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L’HÔPITAL’S MONOTONE RULE,
GROMOV’S THEOREM, AND

OPERATIONS THAT PRESERVE
THE MONOTONICITY OF QUOTIENTS

Ricardo Estrada and Miroslav Pavlović

Abstract. We study several operators T that when applied to both the nu-
merator and denominator of an increasing, or decreasing, function u/v produce
another increasing, or decreasing, function T (u)/T (v). We also give new proofs
of the monotone form of L’Hôpital’s rule and of Gromov’s theorem.

1. Introduction

In his book, Analyse des Infiniment Petits pour l’Intelligence des Lignes
Courbes, published in 1696 and considered to be the first textbook on calculus,
Guillaume de l’Hôpital included the well known rule to compute limits presently
called L’Hôpital’s rule1. In its basic form it says the following.

Theorem 1.1. Suppose f, g are continuous functions defined in2 (a, b), differ-
entiable in (a, b) and such that limx→a+ f(x) = limx→a+ g(x) = 0, or such that
limx→a+ f(x) = limx→a+ g(x) = ±∞. Assume g′(x) 6= 0 for all x ∈ (a, b) Then,
whenever limx→a+ f ′(x)/g′(x) = L, we also have that limx→a+ f(x)/g(x) = L.

We would like to point out the interesting structure of this result. Indeed,
one applies the same operation to both the numerator and the denominator of a
quotient, and, when some extra conditions are satisfied, then a certain characteristic
of the fraction (having a limit equal to L, in this case) is preserved. This is perhaps
better appreciated if we rewrite L’Hôpital’s rule in an integral form3, which reads
as follows.

2010 Mathematics Subject Classification: 26A48, 26D10.
Key words and phrases: Monotonicity, L’Hôpital’s monotone rule, Gromov’s theorem.
Communicated by Gradimir Milovanović.
1It must be said that the rule was probably discovered by Johann Bernoulli.
2We shall assume that −∞ < a < b < ∞ in the whole article, but it is clear that many

results will also hold if a = −∞ or b = ∞.
3The integral form is actually a little stronger than Theorem 1.1. Similarly, Gromov’s theo-

rem (Theorem 1.3) is a little stronger than the monotone form of L’Hôpital’s rule (Theorem 1.4).
These matters are discussed in Section 4.
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Theorem 1.2. Suppose u and v are locally Lebesgue integrable in (a, b], with
v strictly positive. Suppose that

lim
x→a+

u(x)

v(x)
= L.

Then if they are both integrable at a then

lim
x→a+

∫ x

a
u(t) dt

∫ x

a
v(t) dt

= L,

while if both integrals diverge to ±∞ at a then

lim
x→a+

∫ b

x
u(t) dt

∫ b

x
v(t) dt

= L.

In recent years there has been an interest in studying whether the procedure
employed in L’Hôpital’s rule, namely to apply the same operation to both the
numerator and the denominator of a fraction, preserves the monotonicity of the
fraction. This interest has been motivated by the need of such results in diverse
areas of mathematics such as differential geometry [7] or conformal mappings [1],
but, of course, it has become clear that the results have an interest of their own
[2, 14, 15], while applications in other areas have been found [2, 3]. The first such
result is Gromov’s theorem [7, p. 42], which is the monotonic version of Theorem 1.2.

Theorem 1.3 (Gromov’s Theorem). Let u and v be Lebesgue integrable func-
tions on [a, b], with v strictly positive. Suppose that u/v is increasing (decreasing)
on [a, b]. Then the function of x

∫ x

a
u(t) dt

∫ x

a
v(t) dt

,

is also increasing (decreasing) on [a, b].

There is also a monotonic version of Theorem 1.1, called the monotone form of
L’Hôpital’s rule [2, 14, 15].

Theorem 1.4 (Monotone form of L’Hôpital’s rule). Let f, g be continuous
functions defined in [a, b], differentiable in (a, b). Suppose f(a) = g(a) = 0 or
f(b) = g(b) = 0, and assume that g′(x) 6= 0 for all x ∈ (a, b). If f ′/g′ is increasing
(decreasing) on (a, b) then so is f/g.

The main aim of this article is to give new, alternative proofs of these two
results. Indeed, Section 2 contains a new, rather direct proof of the monotone form
of L’Hôpital’s rule, obtained after a change of variables, while Section 3 offers a
simple proof of Gromov’s theorem obtained also by a suitable change of variables.
We actually give another proof of Theorem 1.4, as well as several extensions, in
Section 6 by approximating the integrals with Riemann sums and employing the
results of Section 5, where we give results for the preservation of the monotonicity
of quotients of sequences. Interestingly, there is a discrete version of L’Hôpital’s
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rule, known as the Stolz–Cesàro theorem [6, 16]: If {an}∞
n=1 and {bn}∞

n=1 are two
sequences of real numbers, with {bn}∞

n=1 strictly monotone and divergent and if

lim
n→∞

an+1 − an

bn+1 − bn

= L,

then we also have that

lim
n→∞

an

bn

= L.

Actually in Section 5 we show that if an ∈ R, bn > 0, and {an/bn}∞
n=1 is increasing

then the sequences
{

∑n

j=1 aj
∑n

j=1 bj

}∞

n=1

and, for a fixed m,
{

∑n+m

j=n aj
∑n+m

j=n bj

}∞

n=1

are also increasing.
In Section 7 we give a useful extension of Gromov’s theorem that allows us

to give another proof of the fact [5, 11] that if bn > 0, {an/bn}∞
n=0 is increasing,

and the power series
∑∞

n=0 anxn and
∑∞

n=0 bnxn converge for |x| < R, then the
function of x

∑∞
n=0 anxn

∑∞
n=0 bnxn

,

is likewise increasing in [0, R).
Finally in Section 8, we give an application of Gromov’s theorem in the theory

of analytic functions, namely we prove that if 0 < p < ∞ and Mp(r; f) is the integral
mean of a function f(z) analytic in |z| < R, while Ap(r; f) is the corresponding
area mean, then Mp(r; f)/Ap(r; f) is an increasing function of r.

This article is an example of what may become a new form of cooperative
mathematical work in the future. Indeed, the second author learned of these ideas
through contacts with fellow mathematicians in Research Gate and, as a result,
wrote another proof of the monotone form of L’Hôpital’s rule in his technical report
[12], and, furthermore, found an application of Gromov’s theorem in the theory of
analytic functions, which he wrote as another technical report [13]. The first author
received a communication from Research Gate of these technical reports, became
interested in these ideas, also found new proofs of several results and a collaborative
effort began. The present paper summarizes our ideas, born of this cooperation, in
this fascinating area.

Remark 1.1. Almost all of the results of this article have an increasing version
and a decreasing version. We shall only give the statements and proofs for the
increasing case, but the reader should know that in all results the corresponding
decreasing case is also true and the proof is basically the same.
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2. Proof of L’Hôpital’s monotone rule

We shall now give a proof of the monotone form of L’Hôpital’s rule by employing
a suitable change of variables.

Theorem 2.1 (Monotone form of L’Hôpital’s rule). Let f, g be continuous
functions defined in [a, b], differentiable in (a, b). Suppose f(a) = g(a) = 0 or
f(b) = g(b) = 0, and assume that g′(x) 6= 0 for all x ∈ (a, b). If f ′/g′ is increasing
on (a, b) then so is f/g.

Proof. Since g′ never vanishes in (a, b), then Darboux’s theorem4 implies that
we should have g′(x) > 0 for all x or g′(x) < 0 for all x; let us suppose that the first
possibility holds, so that g is strictly increasing on [a, b], and denote by h the inverse
function. Consider the function F (y) = f(h(y)), y ∈ [g(a), g(b)]. It is differentiable
in (g(a), g(b)) with derivative

F ′(y) = f ′(h(y))h′(y) =
f ′(h(y))

g′(h(y))
,

and thus F ′ is an increasing function. Hence F is convex, which implies that for

each fixed d, the function F (y)−F (d)
y−d

, is an increasing function of y. If we now take

y = g(x) and d = g(c), we conclude that f(x)−f(c)
g(x)−g(c) , is an increasing function of

x ∈ [a, b] for all c ∈ [a, b], and the result follows by taking c = a or c = b, as
needed. �

It is interesting to observe that the theorem remains valid if we replace increas-
ing by strictly increasing.

3. Proof of Gromov’s theorem

We shall now give a proof of Gromov’s theorem by also employing a change of
variables. We start with the following very simple special case.

Lemma 3.1. Let U be defined, positive, and increasing on [a, b]. Then the
average function,

AU (x) =
1

x − a

∫ x

a

U(t) dt,

is likewise positive and increasing on [a, b].

Proof. Suppose a < x < y. Then the change t = a +
(

y−a

x−a

)

(s − a) yields

AU (y) =
1

y − a

∫ y

a

U(t) dt =
1

x − a

∫ x

a

(

a +
( y − a

x − a

)

(s − a)
)

ds

>
1

x − a

∫ x

a

U(s) ds = AU (x),

as required. Observe, since AU is increasing, then AU (a+) is well defined, so that
the above inequality holds in [a, b]. �

4Darboux’s theorem states that if the derivative g′ exists everywhere, then it satisfies the
intermediate value property, that is, g′ is a Darboux function.
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Hence we obtain the ensuing proof of Gromov’s theorem.

Theorem 3.1 (Gromov’s Theorem). Let u and v be Lebesgue integrable on
[a, b], with v strictly positive, and such that u/v is increasing on [a, b]. Then

I(x) =

∫ x

a
u(t) dt

∫ x

a
v(t) dt

,

is also increasing on [a, b].

Proof. Let us take h(x) =
∫ x

a
v(t) dt, so that h is strictly increasing in [a, b],

and apply Lemma 3.1 with U(x) = u(h−1(x))/v(h−1(x)). Then AU (h(x)) is in-
creasing, but

AU (h(x)) =
1

h(x)

∫ h(x)

0

u(h−1(t))

v(h−1(t))
dt =

∫ x

a
u(t) dt

∫ x

a
v(t) dt

= I(x),

since
∫ h(x)

0

u(h−1(t))

v(h−1(t))
dt =

∫ x

a

u(t) dt. �

4. Equivalence of the results

It is an interesting question whether Gromov’s theorem, Theorem 1.3 is stronger
than the monotone form of L’Hôpital’s rule, Theorem 1.4. The same question can
be asked about Theorems 1.1 and 1.2. We can answer these questions by recalling
some facts from integration theory [9].

Lemma 4.1. Let f be continuous in [a, b] such that f ′(t) exists for all t ∈ (a, b).
Then f ′ is integrable in the sense of Denjoy on [a, b] and

(4.1)

∫ b

a

f ′(t) dt = f(b) − f(a).

We need to employ the integral of Denjoy, not the integral of Lebesgue in
Lemma 4.1 because, in general, the derivative f ′ of a continuous function f , even
if it exists at all points, is not Lebesgue integrable. On the other hand, equation
(4.1) may not hold if f ′ exists just almost everywhere, whether one uses the Denjoy
or the Lebesgue integral5. However, we immediately obtain from Lemma 4.1 the
following.

Lemma 4.2. Let f be continuous in [a, b] such that f ′(t) exists for all t ∈ (a, b).
If f ′ is integrable in the sense of Lebesgue on [a, b], then (4.1) holds in the sense of
Lebesgue.

We also recall the following fact.

Lemma 4.3. Let f be a Denjoy integrable function in some interval I. If f is
positive in I then it is Lebesgue integrable in I.

5This is shown by employing a Cantor type function.
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One may employ these lemmas, for instance, to conclude that if a function is
increasing in [a, b] and differentiable in (a, b), then f ′ is Lebesgue integrable and f
is absolutely continuous, that is, it satisfies (4.1). We may also use these lemmas
to obtain that Theorem 1.3 is stronger than Theorem 1.4.

Proposition 4.1. Suppose f and g satisfy the following conditions of The-
orem 1.4, namely, f, g are continuous functions defined in [a, b], differentiable in
(a, b), with f(a) = g(a) = 0, such that g′(x) 6= 0 for all x ∈ (a, b), and such that
f ′/g′ is increasing on (a, b). Let u = f ′ and v = g′; then these functions satisfy
the conditions of Theorem 1.3, that is, both are Lebesgue integrable on [a, b], with
v strictly positive, u/v increasing on [a, b], and furthermore

(4.2) f(x) =

∫ x

a

u(t) dt, g(x) =

∫ x

a

v(t) dt.

Proof. We just need to prove that u and v are Lebesgue integrable on [a, b],
since (4.2) would then follow from Lemma 4.2. Now, that v = g′ is Lebesgue inte-
grable in [a, b] follows from Lemma 4.3 because it is Denjoy integrable and always
positive or always negative there. The function u is likewise Denjoy integrable,
and since u/v is increasing, we have that u has a constant sign in [a, b] or there
exists c ∈ (a, b) such that u has a constant sign in [a, c] and in [c, b]; in either case,
Lemma 4.3 yields the Lebesgue integrability of u. �

It should also be clear that Gromov’s theorem, Theorem 1.3, is not a direct
consequence of the monotone form of L’Hôpital’s rule, Theorem 1.4 since if u and
v are Lebesgue integrable, and f and g are given by (4.2), then f ′ and g′ would
not exist at all points, but just almost everywhere.

We can also settle another matter at this point. Indeed, in Theorem 1.3,
Gromov’s theorem, the functions u and v are supposed Lebesgue integrable. What
we would get if we used another, stronger integral, such as the Denjoy integral or
the distributional integral [8]? Well, the proof of Proposition 4.1 also shows that
no new result is obtained, because the other conditions of the theorem imply that
these functions must be Lebesgue integrable.

A similar argument shows that we also have the following result on the rela-
tionship between Theorems 1.1 and 1.2. The Lebesgue integrability of v follows as
before, while the Lebesgue integrability of u in a neighborhood of x = a is obtained
by the comparison criterion.

Proposition 4.2. Suppose f and g satisfy the following conditions of The-
orem 1.1, namely, f, g are continuous functions defined in [a, b], differentiable in
(a, b), with f(a) = g(a) = 0, such that g′(x) 6= 0 for all x ∈ (a, b), and such that
limx→a+ f ′(x)/g′(x) = L. Let u = f ′ and v = g′; then these functions satisfy
the conditions of Theorem 1.2 in a neighborhood of x = a; actually both are Den-
joy integrable on [a, b] and Lebesgue integrable on [a, c], for some c, with v strictly
positive, and limx→a+ u(x)/v(x) = L; furthermore (4.2) holds in [a, b].

Hence Theorem 1.1 can be obtained immediately from Theorem 1.2.
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5. Discrete versions

We shall now discuss some discrete versions of Theorems 2.1 and 3.1. As we
shall see, not only are those discrete analogs correct, but they will allow us to obtain
new proofs of those theorems and some generalizations in the next section.

Our basic tool is the following inequality.

Proposition 5.1. Let a1, a2 ∈ R, b1, b2 > 0 and suppose that

(5.1)
a1

b1
6

a2

b2
.

Then

(5.2)
a1

b1
6

a1 + a2

b1 + b2
6

a2

b2
,

with strict inequalities in (5.2) if the inequality in (5.1) is strict.

Proof. An old trick for solving differential equations is based on the observa-
tion that if a1/b1 = a2/b2 = λ, then one also has that (a1 + a2)/(b1 + b2) = λ. In
the case a1/b1 < a2/b2 we proceed by observing that the function

f(x) =
a1 + a2x

b1 + b2x
=

a2

b2
− b1

(a2

b2
−

a1

b1

) 1

(b1 + b2x)

is strictly increasing in [0, ∞), and we have that f(0) = a1/b1, f(1) = (a1+a2)/(b1+
b2), while limx→∞ f(x) = a2/b2. �

Using an inductive argument we immediately obtain the following result.

Proposition 5.2. Let an ∈ R and bn be strictly positive numbers for 1 6 n 6 N .
Suppose that {an/bn}N

n=1 is increasing:
aj

bj

6
ak

bk

if 1 6 j < k 6 N.

Then
a1

b1
6

a1 + · · · + aN

b1 + · · · + bN

6
aN

bN

,

with strict inequalities unless {an/bn}N
n=1 is a constant sequence.

It is worth to point out that this proposition can be rephrased as follows: If
cn ∈ R and dn are strictly positive numbers for 1 6 n 6 N , then

min
16n6N

cn

dn

6
c1 + · · · + cn

d1 + · · · + dn

6 max
16n6N

cn

dn

,

with strict inequalities unless all the quotients cn/dn coincide.
We can improve these inequalities as follows.

Theorem 5.1. Let an ∈ R and bn be strictly positive numbers for 1 6 n 6

N . Suppose that {an/bn}N
n=1 is increasing. Let M1, M2, N1, N2 ∈ {1, . . . , N} with

M1 6 N1, M2 6 N2, M1 6 M2, N1 6 N2. Then
∑N1

n=M1
an

∑N1

n=M1
bn

6

∑N2

n=M2
an

∑N2

n=M2
bn

,
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the inequality being strict if the sequence {an/bn}N
n=1 is strictly increasing and

(M1, N1) 6= (M2, N2).

Proof. If N1 6 M2 then we have that
∑N1

n=M1
an

∑N1

n=M1
bn

6
aN1

bN1

6
aM2

bM2

6

∑N2

n=M2
an

∑N2

n=M2
bn

,

while if N1 > M2 we may use the case already established and Proposition 5.1 to
obtain

∑N1

n=M1
an

∑N1

n=M1
bn

=

∑M2−1
n=M1

an +
∑N1

n=M2
an

∑M2−1
n=M1

bn +
∑N1

n=M2
bn

6

∑N1

n=M2
an

∑N1

n=M2
bn

6

∑N1

n=M2
an +

∑N2

n=N1+1 an
∑N1

n=M2
bn +

∑N2

n=N1+1 bn

=

∑N2

n=M2
an

∑N2

n=M2
bn

.

It is not hard to see that we obtain a strict inequality if {an/bn}N
n=1 is strictly

increasing and (M1, N1) 6= (M2, N2). �

Therefore we immediately obtain that certain operations when applied at the
same time to the numerator and to the denominator of an increasing sequence
produce another increasing sequence.

Theorem 5.2. Let an ∈ R and bn be strictly positive numbers and suppose
that {an/bn}∞

n=1 is increasing. If {Mk}∞
k=1 and {Nk}∞

k=1 are sequences of strictly
positive integers with Mk 6 Nk, Mk 6 Mk+1, Nk 6 Nk+1, then the sequence

(5.3)

{

∑Nk

n=Mk
an

∑Nk

n=Mk
bn

}∞

k=1

is increasing. In particular, the sequences

(5.4)

{

∑k

j=1 aj

∑k

j=1 bj

}∞

k=1

and, for a fixed m,

(5.5)

{

∑k+m

j=k aj

∑k+m

j=k bj

}∞

k=1

are also increasing.
If {an/bn}∞

n=1 is strictly increasing and (Mk, Nk) 6= (Mk+1, Nk+1) for all k,
then the sequence (5.3) is likewise strictly increasing and, in particular, so are (5.4)
and (5.5).

Several remarks are in order. Notice first that the monotonicity of (5.4) is
the direct analog of Gromov’s theorem, and thus one may wonder if the results
corresponding to (5.3) and (5.5) hold for integrals; we shall see that indeed such
results are correct in the next section.
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In the case k = 1 in (5.5) we obtain that if {an/bn}N
n=1 is increasing, then the

sequence
{an + an+1

bn + bn+1

}∞

n=1

is increasing, a fact that was already clear from Proposition 5.1. Actually, inequality
(5.2) shows that for any constants α > 0 and β > 0, (α, β) 6= (0, 0), the sequence

{αan + βan+1

αbn + βbn+1

}∞

n=1

is also increasing. However, even though
{an + an+1 + an+2

bn + bn+1 + bn+2

}∞

n=1

is increasing, it is not true that
{αan + βan+1 + γan+2

αbn + βbn+1 + γbn+2

}∞

n=1

should be increasing for all constants α > 0, β > 0, and γ > 0; in fact one can
see this if α = γ = 1 and β = 0 since there are examples of increasing sequences
{an/bn}∞

n=1 and {cn/dn}∞
n=1 such that {(an + cn)/(bn + dn)}∞

n=1 is not increasing.

6. Integrals, again

We shall now show that an analog of Theorem 5.2 holds in the continuous case.
Let us recall that if [a, b] is a closed interval, then a tagged subpartition of [a, b]

is a finite collection P = {(Ij , τj)}n
j=1, where I1, . . . , In are closed, nonoverlaping

intervals6 and where the tags τj are elements of them, τj ∈ Ij . The Riemann sum
of a function f : [a, b] → R at P is

S(f ; P) =

n
∑

j=1

f(τj)|Ij |.

If f is integrable in the Henstock–Kurzweil sense – which is equivalent to be Denjoy
integrable [9] – over [a, b], in particular if f is Lebesgue integrable, then the Riemann
sums of f converge to its integral [4, 9] in the sense that for each ε > 0 there exists
a gauge δ such that for any tagged δ-fine subpartition7 of [a, b], we have that

(6.1)

∣

∣

∣

∣

∫ b

a

f(x) dx − S(f ; P)

∣

∣

∣

∣

< ε.

Actually since the minimum of two gauges is also a gauge, if u and v are two
integrable functions in the Henstock–Kurzweil sense over [a, b], and ε > 0, we can
find a gauge δ such that for any tagged δ-fine subpartition (6.1) holds for f = u
and for f = v. Hence we obtain the ensuing auxiliary result.

6We shall always assume that Ij is to the left of Ik if j < k.
7A gauge δ over the interval [a, b] is any function δ : [a, b] −→ (0, ∞). We say that P =

{(Ij , τj)}n
j=1

is δ−fine if Ij ⊂ [τj − δ(τj ), τj + δ(τj )].
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Lemma 6.1. Let u and v be two integrable functions in the Henstock–Kurzweil
sense over [a, b]. Then we can find a sequence of tagged subpartitions of [a, b],
{Pn}∞

n=1, such that

(6.2) lim
n→∞

S(u; Pn) =

∫ b

a

u(x) dx and lim
n→∞

S(v; Pn) =

∫ b

a

v(x) dx.

We are now ready to give yet another proof of Gromov’s theorem, as well as
certain related results.

Proposition 6.1. Let u and v be two Lebesgue8 integrable functions over [a, b],
with v strictly positive at all points of this interval. Suppose that u/v is increasing.
Suppose [αk, βk] ⊂ [a, b] for k = 1, 2, while β1 6 α2. If Pk are tagged subpartitions
of [αk, βk], k = 1, 2, then

(6.3)
S(u; P1)

S(v; P1)
6

S(u; P2)

S(v; P2)
,

with strict inequality unless u/v is constant on [α1, β2].

Proof. The inequality follows at once from Theorem 5.1. �

If we now employ Lemma 6.1 we obtain the following inequality.

Theorem 6.1. Let u and v be two Lebesgue integrable functions over [a, b],
with v strictly positive at all points of this interval. Suppose that u/v is increasing.
Suppose [αk, βk] ⊂ [a, b] for k = 1, 2, are two non degenerate closed intervals such
that α1 6 α2 and β1 6 β2. Then

(6.4)

∫ β1

α1
u(x) dx

∫ β1

α1
v(x) dx

6

∫ β2

α2
u(x) dx

∫ β2

α2
v(x) dx

.

If [α1, β1] 6= [α2, β2] and u/v is not constant, then the inequality is strict.

Proof. If β1 6 α2 the inequality is obtained from (6.3) by choosing sequences
of subpartitions {Pk

n}∞
n=1 of [αk, βk] that satisfy (6.2). When β1 > α2 we observe

that what we already have proved yields

∫ α2

α1
u(x) dx

∫ α2

α1
v(x) dx

6

∫ β1

α2
u(x) dx

∫ β1

α2
v(x) dx

6

∫ β2

β1
u(x) dx

∫ β2

β1
v(x) dx

,

so that (6.4) follows from Theorem 5.1. �

From this theorem we immediately obtain the following results on the preser-
vation of monoticity.

8It was seen in Section 4 that if u and v are two integrable functions in the Denjoy–Henstock–
Kurzweil sense, or even in the distributional sense [8], over [a, b], with v strictly positive at all
points of this interval and u/v increasing, then they actually must be Lebesgue integrable.
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Theorem 6.2. Let u and v be two locally Lebesgue integrable functions over
[a, ∞), with v strictly positive at all points of this interval. Suppose that u/v is
increasing. Let {[αk, βk]}∞

k=1 be a family of closed non degenerate subintervals of
[a, b), with αk 6 αk+1 an βk 6 βk+1. Then the sequence

{
∫ βk

αk

u(t) dt
∫ βk

αk

v(t) dt

}∞

k=1

is increasing.

Theorem 6.3. Let u and v be two locally Lebesgue integrable functions over
[a, b), with v strictly positive at all points of this interval. Suppose that u/v is
increasing. Then the following functions are also increasing,

x 7→

∫ x

a
u(t) dt

∫ x

a
v(t) dt

,

in (a, b), and

x 7→

∫ x+c

x
u(t) dt

∫ x+c

x
v(t) dt

,

in (a, b − c).

7. Extensions and applications

We shall now consider some interesting extensions of Gromov’s theorem.

Theorem 7.1. Let u and v be two Lebesgue integrable functions over [a, b],
with v strictly positive at all points of this interval. Suppose that u/v is increasing.
Let A and B be constants, with B > 0, such that

A

B
6

u(x)

v(x)
, x ∈ [a, b].

Then the function of x

(7.1)
A +

∫ x

a
u(t) dt

B +
∫ x

a
v(t) dt

,

is increasing for x ∈ [a, b].

Proof. Consider the functions

u1(x) =

{

u(x), x ∈ [a, b],

A, x ∈ [a − 1, a),
v1(x) =

{

v(x), x ∈ [a, b],

B, x ∈ [a − 1, a),

and apply Gromov’s theorem in [a − 1, b]. Since u1/v1 is increasing we obtain that
(7.1) is increasing if x ∈ [a, b]. �

In the differential form we have the following result.
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Theorem 7.2. Let f, g be continuous functions defined in [a, b], differentiable
in (a, b) with g′(x) 6= 0 for all x ∈ (a, b). Suppose f(a) = A, g(a) = B 6= 0, and

A

B
6

f ′(x)

g′(x)
, x ∈ [a, b].

If f ′/g′ is increasing on (a, b) then so is f/g.

Proof. It follows from the previous theorem if u = f ′ and v = g′, �

Let {an/bn}∞
n=0 be an increasing sequence with bn > 0. We can apply the

above results inductively starting with u ≡ a0, v ≡ b0, to obtain that the following
functions

a0 + a1x

b0 + b1x
,

a0 + a1x + a2x2

b0 + b1x + b2x2 ,
a0 + a1x + a2x2 + a3x3

b0 + b1x + b2x2 + b3x3 ,

and more generally
∑n

j=0 ajxj/
∑n

j=0 bjxj are increasing functions of x ∈ [0, ∞).

Thus we obtain another proof of the following result [5, 11].

Theorem 7.3. Let {an/bn}∞
n=0 be an increasing sequence with bn > 0. Then

the functions

(7.2)

∑N

n=0 anxn

∑N

n=0 bnxn
,

are increasing for x ∈ [0, ∞), while if both series
∑∞

n=0 anxn and
∑∞

n=0 bnxn con-
verge in [0, R) then

(7.3)

∑∞
n=0 anxn

∑∞
n=0 bnxn

,

is increasing in [0, R).

Proof. The only thing left to show is that (7.3) is increasing, but this is
obtainable since this function is the limit of the increasing sequence of functions
(7.2) in [0, R). �

8. Integral means of analytic functions

We shall now consider an application of the ideas of this article. A strictly
positive function f(r) defined on some subinterval of (0, ∞) is said to be a log-
convex function of log r if the function log f(ex) is convex on the corresponding
interval. This means that f satisfies the inequality9

f(aλb1−λ) 6 f(a)λf(b)1−λ, a < b, 0 6 λ 6 1.

It is easy to check that if f is differentiable, then it is log-convex of log r if and

only if xf ′(x)
f(x) increases in x.

Therefore we obtain the ensuing result.

Lemma 8.1. If f(r) is differentiable and log-convex of log r on an interval (0; R)
and f(0+) is finite, then the function rf(r)

/ ∫ r

0 f(x) dx, increases in r ∈ [0, R).

9Very general extensions of the notion of convexity are considered in [3].
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Proof. Indeed, by the Gromov theorem the following function is increasing
in r:

∫ r

0 xf ′(x) dx
∫ r

0 f(x) dx
=

rf(r) −
∫ r

0 f(x) dx
∫ r

0 f(x) dx
.

This proves the lemma. �

If f is log-convex of log r, then so is rf(r) and thus we obtain the following.

Corollary 8.1. Under the hypothesis of Lemma 8.1, we have that the function

r2f(r)
∫ r

0 xf(x) dx
,

increases in r ∈ [0, R).

If f(z) is analytic in a disc |z| < R, then its integral mean Mp(r) = Mp(r; f)
is defined as

Mp
p (r; f) =

1

2π

∫ 2π

0

∣

∣f(reiθ)
∣

∣

p
dθ, 0 < p < ∞.

In what can be called the birth of the theory of Hp spaces, 100 years ago, exactly,
Hardy [10] proved that the integral mean Mp(r) of a function f(z) analytic in a
disc |z| < R is a log-convex function of log r.

Denote the corresponding area mean by Ap(r) = Ap(r; f),

Ap
p(r; f) =

1

πr2

∫∫

|x+iy|<r

|f(x + iy)|pdx dy,

that is

Ap
p(r; f) =

2

r2

∫ r

0
Mp

p (ρ; f)ρ dρ.

In view of the increasing property of Mp(r; f), one has Ap(r; f) 6 Mp(r; f). How-
ever, as a direct consequence of the corollary and Hardy’s theorem, we actually
have the following result.

Theorem 8.1. If f(z) is analytic in a disc |z| < R, then the function

Mp(r; f)

Ap(r; f)
,

is increasing in r.

Observe, one can actually let p → ∞ in this theorem, since M∞(r; f)/A∞(r; f)
≡ 1 is in fact increasing, although not strictly, of course, for 0 6 r < R.
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