2$. They also suggested that the same method could be used to show the solvability of equation (1.1) in a quasianalytic Carleman class $C_{M}\{\mathbb{R}\}$, if we assume that the functions $\frac{1}{a_{1}}, \frac{1}{a_{q}}$, $\frac{a_{2}}{a_{1}}, \ldots, \frac{a_{q}}{a_{1}}, \frac{a_{1}}{a_{q}}, \ldots, \frac{a_{q-1}}{a_{q}}(q \geqslant 3)$ can be continued in a strip $\mathbb{R}_{\delta}:=\{z \in \mathbb{C}$ : $|\operatorname{Im}(z)|<\delta\}$ as analytic functions increasing on $\mathbb{R}_{\delta}$, not too rapidly in infinity. As an example of such coefficients, they mentioned the class of rational functions. Our aim here is to give a precise meaning to this assertion, by proving that the result is

[^0]true even if the functions $\frac{1}{a_{1}}, \frac{1}{a_{q}}, \frac{a_{2}}{a_{1}}, \ldots, \frac{a_{q}}{a_{1}}, \frac{a_{1}}{a_{q}}, \ldots, \frac{a_{q-1}}{a_{q}}$ have more rapid increase in infinity, provided that it is of the form $\exp \left(e^{C|\operatorname{Re}(z)|}\right)$ where $C>0$ is a constant.

## 2. Notations, definitions and statement of the main result

We set for every $\rho>0, a \geqslant 0$

$$
\begin{aligned}
\mathbb{R}_{\rho} & :=\{z \in \mathbb{C}:|\operatorname{Im}(z)|<\rho\}, \quad \mathbb{R}_{\rho}^{ \pm}:=\left\{z \in \mathbb{R}_{\rho}: \pm \operatorname{Re}(z)>\rho\right\} \\
\mathbb{R}_{\rho, a} & :=\left\{z \in \mathbb{R}_{\rho}:|\operatorname{Re}(z)| \leqslant a\right\} \\
\Delta_{\rho} & :=\{z \in \mathbb{C}:|z|<\rho\}, \quad \Delta_{\rho}^{ \pm}:=\left\{z \in \Delta_{\rho}: \pm \operatorname{Re}(z) \leqslant 0\right\} \\
\Gamma_{\rho} & :=\{z \in \mathbb{C}:|z|=\rho\}, \quad \Gamma_{\rho}^{ \pm}:=\left\{z \in \Gamma_{\rho}: \pm \operatorname{Re}(z) \leqslant 0\right\}
\end{aligned}
$$

For every nonempty subset $V$ of $\mathbb{C}$ and every $z \in \mathbb{C}$ and $n \in \mathbb{N}^{*}$ we set

$$
\begin{aligned}
V^{(0)}:= & V, \quad V^{(n)}:=\left\{u_{1}+\cdots+u_{n}: u_{j} \in V, \quad j=1, \ldots, n\right\}, \quad n \geqslant 1 \\
& z+V:=\{z+u: u \in V\}, \quad z-V:=\{z-u: u \in V\}
\end{aligned}
$$

Denote by $d m(\zeta)$ the Lebesgue measure on $\mathbb{C}$. Let $S$ be a nonempty subset of $\mathbb{C}$. By $O(S)$ we denote the set of holomorphic functions on some neighborhood of $S$. Let $F: U \subset \mathbb{C} \rightarrow \mathbb{C}$ be a function of class $C^{1}$ on an open subset $U$ of $\mathbb{C}$. For all $z \in U$ we set

$$
\bar{\partial} F(z):=\frac{1}{2}\left[\frac{\partial F}{\partial x}(z)+i \frac{\partial F}{\partial y}(z)\right]
$$

$\bar{\partial}$ is called the operator of Cauchy-Riemann.
Let $M:=\left(M_{n}\right)_{n \geqslant 0}$ be a sequence of strictly positive real numbers. The Carleman class $C_{M}\{\mathbb{R}\}$ is the set of all functions $f: \mathbb{R} \rightarrow \mathbb{C}$ of class $C^{\infty}$ such that

$$
\left\|f^{(n)}\right\|_{\infty, I} \leqslant C_{I} \rho_{I}^{n} M_{n}, \quad n \in \mathbb{N}
$$

for every compact interval $I$ of $\mathbb{R}$ with some constants $C_{I}, \rho_{I}>0$. The Carleman class $C_{M}\{\mathbb{R}\}$ is said to be quasinalytic if every function $f \in C_{M}\{\mathbb{R}\}$ such that $f^{(n)}(u)=0$ for some $u \in \mathbb{R}$ and every $n \in \mathbb{N}$ is identically equal to 0 . The Carleman class $C_{M}\{\mathbb{R}\}$ is called regular when the following conditions hold

$$
\begin{aligned}
\left(\frac{M_{n+1}}{(n+1)!}\right)^{2} & \leqslant \frac{M_{n}}{n!} \frac{M_{n+2}}{(n+2)!}, n \in \mathbb{N} \\
\sup _{n \in \mathbb{N}}\left(\frac{M_{n+1}}{(n+1) M_{n}}\right)^{\frac{1}{n}} & <+\infty \\
\lim _{n \rightarrow+\infty} M_{n}^{\frac{1}{n}} & =+\infty
\end{aligned}
$$

To the Carleman $C_{M}\{\mathbb{R}\}$ we associate its weight $H_{M}$ defined by the following relation

$$
H_{M}(x):=\lim _{n \in \mathbb{N}}\left[\frac{M_{n}}{n!} x^{n}\right], \quad x>0
$$

In this paper, the following result will play a crucial role.

Theorem 2.1. [3] We assume that the Carleman class $C_{M}\{\mathbb{R}\}$ is regular. $A$ function $f: \mathbb{R} \rightarrow \mathbb{C}$ belongs to $C_{M}\{\mathbb{R}\}$ if and only if there exists for every compact interval $I$ of $\mathbb{R}$ a compactly supported function $F: \mathbb{C} \rightarrow \mathbb{C}$ of class $C^{1}$ such that $F$ is an extension to $\mathbb{C}$ of the restriction to $I$ of the function $f$ and satisfies the following estimate

$$
|\bar{\partial} F(z)| \leqslant A_{I} H_{M}\left(B_{I}|\operatorname{Im}(z)|\right), \quad z \in \mathbb{C}
$$

where $A_{I}, B_{I}>0$ are constants.
Throughout the paper, we assume that the Carleman class $C_{M}\{\mathbb{R}\}$ is regular and quasianalytic. Our main result is the following.

Theorem 2.2. Let $q \in \mathbb{N}^{*} \backslash\{1,2\}, \delta>0, \chi \in C_{M}\{\mathbb{R}\}$, and $a_{j} \in O\left(\mathbb{R}_{\delta}\right)$ $(j=1, \ldots, q)$ such that $a_{1}$ and $a_{q}$ nowhere vanish on $\mathbb{R}_{\delta}$. We assume that the following growth condition holds

$$
\begin{equation*}
\sup _{z \in \mathbb{R}_{\delta}}\left(\sum_{j=2}^{q}\left|\frac{a_{j}(z)}{a_{1}(z)}\right|+\sum_{j=1}^{q-1}\left|\frac{a_{j}(z)}{a_{q}(z)}\right|+\frac{1}{\left|a_{1}(z)\right|}+\frac{1}{\left|a_{q}(z)\right|}\right) e^{-e^{C|\operatorname{Re} z|}}<+\infty \tag{2.1}
\end{equation*}
$$

for a constant $C>0$. Then difference equation (1.1) is solvable in the class $C_{M}\{\mathbb{R}\}$.

## 3. Proof of the main result

Let us first prove the following lemma.
Lemma 3.1. Given $f \in C_{M}\{\mathbb{R}\}, C_{0}>0$ and $\left.\rho \in\right] 0 ; \frac{\pi}{2 C_{0}}[$, there exist two functions $f_{ \pm}:\left(\mathbb{C} \backslash \Delta_{\rho}^{ \pm}\right) \cup \mathbb{R} \rightarrow \mathbb{C}$ which are holomorphic on $\mathbb{C} \backslash\left(\Gamma_{\rho}^{ \pm} \cup \Delta_{\rho}^{ \pm}\right)$, whose restrictions to $\mathbb{R}$ belong to $C_{M}\{\mathbb{R}\}$, and such that the following conditions hold

$$
\begin{aligned}
f(x) & =f_{+}(x)+f_{-}(x), \quad x \in[-\rho, \rho] \\
\left|f_{ \pm}(z)\right| & \leqslant D_{0} \exp \left(-\cos \left(\rho C_{0}\right) e^{C_{0}|\operatorname{Re}(z)|}\right), \quad z \in \mathbb{R}_{\rho}^{ \pm}
\end{aligned}
$$

where $D_{0}>0$ is a constant.
Proof. Since $f$ belongs to $C_{M}\{\mathbb{R}\}$, there exists, according to Dyn'kin's theorem $[\mathbf{3}]$, a compactly supported function $F: \mathbb{C} \rightarrow \mathbb{C}$ of class $C^{1}$ such that $F$ is an extension of the restriction of $f$ to the interval $[-\rho, \rho]$ and satisfies the following estimate

$$
|\bar{\partial} F(z)| \leqslant A H_{M}(B|\operatorname{Im}(z)|), \quad z \in \mathbb{C}
$$

where $A, B>0$ are constants. Following the same approach as that of [1, pp. 34,35], [2, pp. 148-150], but using the Cauchy-Pompeiu formula on the disk $\Delta_{\rho}$, for the function $\exp \left(e^{C_{0} z}+e^{-C_{0} z}\right) f(z)$, we show that the functions

$$
\begin{aligned}
f_{ \pm}(z)= & \frac{1}{2 i \pi} \exp \left(-e^{C_{0} z}-e^{-C_{0} z}\right) \int_{\Gamma_{\rho}^{ \pm}} \frac{\exp \left(e^{C_{0} \zeta}+e^{-C_{0} \zeta}\right) F(\zeta)}{\zeta-z} d \zeta \\
& -\frac{1}{\pi} \exp \left(-e^{C_{0} z}-e^{-C_{0} z}\right) \iint_{\Delta_{\rho}^{ \pm}} \frac{\exp \left(e^{C_{0} \zeta}+e^{-C_{0} \zeta}\right) \bar{\partial} F(\zeta)}{\zeta-z} d m(\zeta)
\end{aligned}
$$

satisfy the required conditions.

Now we set

$$
\begin{array}{ll}
\beta_{j}:=\alpha_{j}-\alpha_{1}, \quad j=2, \ldots, q, & b_{j}(z):=-\frac{a_{j}(z)}{a_{1}(z)}, \quad z \in \mathbb{R}_{\delta}, \quad j=2, \ldots, q \\
\gamma_{j}:=\alpha_{q}-\alpha_{j}, \quad j=1, \ldots, q-1, \quad c_{j}(z):=-\frac{a_{j}(z)}{a_{q}(z)}, \quad z \in \mathbb{R}_{\delta}, \quad j=1, \ldots, q-1
\end{array}
$$

Let $C_{1}>C\left(\frac{\beta_{q}}{\beta_{2}}+\frac{\gamma_{1}}{\gamma_{q-1}}\right)$ and $\left.\delta_{0} \in\right] 0, \min \left(\delta, \frac{\pi}{2 C_{1}}\right)[$. Then according to the lemma above, there exists a constant $D_{1}>0$ and two functions $\chi_{ \pm}:\left(\mathbb{C} \backslash \Delta_{\delta_{0}}^{ \pm}\right) \cup \mathbb{R} \rightarrow \mathbb{C}$ which are holomorphic on $\mathbb{C} \backslash\left(\Gamma_{\delta_{0}}^{ \pm} \cup \Delta_{\delta_{0}}^{ \pm}\right)$, whose restrictions to $\mathbb{R}$ belong to $C_{M}\{\mathbb{R}\}$, and such that the following conditions hold

$$
\begin{align*}
\chi(x) & =\chi_{+}(x)+\chi_{-}(x), \quad x \in\left[-\delta_{0}, \delta_{0}\right] \\
\left|\chi_{ \pm}(z)\right| & \leqslant D_{1} \exp \left(-\cos \left(C_{1} \delta_{0}\right) e^{C_{1}|\operatorname{Re}(z)|}\right), \quad z \in \mathbb{R}_{\delta_{0}}^{ \pm} \tag{3.1}
\end{align*}
$$

Let $\left(g_{n}\right)_{n \in \mathbb{N}}$ and $\left(h_{n}\right)_{n \in \mathbb{N}}$ be the sequences of complex valued functions defined on the strip $\mathbb{R}_{\delta_{0}}$ by

$$
\begin{aligned}
& g_{0}(z):=\frac{\chi_{+}(z)}{a_{1}(z)}, \quad g_{n+1}(z):=\sum_{j=2}^{q} b_{j}(z) g_{n}\left(z+\beta_{j}\right), \\
& h_{0}(z):=\frac{\chi_{-}(z)}{a_{q}(z)}, \quad h_{n+1}(z):=\sum_{j=1}^{q-1} c_{j}(z) h_{n}\left(z-\gamma_{j}\right) .
\end{aligned}
$$

It is clear that all the functions $g_{n \mid \mathbb{R}}$ and $h_{n \mid \mathbb{R}}$ belong to $C_{M}\{\mathbb{R}\}$.
Let us set

$$
K_{1}:=\left\{\beta_{j}: j=2, \ldots, q\right\}, \quad K_{2}:=\left\{\gamma_{j}: j=1, \ldots, q-1\right\} .
$$

It follows from (2.1) that we have for every $n \in \mathbb{N}, z \in \mathbb{R}_{\delta_{0}}$

$$
\begin{aligned}
& \left|g_{n+1}(z)\right| \leqslant \exp \left(L e^{C|\operatorname{Re}(z)|}\right) \max _{u \in z+K_{1}}\left|g_{n}(u)\right|, \\
& \left|h_{n+1}(z)\right| \leqslant \exp \left(L e^{C|\operatorname{Re}(z)|}\right) \max _{u \in z-K_{2}}\left|h_{n}(u)\right|
\end{aligned}
$$

where $L>1$ is a constant. Then we have for all $n \in \mathbb{N}^{*}, z \in \mathbb{R}_{\delta_{0}}$

$$
\begin{aligned}
\left|g_{n}(z)\right| & \leqslant \exp \left(\sum_{j=0}^{n-1} L e^{C\left(|\operatorname{Re}(z)|+j \beta_{q}\right)}\right) \max _{u \in z+K_{1}^{(n)}}\left|g_{0}(u)\right| \\
& \leqslant \exp \left(n L e^{C\left(|\operatorname{Re}(z)|+n \beta_{q}\right)}\right) \max _{u \in z+K_{1}^{(n)}}\left|\chi_{+}(u)\right|, \\
\left|h_{n}(z)\right| & \leqslant \exp \left(\sum_{j=0}^{n-1} L e^{C\left(|\operatorname{Re}(z)|+j \gamma_{1} \mid\right)}\right) \max _{u \in z-K_{2}^{(n)}}\left|h_{0}(u)\right| \\
& \leqslant \exp \left(n L e^{C\left(|\operatorname{Re}(z)|+n \gamma_{1}\right)}\right) \max _{u \in z-K_{2}^{(n)}}\left|\chi_{-}(u)\right| .
\end{aligned}
$$

Let $a>0$. There exists $N_{a} \in \mathbb{N}^{*}$ such that $\left(\beta_{2}+\gamma_{q-1}\right) N_{a} \geqslant a$ and

$$
\begin{array}{ll}
z+K_{1}^{(n)} \subset \mathbb{R}_{\delta_{0}}^{+}, \quad n \geqslant N_{a}, \quad z \in \mathbb{R}_{\delta_{0}, a} \\
z-K_{2}^{(n)} \subset \mathbb{R}_{\delta_{0}}^{-}, \quad n \geqslant N_{a}, \quad z \in \mathbb{R}_{\delta_{0}, a}
\end{array}
$$

It follows then from (3.1) that we have for all $n \geqslant N_{a}, z \in \mathbb{R}_{\delta_{0}, a}$

$$
\begin{aligned}
\max _{u \in z+K_{1}^{(n)}}\left|\chi_{+}(u)\right| & \leqslant D_{1} \exp \left(-\cos \left(C_{1} \delta_{0}\right) \exp \left(C_{1} \min _{u \in z+K_{1}^{(n)}}|\operatorname{Re}(u)|\right)\right) \\
& \leqslant D_{1} \exp \left(-\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \beta_{2}\right)}\right) \\
\max _{u \in z-K_{1}^{(n)}}\left|\chi_{-}(u)\right| & \leqslant D_{1} \exp \left(-\cos \left(C_{1} \delta_{0}\right) \exp \left(C_{1} \min _{u \in z-K_{1}^{(n)}}|\operatorname{Re}(u)|\right)\right) \\
& \leqslant D_{1} \exp \left(-\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \gamma_{q-1}\right)}\right)
\end{aligned}
$$

Consequently we have for all $n \geqslant N_{a}, z \in \mathbb{R}_{\delta_{0}, a}$

$$
\begin{aligned}
& \left|g_{n}(z)\right| \leqslant D_{1} \exp \left(n L e^{C\left(a+n \beta_{q}\right)}-\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \beta_{2}\right)}\right) \\
& \left|h_{n}(z)\right| \leqslant D_{1} \exp \left(n L e^{C\left(a+n \gamma_{1}\right)}-\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \gamma_{q-1}\right) \mid}\right)
\end{aligned}
$$

On the other hand we have

$$
\begin{aligned}
& n L e^{C\left(a+n \beta_{q}\right)}=\underset{n \rightarrow+\infty}{o}\left[\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \beta_{2}\right)}\right] \\
& n L e^{C\left(a+n \gamma_{1}\right)}=\underset{n \rightarrow+\infty}{o}\left[\cos \left(C_{1} \delta_{0}\right) e^{C_{1}\left(-a+n \gamma_{q-1}\right) \mid}\right] .
\end{aligned}
$$

So, there exist real constants $D_{a}>0$ and $E_{a}>0$ and an integer $P_{a} \geqslant N_{a}$ such that the following inequalities hold

$$
\begin{aligned}
& \left|g_{n}(z)\right| \leqslant D_{a} \exp \left(-E_{a} e^{C_{1}\left(-a+n \beta_{2}\right)}\right), \quad z \in \mathbb{R}_{\delta_{0}, a}, \quad n \geqslant P_{a} \\
& \left|h_{n}(z)\right| \leqslant D_{a} \exp \left(-E_{a} e^{C_{1}\left(-a+n \gamma_{q-1}\right) \mid}\right), \quad z \in \mathbb{R}_{\delta_{0}, a}, \quad n \geqslant P_{a}
\end{aligned}
$$

It follows that the function series $\sum g_{n \mid \mathbb{R}_{\delta_{0}}}$ and $\sum h_{n \mid \mathbb{R}_{\delta_{0}}}$ are uniformly convergent on every compact subset of $\mathbb{R}_{\delta_{0}}$ and that the functions $\sum_{n=P_{a}}^{+\infty} g_{n}$ and $\sum_{n=P_{a}}^{+\infty} h_{n}$ are holomorphic on $\mathbb{R}_{\delta_{0}, a}$ for every $a>0$. Let $G_{+}$and $G_{-}$be the sums of $\left.\sum g_{n}\right|_{\mathbb{R}_{\delta_{0}}}$ and $\left.\sum h_{n}\right|_{\mathbb{R}_{\delta_{0}}}$, respectively. Since all the functions $g_{n \mid \mathbb{R}}$ and $h_{n \mid \mathbb{R}}$ belong to $C_{M}\{\mathbb{R}\}$, it follows that the functions $g_{+}:=\left.G_{+}\right|_{\mathbb{R}}$ and $g_{-}:=\left.G_{-}\right|_{\mathbb{R}}$ belong to $C_{M}\{\mathbb{R}\}$. Elementary computations show that

$$
\begin{array}{ll}
\sum_{j=1}^{q} a_{j}(x) g_{+}\left(x+\alpha_{j}\right)=\chi_{+}(x), & x \in \mathbb{R}, \\
\sum_{j=1}^{q} a_{j}(x) g_{-}\left(x+\alpha_{j}\right)=\chi_{-}(x), & x \in \mathbb{R} .
\end{array}
$$

Then it follows from (3.1) that the function $g:=g_{+}+g_{-}$is a solution on the interval $\left[-\delta_{0}, \delta_{0}\right]$ of the difference equation (1.1). But the function

$$
x \mapsto \sum_{j=1}^{q} a_{j}(x) g\left(x+\alpha_{j}\right)-\chi(x)
$$

belongs to the quasianalytic Carleman class $C_{M}\{\mathbb{R}\}$. Consequently the function $g \in C_{M}\{\mathbb{R}\}$ is a solution on $\mathbb{R}$ of difference equation (1.1). The proof of the main result is complete.

Acknowledgments. I want to express my profound gratitude to professors Ahmed Zeriahi, Lu Hoang Chinh, Jean-Pierre Demailly and Mokhtari Boucif for their great support without which this work would not have been possible. I am also indebted to Professor Alexander Borichev for his precious advices and valuable suggestions. My thanks to the referee for his/her remarks, which have improved this paper.

## References

1. G. Belitskii, E. M. Dyn'kin, V. Tkachenko, Difference equations in Carleman classes, Entire functions in modern analysis, Proc. Isr. Math. Conf., 15, 2001, 31-36.
2. G. Belitskii, V. Tkachenko, One dimensional Functional Equations, Operator theory, advances and applications, Vol 114, Birkhauser, 2003.
3. E. M. Dyn'kin, Pseudoanalytic extension of smooth functions. The uniform scale, Trans. Am. Math. Soc., (2) 115, 1980, 33-58.

Department of Mathematics
Faculty of Sciences
(Revised 2111 2015)
Ibn Tofail University
Kenitra
Morocco
hzoubeir2014@gmail.com


[^0]:    2010 Mathematics Subject Classification: Primary 30H05; Secondary 30B10, 30D05.
    Key words and phrases: difference equations, quasianalytic Carleman classes.
    Communicated by Stevan Pilipović.

