RULED THREE-DIMENSIONAL CR SUBMANIFOLDS OF THE SPHERE $\mathrm{S}^{6}(1)$

Miroslava Antić

Abstract

We investigate proper, three-dimensional CR submanifolds of the nearly Kähler sphere $\mathbf{S}^{6}(1)$ ruled by totally geodesic spheres $\mathbf{S}^{2}(1)$, and classify them by using a sphere curve and a vector field along that curve.

1. Introduction

It is well known that by using multiplication of the octonions \mathcal{O} and identifying the space of $\operatorname{Im} \mathcal{O}$ with \mathbb{R}^{7}, it is possible to introduce a vector cross product \times in the space \mathbb{R}^{7}. This cross product induces an almost complex structure J on the standard unit sphere $\mathbf{S}^{6}(1)$ in \mathbb{R}^{7} which is Hermitian and almost complex, and moreover gives a nearly Kähler structure to $\mathbf{S}^{6}(1)$.

Recall that a submanifold M of a manifold with an almost complex structure J is also called almost complex, if its tangent bundle is invariant for J, i.e., $J T_{p} M \subset T_{p} M, p \in M$. If $J T_{p} M \subset T_{p}^{\perp} M, p \in M$, where $T^{\perp} M$ is a normal bundle of the submanifold, M is called a totally real submanifold. One of the generalizations of almost complex and totally real submanifolds are CR submanifolds. By the definition of Bejancu [2], a submanifold M is called a CR submanifold if there exists on M a differentiable almost complex distribution U such that its orthogonal complement $U^{\perp} \subset T M$ is a totally real distribution. If a CR submanifold is neither almost complex, nor totally real, it is a proper CR submanifold. Due to the dimension restrictions it is clear that a proper CR submanifold of the sphere $\mathbf{S}^{6}(1)$ can be of dimensions three, four and five. All hypersurfaces of the sphere are trivially CR so the focus of the investigation is mostly on those of dimension three and four. Here, we deal with the three dimensional case. Such CR submanifolds have been previously studied amongst others by K. Mashimo, H. Hashimoto, K. Sekigawa, M. Djorić and L. Vrancken. Particularly in [7] and [6] one of the first known families of the three dimensional minimal CR submanifolds was introduced, and in 3 was obtained the classification of the minimal CR submanifolds which

[^0]satisfy Chen's basic equality. We also recall that the submanifold M of a Riemannian manifold (\widetilde{M}, g) is said to be ruled, if it admits a foliation with leaves that are totally geodesically immersed into (\widetilde{M}, g). Then, trivially, the second fundamental form vanishes on the distribution corresponding to the foliation. Such distribution is said to be totally geodesic.

In 1 it was shown that for a three dimensional CR submanifold of $\mathbf{S}^{6}(1)$ it is equivalent
(1) the CR submanifold is minimal and contained in a totally geodesic hypersphere
(2) the CR submanifold is U and U^{\perp} totally geodesic
and that examples of [6 and [3] are of this type. Moreover, there it was shown that such a submanifold is locally congruent to the immersion

$$
\begin{align*}
F\left(s, y_{1}, y_{2}, y_{3}\right)= & y_{1}\left(\cos \left(\mu_{1} s\right) e_{1}+\sin \left(\mu_{1} s\right) e_{5}\right)+y_{2}\left(\cos \left(\mu_{2} s\right) e_{2}\right. \\
& \left.+\sin \left(\mu_{2} s\right) e_{6}\right)+y_{3}\left(\cos \left(\mu_{3} s\right) e_{3}+\sin \left(\mu_{3} s\right) e_{7}\right) \\
\mu_{1}+\mu_{2}+ & \mu_{3}=0, \quad \mu_{1}^{2}+\mu_{2}^{2}+\mu_{3}^{2} \neq 0 \tag{1.1}
\end{align*}
$$

where e_{1}, \ldots, e_{7} is a standard G_{2} basis of the space \mathbb{R}^{7} and $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}=1$.
Note that these submanifolds are also ruled by totally geodesic spheres $\mathbf{S}^{2}(1)$. Here, we prove

Theorem 1.1. Let M be a proper three dimensional $C R$ submanifold of $\mathbf{S}^{6}(1)$ ruled by $\mathbf{S}^{2}(1)$. If $|\cos \phi|$ is the length of the projection of the unit normal to the leaf of ruling at a point, on the almost complex distribution, then ϕ is constant. Moreover M is locally congruent to the immersion:
a) for $\cos \phi \neq 0$

$$
\begin{aligned}
p\left(x_{1}, x_{2}, x_{3}\right)= & \sin \left(x_{2}+h\right) \gamma \times \gamma^{\prime} \\
& +\cos \left(x_{2}+h\right)\left(\cos x_{1} \sigma+\sin x_{1}\left(\cos \phi \gamma^{\prime}-\sin \phi \gamma \times \gamma^{\prime}\right) \times \sigma\right),
\end{aligned}
$$

where γ is a curve in the sphere $\mathbf{S}^{6}(1)$, with arc length parameter x_{3}, such that $\left\langle\gamma \times \gamma^{\prime}, \gamma^{\prime \prime}\right\rangle=0, \sigma$ is a curve in $\mathbf{S}^{6}(1)$ parameterized by x_{3} orthogonal to γ, γ^{\prime}, $\gamma \times \gamma^{\prime}$ such that
$\left\langle\sigma^{\prime}, \gamma \times \gamma^{\prime}\right\rangle=\left\langle\sigma \times \sigma^{\prime}, \gamma\right\rangle=0, \quad\left\langle\sigma \times \sigma^{\prime}, \sin \phi \gamma^{\prime}+\cos \phi \gamma \times \gamma^{\prime}\right\rangle=\frac{1}{2} \cos \phi$,
$\left\langle\sigma, \cos \phi\left(\gamma \times \gamma^{\prime}\right) \times \gamma^{\prime \prime}+\sin \phi \gamma^{\prime} \times \gamma^{\prime \prime}\right\rangle=0$,
and h is a function of x_{3} such that $\cos \left(x_{2}+h\right)>0$.
b) for $\cos \phi=0$

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\cos x_{1} \cos x_{2} \gamma+\sin x_{1} \cos x_{2} A_{2}+\sin x_{2} \gamma \times A_{2},
$$

where γ is a non constant curve in $\mathbf{S}^{6}(1)$ parameterized by x_{3} and A_{2} a vector field along γ orthogonal to γ, γ^{\prime} and $\gamma \times \gamma^{\prime}$.
Remark 1.1. Note that immersion (1.1) is of the second type. At least one of the μ_{i} is different from zero, so we can assume that $\mu_{1} \neq 0$. Then we can parameterise the sphere so that $y_{1}=\cos x_{1} \cos x_{2}, y_{2}=\sin x_{1} \cos x_{2}, y_{3}=\sin x_{2}$ and
take γ to be the curve $s \mapsto \cos \left(\mu_{1} s\right) e_{1}+\sin \left(\mu_{1} s\right) e_{5}$ with $A_{2}=\cos \left(\mu_{2} s\right) e_{2}+\sin \left(\mu_{2} s\right) e_{6}$ to obtain the immersion (1.1).

Remark 1.2. In Lemma 2.2 we prove that a three dimensional, totally real submanifold of $\mathbf{S}^{6}(1)$ ruled by $\mathbf{S}^{2}(1)$ is totally geodesic.

2. Preliminaries

Here, we give a short exposition of how the standard nearly Kähler structure on $\mathbf{S}^{6}(1)$ arises from the multiplication of the octonions \mathcal{O}.

A vector cross product \times of the purely imaginary octonions $\operatorname{Im} \mathcal{O}=\mathbb{R}^{7}$ is given by $u \times v=\frac{1}{2}(u v-v u)$. This cross product has many properties similar to those of the cross product in the space \mathbb{R}^{3}. In particular, if \langle,$\rangle denotes the standard inner$ product of the space \mathbb{R}^{7} we have that, see [5],

$$
\begin{gather*}
u \times(v \times w)+(u \times v) \times w=2\langle u, w\rangle v-\langle u, v\rangle w-\langle w, v\rangle u \tag{2.1}\\
\langle u \times v, u \times w\rangle=\langle u, u\rangle\langle v, w\rangle-\langle u, v\rangle\langle u, w\rangle \tag{2.2}
\end{gather*}
$$

An ordered orthonormal basis, respectively moving frame e_{1}, \ldots, e_{7} is said to be a G_{2}-basis, respectively frame, if

$$
e_{3}=e_{1} \times e_{2}, \quad e_{5}=e_{1} \times e_{4}, \quad e_{6}=e_{2} \times e_{4}, \quad e_{7}=e_{3} \times e_{4}
$$

The unit orthogonal vector fields e_{1} and e_{2} and further e_{4} orthogonal to e_{1}, e_{2} and $e_{1} \times e_{2}$ determine a G_{2}-frame uniquely. We also give the multiplication table for the cross product.

\times	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	0	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	$-e_{7}$	e_{6}
e_{2}	$-e_{3}$	0	e_{1}	e_{6}	e_{7}	$-e_{4}$	$-e_{5}$
e_{3}	e_{2}	$-e_{1}$	0	e_{7}	$-e_{6}$	e_{5}	$-e_{4}$
e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	0	e_{1}	e_{2}	e_{3}
e_{5}	e_{4}	$-e_{7}$	e_{6}	$-e_{1}$	0	$-e_{3}$	e_{2}
e_{6}	e_{7}	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	0	$-e_{1}$
e_{7}	$-e_{6}$	e_{5}	e_{4}	$-e_{3}$	$-e_{2}$	e_{1}	0

The standard nearly Kähler structure on $\mathbf{S}^{6}(1)$ is then obtained as follows:

$$
J X=p \times X, \quad X \in T_{p} \mathbf{S}^{6}(1), \quad p \in \mathbf{S}^{6}(1)
$$

It is clear that J is an orthogonal almost complex structure on $\mathbf{S}^{6}(1)$. Also, straightforwardly we have that the group G_{2} of automorphisms of \mathcal{O} is precisely the group of isometries of \mathbb{R}^{7} preserving the vector cross product and the almost complex structure of the sphere.

If we denote by $\langle\rangle,, \bar{D}$ and \widetilde{D} metric and Levi Civita connections of M and \widetilde{M}, respectively, and by D^{\perp} the corresponding normal connection of the immersion $M \rightarrow \widetilde{M}$ then the formulas of Gauss and Weingarten are given respectively by

$$
\widetilde{D}_{X} Y=\bar{D}_{X} Y+h(X, Y), \quad \widetilde{D}_{X} \xi=-A_{\xi} X+D_{X}^{\perp} \xi
$$

where X and Y are vector fields on M and ξ is a normal vector field on M, and h and A are the second fundamental form and the shape operator, respectively. The second fundamental form and the shape operator are related by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle
$$

Let us denote by $\nabla, \widetilde{\nabla}$ and D the Levi-Civita connections of $M, \mathbf{S}^{6}(1)$ and \mathbb{R}^{7}. Let h and \tilde{h} be the second fundamental forms corresponding to the immersions $M \rightarrow \mathbf{S}^{6}(1)$ and $\mathbf{S}^{6}(1) \rightarrow \mathbb{R}^{7}$, respectively. If we denote by p the position vector field of the immersion of M into \mathbb{R}^{7}, we have $\tilde{h}(X, Y)=-\langle X, Y\rangle p$, and $D_{X} p=X$, where $X, Y \in T M$. Further, the Gauss and Codazzi equations imply that for $X, Y \in T M$ and $\xi \in T^{\perp} M, \xi \in T \mathbf{S}^{6}(1)$ it holds

$$
\begin{aligned}
D_{X} Y & =\widetilde{\nabla}_{X} Y+\tilde{h}(X, Y)=\nabla_{X} Y+h(X, Y)-\langle X, Y\rangle p \\
D_{X} \xi & =\widetilde{\nabla}_{X} \xi+\tilde{h}(X, \xi)=\widetilde{\nabla}_{X} \xi-\langle X, \xi\rangle p=-A_{\xi} X+\nabla_{X}^{\perp} \xi
\end{aligned}
$$

where ∇^{\perp} denotes the normal connection corresponding to the immersion of M into $\mathbf{S}^{6}(1)$.

Also, if we denote

$$
(\nabla h)(X, Y, Z)=\nabla_{X}^{\frac{1}{X}} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

for $X, Y, Z \in T(M)$, then the Gauss, Codazzi and Ricci equations yield

$$
\begin{aligned}
R(X, Y, Z, W)= & \langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle \\
& +\langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(Y, W)\rangle \\
(\nabla h)(X, Y, Z)= & (\nabla h)(Y, X, Z) \\
\left\langle R^{\perp}(X, Y) \xi, \mu\right\rangle= & \left\langle\left[A_{\xi}, A_{\mu}\right] X, Y\right\rangle
\end{aligned}
$$

Also, the following lemma holds straightforwardly.
Lemma 2.1. $D_{X}(Y \times Z)=D_{X} Y \times Z+Y \times D_{X} Z$.
Lemma 2.2. Let M be a totally real, three dimensional submanifold of $\mathbf{S}^{6}(1)$, ruled by totally geodesic $\mathbf{S}^{2}(1)$. Then M is locally congruent to a totally geodesic sphere $\mathbf{S}^{3}(1)$.

Proof. Assume that the two dimensional totally geodesic distribution \mathcal{D} is spanned by unit and orthogonal vector fields E_{1}, E_{2}. Then we have that the second fundamental form vanishes on \mathcal{D}. Denote by E_{3} the unit, tangent vector field orthogonal to \mathcal{D}. Then the vector fields $J E_{1}, J E_{2}, J E_{3}$ span the normal bundle. Since every three dimensional, totally real submanifold of $\mathbf{S}^{6}(1)$ is minimal, see 4], we have that $h\left(E_{3}, E_{3}\right)=0$. Note that, for tangent vector fields X, Y, Z we have

$$
\langle h(X, Y), J Z\rangle=\left\langle A_{J Z} X, Y\right\rangle=-\langle J h(Z, X), Y\rangle=\langle h(Z, X), Y\rangle
$$

implying that the form $\langle h(X, Y), J Z\rangle$ is symmetric in all three components. Therefore, h vanishes identically and M is three dimensional, totally geodesic submanifold of $\mathbf{S}^{6}(1)$.

3. Proof of the main theorem

Here we are dealing with proper, three dimensional, CR submanifolds of $\mathbf{S}^{6}(1)$. Since the almost complex distribution is even dimensional, and nontrivial, it follows that $\operatorname{dim} U=2$ and then $\operatorname{dim} U^{\perp}=1$. We present one of the convenient moving frames to work with and the relations between the connection coefficients in it, for details see [1, 3].

We denote by p the position vector field of the submanifold. Let then E_{1} and $E_{2}=p \times E_{1}=J E_{1}$ be the unit vector fields which span the almost complex distribution, and E_{3} the unit vector field which spans the totally real distribution. Straightforwardly, the normal vector fields are obtained by $E_{4}=J E_{3}, E_{5}=E_{1} \times E_{3}$ and $E_{6}=E_{2} \times E_{3}$. Note, that the choice of E_{3} is unique up to a sign while we have a freedom of rotation in the almost complex distibution, which further reflects to a rotation in the $\operatorname{Span}\left(E_{5}, E_{6}\right)$.

We denote

$$
\omega_{i j}^{k}=\left\langle D_{E_{i}} E_{j}, E_{k}\right\rangle, \quad h_{i j}^{k}=\left\langle D_{E_{i}} E_{j}, E_{k+3}\right\rangle, \quad \beta_{i j}^{k}=\left\langle D_{E_{i}} E_{j+3}, E_{k+3}\right\rangle,
$$

for $1 \leqslant i, j, k \leqslant 3$. Since the connection is metric and the second fundamental form symmetric, we have

$$
\omega_{i j}^{k}=-\omega_{i k}^{j}, \quad h_{i j}^{k}=h_{i k}^{j}, \quad \beta_{i j}^{k}=-\beta_{i k}^{j} .
$$

By taking in Lemma 2.1] $X \in\left\{E_{1}, E_{2}, E_{3}\right\}$ and $Y, Z \in\left\{p, E_{1}, \ldots, E_{6}\right\}$, we get the following lemma, (see [1]).

Lemma 3.1. For the previously defined coefficients the following relations hold

$$
\begin{gathered}
\beta_{11}^{3}=-h_{13}^{2}, \quad \beta_{11}^{2}=1+h_{13}^{3}, \quad h_{11}^{1}=-\omega_{12}^{3}, \quad h_{12}^{1}=\omega_{11}^{3}, \quad \beta_{21}^{3}=1-h_{23}^{2}, \\
\beta_{21}^{2}=h_{23}^{3}, \quad h_{22}^{1}=\omega_{21}^{3}, \quad \omega_{22}^{3}=-\omega_{11}^{3}, \quad \beta_{31}^{2}=h_{33}^{3}, \quad \beta_{31}^{3}=-h_{33}^{2} \\
h_{23}^{1}=\omega_{31}^{3}, \quad h_{13}^{1}=-\omega_{32}^{3}, \quad h_{11}^{3}=h_{12}^{2}, \quad h_{11}^{2}=-h_{12}^{3}, \quad h_{22}^{2}=h_{12}^{3} \\
h_{22}^{3}=-h_{12}^{2}, \quad h_{23}^{2}=h_{13}^{3}-1, \quad h_{23}^{3}=-h_{13}^{2}, \quad \beta_{12}^{3}=\omega_{11}^{2}-\omega_{32}^{3} \\
\beta_{22}^{3}=\omega_{21}^{2}+\omega_{31}^{3}, \quad \beta_{32}^{3}=\omega_{31}^{2}+h_{33}^{1} .
\end{gathered}
$$

Now we take that M is ruled by $\mathbf{S}^{2}(1)$. Then the complementary foliation is spanned by a unit vector field W which can have non vanishing components both in the almost complex and the totally real distribution. Since we still have a freedom of rotating the vector fields E_{1} and E_{2} we can assume that the orthogonal projection of W to U is orthogonal to E_{2}, i.e., $W=\cos \phi E_{1}+\sin \phi E_{3}$, for some differential function ϕ. Then the vector fields $V=-\sin \phi E_{1}+\cos \phi E_{3}$ and E_{2} span the totally geodesic distribution. Further the inner products of $D_{V} V, D_{V} E_{2}, D_{E_{2}} E_{2}$ with W, E_{4}, E_{5} and E_{6} vanish. Straightforwardly this yields the following lemma.

Lemma 3.2. Let M be a proper, ruled, three-dimensional CR submanifold of $\mathbf{S}^{6}(1)$. Then the following relations hold

$$
\begin{gathered}
h_{11}^{3}=0, \quad h_{12}^{3}=0, \quad \omega_{21}^{3}=0, \quad E_{2}(\phi)=0, \quad-\omega_{21}^{2} \cos \phi-h_{12}^{1} \sin \phi=0 \\
h_{23}^{1} \cos \phi-h_{12}^{1} \sin \phi=0, \quad\left(-1+h_{13}^{3}\right) \cos \phi=0, \quad h_{13}^{2} \cos \phi=0 \\
-\cos \phi E_{3}(\phi)+\sin \phi E_{1}(\phi)=0, \quad h_{33}^{1} \cos ^{2} \phi-\omega_{12}^{3} \sin ^{2} \phi+\omega_{32}^{3} \sin (2 \phi)=0 \\
\cos \phi\left(h_{33}^{2} \cos \phi-2 h_{13}^{2} \sin \phi\right)=0, \quad \cos \phi\left(h_{33}^{3} \cos \phi-2 h_{13}^{3} \sin \phi\right)=0
\end{gathered}
$$

Note, also, that the Codazzi equation $0=R\left(E_{1}, E_{2}, E_{1}, E_{5}\right)=2\left(h_{12}^{1}-\omega_{12}^{3} h_{13}^{2}\right)$ yields $h_{12}^{1}=\omega_{12}^{3} h_{13}^{2}$. However, now we have to consider separately cases $\cos \phi \neq 0$ and $\cos \phi=0$.
3.1. Case $\cos \phi \neq 0$. By taking $\cos \phi \neq 0$, the relations from Lemma 3.2 straightforwardly reduce to

$$
\begin{aligned}
& \omega_{21}^{2}=-h_{12}^{1} \tan \phi, \quad h_{23}^{1}=h_{12}^{1} \tan \phi, \quad h_{13}^{2}=0, \quad h_{13}^{3}=1, \quad h_{33}^{2}=0, \\
& h_{33}^{3}=2 \tan \phi, \quad h_{33}^{1}=\tan \phi\left(-2 \omega_{32}^{3}+\omega_{12}^{3} \tan \phi\right), \quad E_{3}(\phi)=\tan \phi E_{1}(\phi) .
\end{aligned}
$$

Lemma 3.3. We have

$$
\begin{gathered}
\omega_{32}^{3}=-\omega_{11}^{2}+2 \omega_{12}^{3} \tan \phi, \quad E_{2}\left(\omega_{11}^{2}\right)=1+\left(\omega_{11}^{2}\right)^{2}-\omega_{12}^{3} \omega_{31}^{2}, \\
E_{2}\left(\omega_{12}^{3}\right)=-2 \omega_{12}^{3}\left(-\omega_{11}^{2}+\omega_{12}^{3} \tan \phi\right), \quad E_{1}(\phi)=0, \\
\omega_{31}^{2}=\omega_{12}^{3} \tan ^{2} \phi, \quad E_{3}\left(\omega_{11}^{2}\right)=E_{1}\left(\omega_{12}^{3}\right) \tan ^{2} \phi, \\
E_{1}\left(\omega_{11}^{2}\right)=2 E_{1}\left(\omega_{12}^{3}\right) \tan ^{2} \phi-E_{3}\left(\omega_{12}^{3}\right) .
\end{gathered}
$$

Proof. Direct computation gives the following equations of Codazzi and Gauss, from which we derive the proclaim.

$$
\begin{aligned}
& R\left(E_{1}, E_{2}, E_{3}, E_{6}\right)=\omega_{11}^{2}+\omega_{32}^{3}-2 \omega_{12}^{3} \tan \phi=0 \\
& R\left(E_{1}, E_{2}, E_{1}, E_{2}\right)=1+\left(\omega_{11}^{2}\right)^{2}-\omega_{12}^{3} \omega_{31}^{2}-E_{2}\left(\omega_{11}^{2}\right)=0 \\
& R\left(E_{1}, E_{2}, E_{1}, E_{4}\right)=E_{2}\left(\omega_{12}^{3}\right)+2 \omega_{12}^{3}\left(-\omega_{11}^{2}+\omega_{12}^{3} \tan \phi\right)=0 \\
& R\left(E_{1}, E_{3}, E_{3}, E_{5}\right)=\omega_{31}^{2}-\omega_{12}^{3} \tan ^{2} \phi=0, \\
& R\left(E_{1}, E_{3}, E_{3}, E_{6}\right)=2 E_{1}(\phi) \sec ^{2} \phi=0, \\
& R\left(E_{1}, E_{3}, E_{1}, E_{2}\right)=-E_{3}\left(\omega_{11}^{2}\right)+E_{1}\left(\omega_{12}^{3}\right) \tan ^{2} \phi=0, \\
& R\left(E_{1}, E_{3}, E_{1}, E_{4}\right)=E_{1}\left(\omega_{11}^{2}\right)+E_{3}\left(\omega_{12}^{3}\right)-2 E_{1}\left(\omega_{12}^{3}\right) \tan \phi=0 .
\end{aligned}
$$

Direct computation shows that the other Gauss, Codazzi and Ricci equations do not yield any new relations.

Note that we now have $\phi=$ const. Also we have

$$
\begin{gathered}
h\left(E_{1}, E_{1}\right)=-\omega_{12}^{3} E_{4}, \quad h\left(E_{1}, E_{2}\right)=0, \quad h\left(E_{2}, E_{2}\right)=0, \\
h\left(E_{3}, E_{3}\right)=\tan \phi\left(2 \omega_{11}^{2}-3 \omega_{12}^{3} \tan \phi E_{4}+2 E_{6}\right)
\end{gathered}
$$

so in a general case distributions U and U^{\perp} are not totally geodesic. We also note that $\left[\rho V, E_{2}\right]=0$, for $\rho=\left(1+\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)^{2}\right)^{-1 / 2}$. Moreover, we have

$$
\begin{gather*}
\rho V\left(\omega_{11}^{2}\right)=\frac{\sin \phi\left(E_{3}\left(\omega_{12}^{3}\right)-E_{1}\left(\omega_{12}^{3}\right) \tan \phi\right)}{\sqrt{1+\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)^{2}}}, \\
\rho V\left(\omega_{12}^{3}\right)=\frac{\cos \phi E_{3}\left(\omega_{12}^{3}\right)-\sin \phi E_{1}\left(\omega_{12}^{3}\right)}{\sqrt{1+\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)^{2}}}, \\
\rho V\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)=0, \quad E_{2}\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)=1+\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)^{2} . \tag{3.1}
\end{gather*}
$$

We give further a construction of the immersion. Recall that $\left[\rho V, E_{2}\right]=0$. Therefore, there exist local coordinates x_{1}, x_{2}, x_{3} in the neighborhood of a point $p \in M$ such that $\rho V=\partial_{x_{1}}, E_{2}=\partial_{x_{2}}$. Here, the choice of the coordinate x_{3} is essentially arbitrary. Moreover, (3.1) implies that

$$
\partial_{x_{1}}\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)=0, \quad \partial_{x_{2}}\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)=1+\left(\omega_{11}^{2}-\omega_{12}^{3} \tan \phi\right)^{2}
$$

Hence, we have $\omega_{11}^{2}-\omega_{12}^{3} \tan \phi=\tan \left(x_{2}+h\left(x_{3}\right)\right)$, where the differentiable function h is independent of x_{1}, x_{2}. Also, we have a freedom of choosing h up to an addend π, so we can assume that $\cos \left(x_{2}+h\right)>0$. Further we have $E_{2}\left(\omega_{12}^{3}\right)=\partial_{x_{2}} \omega_{12}^{3}=$ $2 \omega_{12}^{3} \tan \left(x_{2}+h\right)$. Therefore there exists a differentiable function d depending on x_{1} and x_{3} such that

$$
\omega_{12}^{3}=d \sec ^{2}\left(x_{2}+h\right), \quad \text { and further } \quad \omega_{11}^{2}=d \sec ^{2}\left(x_{2}+h\right) \tan \phi+\tan \left(x_{2}+h\right) .
$$

Now, straightforward computation shows that

$$
\begin{gather*}
D_{\partial_{x_{1}}} \partial_{x_{1}}=\partial_{x_{1} x_{1}}^{2} p=-\cos ^{2}\left(x_{2}+h\right) p+\cos \left(x_{2}+h\right) \sin \left(x_{2}+h\right) \partial_{x_{2}} p, \\
D_{\partial_{x_{1}}} \partial_{x_{2}}=\partial_{x_{1} x_{2}}^{2} p=-\tan \left(x_{2}+h\right) \partial_{x_{1}} p \\
D_{\partial_{x_{2}}} \partial_{x_{2}}=\partial_{x_{2} x_{2}}^{2} p=-p . \tag{3.2}
\end{gather*}
$$

The last equation yields $p=\cos x_{2} A+\sin x_{2} B$ for some vector fields A and B depending on x_{1} and x_{3}. Since p is unit, straightforwardly we get that A and B are unit and mutually orthogonal. Then, the first equation of (3.2) reduces to

$$
\begin{aligned}
\cos x_{2}\left(\partial_{x_{1} x_{1}}^{2} A+\cos h(A \cos h\right. & -B \sin h)) \\
& +\sin x_{2}\left(\partial_{x_{1} x_{1}}^{2} B-\sin h(A \cos h-B \sin h)\right)=0,
\end{aligned}
$$

which further implies

$$
\begin{aligned}
& \partial_{x_{1} x_{1}}^{2} A+\cos h(A \cos h-B \sin h)=0, \\
& \partial_{x_{1} x_{1}}^{2} B-\sin h(A \cos h-B \sin h)=0 .
\end{aligned}
$$

Further, it follows $\partial_{x_{1} x_{1}}^{2}(A \cos h-B \sin h)=-(A \cos h-B \sin h)$, so we can put

$$
\begin{equation*}
A \cos h-B \sin h=\cos x_{1} P+\sin x_{1} Q, \tag{3.3}
\end{equation*}
$$

for some vector fields P and Q depending only on x_{3}. Similarly as before P and Q are unit and orthogonal. Finally, the second equation of (3.2) simplifies to $\sec \left(h+x_{2}\right)\left(\cosh \partial_{x_{1}} B+\sin h \partial_{x_{1}} A\right)=0$. Integration over x_{1} then gives $\sin h A+$ $\cos h B=G$, where the unit vector field G depends only on x_{3}, and is orthogonal
to vector field (3.3), for arbitrary x_{1}. Therefore G is orthogonal to both P and Q. Using the last equation along with (3.3) we get

$$
\begin{aligned}
& A=\cos h\left(\cos x_{1} P+\sin x_{1} Q\right)+\sin h G \\
& B=-\sin h\left(\cos x_{1} P+\sin x_{1} Q\right)+\cos h G
\end{aligned}
$$

Now, the immersion is given by

$$
p\left(x_{1}, x_{2}, x_{3}\right)=\cos \left(x_{2}+h\right)\left(\cos x_{1} P+\sin x_{1} Q\right)+\sin \left(x_{2}+h\right) G
$$

and the coordinate vector fields by

$$
\begin{aligned}
\partial_{x_{1}} p= & \cos \left(x_{2}+h\right)\left(-\sin x_{1} P+\cos x_{1} Q\right)=\cos \left(x_{2}+h\right)\left(-\sin \phi E_{1}+\cos \phi E_{3}\right), \\
\partial_{x_{2}} p= & -\sin \left(x_{2}+h\right)\left(\cos x_{1} P+\sin x_{1} Q\right)+\cos \left(x_{2}+h\right) G=E_{2}, \\
\partial_{x_{3}} p= & \cos \left(x_{2}+h\right)\left(\partial_{x_{3}} h G+\cos x_{1} \partial_{x_{3}} P+\sin x_{1} \partial_{x_{3}} Q\right) \\
& +\sin \left(x_{2}+h\right)\left(\partial_{x_{3}} G-\partial_{x_{3}} h\left(\cos x_{1} P+\sin x_{1} Q\right)\right) .
\end{aligned}
$$

Then $E_{1}=E_{2} \times p=G \times\left(\cos x_{1} P+\sin x_{1} Q\right)$, and further

$$
\begin{aligned}
-\sin \phi & =\left\langle-\sin x_{1} P+\cos x_{1} Q, E_{1}\right\rangle \\
& =\cos ^{2} x_{1}\langle Q, G \times P\rangle-\sin ^{2} x_{1}\langle P, G \times Q\rangle=\langle P \times Q, G\rangle
\end{aligned}
$$

It follows that

$$
\begin{gathered}
\langle G+\sin \phi P \times Q, P \times Q\rangle=0, \quad G+\sin \phi P \times Q \perp P, Q \\
\langle G+\sin \phi P \times Q, G+\sin \phi P \times Q\rangle=\cos ^{2} \phi \neq 0
\end{gathered}
$$

Since we can assume that $\cos \phi>0$ (we can change the sign of W) the following lemma holds.

Lemma 3.4. The vector fields P, Q and $T=\sec \phi(G+\sin \phi P \times Q)$ determine a G_{2}-frame.

Therefore, we can denote $e_{1}=P, e_{2}=Q, e_{4}=T$, and other e_{i} accordingly to the relations in a G_{2} frame. Here we have $G=\cos \phi e_{4}-\sin \phi e_{3}$. Moreover, it follows that

$$
\begin{aligned}
E_{3} & =\sec \phi\left(\cos x_{1} Q-\sin x_{1} P+\sin \phi E_{1}\right) \\
& =-\sin x_{1}\left(\cos \phi e_{1}+\sin \phi e_{5}\right)+\cos x_{1}\left(\cos \phi e_{2}-\sin \phi e_{2}\right) \\
E_{4} & =p \times E_{3}=\cos \left(h+x_{2}\right)\left(\cos \phi e_{3}+\sin \phi e_{4}\right)+\sin \left(h+x_{2}\right)\left(\sin x_{1} e_{5}-\cos x_{1} e_{6}\right), \\
E_{5} & =E_{1} \times E_{3}=e_{7}, \\
E_{6} & =-\sin \left(h+x_{2}\right)\left(\cos \phi e_{3}+\sin \phi e_{4}\right)+\cos \left(h+x_{2}\right)\left(\sin x_{1} e_{5}-\cos x_{1} e_{6}\right) .
\end{aligned}
$$

Denote by $z_{i j}=\left\langle\partial_{x_{3}} e_{i}, e_{j}\right\rangle$, the differentiable functions of x_{3}. Since the connection is metrical, we have $z_{j i}=-z_{i j}$.

Lemma 3.5. It holds

$$
\begin{aligned}
& z_{34}=z_{16}-z_{25}, \quad z_{35}=z_{17}+z_{24}, \quad z_{36}=-z_{14}+z_{27}, \quad z_{37}=-z_{15}-z_{26} \\
& z_{56}=z_{12}+z_{47}, \quad z_{57}=z_{13}-z_{46}, \quad z_{67}=z_{23}+z_{45}
\end{aligned}
$$

Proof. From Lemma 2.1 we have $\partial_{x_{3}}\left(e_{i} \times e_{j}\right)=\partial_{x_{3}} e_{i} \times e_{j}+e_{i} \times \partial_{x_{3}} e_{j}$. Taking $i, j \in\{1, \ldots, 7\}$, we obtain the assertion.

The previous lemma obviously holds for an arbitrary G_{2}-frame. Let us now consider this particular one.

Lemma 3.6. Coefficients $z_{i j}$ satisfy

$$
\begin{gathered}
z_{26}=z_{15} \neq 0, \quad z_{16}=0, \quad z_{17}=0, \quad z_{25}=0, \quad z_{27}=0, \\
z_{46}=-z_{13}-2 z_{14} \tan \phi, \quad z_{45}=z_{23}+2 z_{24} \tan \phi, \quad z_{13}=-z_{14} \tan \phi, \\
z_{23}=-z_{24} \tan \phi, \quad z_{47}=-2 z_{15} \tan \phi .
\end{gathered}
$$

Proof. For p to be the CR immersion of the needed type we have to impose the following conditions. The vector field $\partial_{x_{3}} p$ has to be independent of $\partial_{x_{1}} p$ and $\partial_{x_{2}} p$, and orthogonal to the vector fields E_{4}, E_{5} and E_{6}. We have

$$
\begin{aligned}
0=\left\langle\partial_{x_{3}} p, E_{5}\right\rangle= & \cos \left(h+x_{2}\right)\left(z_{17} \cos x_{1}+z_{27} \sin x_{1}\right) \\
& \left.+\sin \left(h+x_{2}\right)\left(z_{47} \cos \phi+\left(z_{15}+z_{26}\right) \sin \phi\right)\right) .
\end{aligned}
$$

Since $\cos x_{1}$ and $\sin x_{1}$ are the only functions of x_{1} in this relation, we get that $z_{17}=z_{27}=0$ and $z_{47} \cos \phi+\left(z_{15}+z_{26}\right) \sin \phi=0$. The relation $z_{15}=z_{26}$ and other ones are obtained similarly, taking in the expressions for $\left\langle\partial_{x_{3}} p, E_{4}\right\rangle$ and $\left\langle\partial_{x_{3}} p, E_{6}\right\rangle$ the coefficients multiplying independent functions of x_{1}. Finally, if we denote by $\partial_{x_{3}} p^{p r}$ the projection of $\partial_{x_{3}} p$ to $\operatorname{Span}\left(\partial_{x_{1}} p, \partial_{x_{2}} p\right)$ we get

$$
\partial_{x_{3}} p-\partial_{x_{3}} p^{p r}=z_{15} \cos \left(h+x_{2}\right)\left(\cos x_{1} e_{5}+\sin x_{1} e_{6}\right) \neq 0
$$

which finishes the proof.
Note that now it follows that $e_{7}^{\prime}=2 z_{15}\left(e_{3}+\tan \phi e_{4}\right) \neq 0$. By possible rescaling of the coordinate x_{3}, we can assume that $\left\|e_{7}^{\prime}\right\|=1$, i.e., that the sphere curve $\gamma\left(x_{3}\right)=e_{7}\left(x_{3}\right)$ is parameterized by arc length and that $2 z_{15}=\cos \phi$. Then

$$
\gamma \times \gamma^{\prime}=e_{7} \times\left(\cos \phi e_{3}+\sin \phi e_{4}\right)=-\sin \phi e_{3}+\cos \phi e_{4}=G
$$

and further

$$
e_{3}=\cos \phi \gamma^{\prime}-\sin \phi \gamma \times \gamma^{\prime}, \quad e_{4}=\sin \phi \gamma^{\prime}+\cos \phi \gamma \times \gamma^{\prime} .
$$

Since

$$
\begin{align*}
& e_{1}^{\prime}=z_{12} e_{2}+z_{14}\left(-\tan \phi e_{3}+e_{4}\right)+z_{15} e_{5} \neq 0, \tag{3.4}\\
& e_{2}^{\prime}=-z_{12} e_{1}+z_{24}\left(-\tan \phi e_{3}+e_{4}\right)+z_{15} e_{6} \tag{3.5}
\end{align*}
$$

we also have that $\sigma=e_{1}$ is a nonconstant sphere curve, not necessarily parameterized by its arc length. Since e_{1}, e_{3} and e_{4} determine a G_{2}-frame, we have that σ is orthogonal to γ, γ^{\prime} and $\gamma \times \gamma^{\prime}$. From (3.4) we deduce that σ^{\prime} is orthogonal to $G=\gamma \times \gamma^{\prime}, e_{7}=\gamma$ and $e_{6}=e_{1} \times e_{7}=\sigma \times \gamma$ which is, by (2.2), equivalent to $\left\langle\sigma^{\prime} \times \sigma, \gamma\right\rangle=0$. Also, (3.4) implies

$$
\left\langle\sigma^{\prime}, \sigma \times e_{4}\right\rangle=\left\langle\sigma^{\prime} \times \sigma, \sin \phi \gamma^{\prime}+\cos \phi \gamma \times \gamma^{\prime}\right\rangle=\left\langle e_{1}^{\prime}, e_{5}\right\rangle=\frac{1}{2} \cos \phi=\text { const. }
$$

Similarly, (3.5) implies that $\left(e_{3} \times \sigma\right)^{\prime}$ is orthogonal to G and $e_{5}=e_{1} \times e_{4}$. We note that $\left\langle\left(e_{3} \times e_{1}\right)^{\prime}, e_{1} \times e_{4}\right\rangle=\left\langle e_{3}^{\prime} \times e_{1}, e_{1} \times e_{4}\right\rangle+\left\langle e_{3} \times e_{1}^{\prime}, e_{1} \times e_{4}\right\rangle$. By using (2.2) and (2.1) we get

$$
\left\langle e_{3} \times e_{1}^{\prime}, e_{1} \times e_{4}\right\rangle=-\left\langle e_{1}^{\prime}, e_{3} \times\left(e_{1} \times e_{4}\right)\right\rangle=\left\langle e_{1}^{\prime}, e_{6}\right\rangle=\left\langle e_{1}^{\prime} \times e_{1}, \gamma\right\rangle=0
$$

Therefore, we have $0=\left\langle e_{3}^{\prime} \times e_{1}, e_{1} \times e_{4}\right\rangle=\left\langle-e_{3}^{\prime}, e_{4}\right\rangle$ and further

$$
\begin{aligned}
0=\left\langle e_{3}^{\prime}, e_{4}\right\rangle & =\left\langle\cos \phi \gamma^{\prime \prime}-\sin \phi\left(\gamma \times \gamma^{\prime}\right)^{\prime}, \sin \phi \gamma^{\prime}+\cos \phi\left(\gamma \times \gamma^{\prime}\right)\right\rangle \\
& =\cos ^{2} \phi\left\langle\gamma^{\prime \prime}, \gamma \times \gamma^{\prime}\right\rangle-\sin ^{2} \phi\left\langle\gamma \times \gamma^{\prime \prime}, \gamma^{\prime}\right\rangle=-\left\langle\gamma^{\prime \prime}, \gamma \times \gamma^{\prime}\right\rangle
\end{aligned}
$$

Here we use the fact that the sphere curves γ^{\prime} and $\gamma \times \gamma^{\prime}$ are orthogonal to their tangent vector fields $\gamma^{\prime \prime}$ and $\left(\gamma \times \gamma^{\prime}\right)^{\prime}$, respectively.

Let us investigate the orthogonality condition for $\left(e_{3} \times \sigma\right)^{\prime}$ and G. We have

$$
\begin{aligned}
\left\langle e_{3} \times e_{1}^{\prime}, \gamma \times \gamma^{\prime}\right\rangle & =-\left\langle e_{1}^{\prime}, e_{3} \times\left(\gamma \times \gamma^{\prime}\right)\right\rangle \\
& =-\left\langle e_{1}^{\prime}, \cos \phi \gamma^{\prime} \times\left(\gamma \times \gamma^{\prime}\right)\right\rangle=-\cos \phi\left\langle e_{1}^{\prime}, \gamma\right\rangle=0
\end{aligned}
$$

so we are left with

$$
\begin{align*}
0 & =\left\langle e_{3}^{\prime} \times e_{1}, \gamma \times \gamma^{\prime}\right\rangle=\left\langle e_{3}^{\prime}, e_{1} \times\left(\gamma \times \gamma^{\prime}\right)\right\rangle=\left\langle e_{1},\left(\gamma \times \gamma^{\prime}\right) \times e_{3}^{\prime}\right\rangle \tag{3.6}\\
& =\left\langle e_{1}, \cos \phi\left(\gamma \times \gamma^{\prime}\right) \times \gamma^{\prime \prime}-\sin \phi\left(\gamma \times \gamma^{\prime}\right) \times\left(\gamma \times \gamma^{\prime \prime}\right)\right\rangle .
\end{align*}
$$

Since (2.1) implies

$$
\begin{aligned}
\left(\gamma \times \gamma^{\prime}\right) \times\left(\gamma \times \gamma^{\prime \prime}\right) & =\gamma^{\prime} \times\left(\gamma \times\left(\gamma \times \gamma^{\prime \prime}\right)\right) \\
& =\gamma^{\prime} \times\left(\left\langle\gamma, \gamma^{\prime \prime}\right\rangle \gamma-\langle\gamma, \gamma\rangle \gamma^{\prime \prime}\right)=-\gamma^{\prime} \times\left(\gamma+\gamma^{\prime \prime}\right)
\end{aligned}
$$

and since σ and $\gamma \times \gamma^{\prime}$ are orthogonal, relation (3.6) becomes

$$
\left\langle\sigma, \cos \phi\left(\gamma \times \gamma^{\prime}\right) \times \gamma^{\prime \prime}+\sin \phi \gamma^{\prime} \times \gamma^{\prime \prime}\right\rangle=0
$$

Straightforward computation shows that taking curves γ and σ that satisfy the listed conditions satisfy the relations of Lemma 3.6 and, moreover that we obtain a CR submanifold of the required form.
3.2. Case $\cos \phi=\mathbf{0}$. In this case we have $W=E_{3}$ and the submanifold is foliated by almost complex spheres. We will now present a construction of the submanifold following the method given in [1]. If $p \in M$ is a point of the submanifold, then there exists a G_{2} basis e_{1}, \ldots, e_{7} of the space \mathbb{R}^{7} such that $e_{1}=p, e_{4}=E_{3}(p)$ and the tangent space of the totally geodesic leaf at the point p is spanned by e_{2} and $e_{3}=p \times e_{2}$. We can parameterize that leaf by

$$
\left(\cos x_{1} \cos x_{2}, \sin x_{1} \cos x_{2}, \sin x_{2}, 0,0,0,0\right)
$$

for x_{1}, x_{2} in some neighborhood of $(0,0)$. We denote by γ the integral curve for the vector field E_{3}, parameterized by x_{3} such that $\gamma(0)=p$. If $\gamma\left(x_{3}\right)$ is a point of the curve, then there also exists a G_{2} transformation $A\left(x_{3}\right)$ mapping, respectively, p into $\gamma\left(x_{3}\right)$, and the vectors $E_{1}(p)$ and $E_{3}(p)$ into $E_{1}\left(\gamma\left(x_{3}\right)\right)$ and $E_{3}\left(\gamma\left(x_{3}\right)\right)$. Note that we have a possibility of choosing the vector field E_{1} belonging to the almost complex distribution. Now, we have that locally the immersion is given by
$f\left(x_{1}, x_{2}, x_{3}\right)=A\left(x_{3}\right)\left(\cos x_{1} \cos x_{2}, \sin x_{1} \cos x_{2}, \sin x_{2}\right)^{t}$, for a differentiable G_{2} matrix function $A\left(x_{3}\right)$. Denoting by A_{i} the columns of A, we obtain

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\cos x_{1} \cos x_{2} A_{1}\left(x_{3}\right)+\sin x_{1} \cos x_{2} A_{2}\left(x_{3}\right)+\sin x_{2} A_{3}\left(x_{3}\right)
$$

Since the point p, obtained for $x_{1}=x_{2}=0$, is mapped into $\gamma\left(x_{3}\right)$, we have that $A_{1}=\gamma$. Similarly e_{4} is mapped into γ^{\prime}, so e_{2} is mapped into A_{2} orthogonal to γ, γ^{\prime} and $\gamma \times \gamma^{\prime}$. Moreover we have $A_{3}=A_{1} \times A_{2}=\gamma \times A_{2}$. Therefore, γ, A_{2} and γ^{\prime} determine a G_{2} frame.

We have

$$
\begin{aligned}
& \partial_{x_{1}} f=-\sin x_{1} \cos x_{2} A_{1}+\cos x_{1} \cos x_{2} A_{2}, \\
& \partial_{x_{2}} f=-\sin x_{2} \cos x_{1} A_{1}-\sin x_{2} \sin x_{1} A_{2}+\cos x_{2} A_{3},
\end{aligned}
$$

and further

$$
\begin{aligned}
& \partial_{x_{1} x_{1}}^{2} f=-\cos x_{2}\left(\cos x_{1} A_{1}+\sin x_{1} A_{2}\right)=-\cos x_{2}^{2} f+\sin x_{2} \cos x_{2} \partial_{x_{2}} f, \\
& \partial_{x_{1} x_{2}}^{2} f=\sin x_{2}\left(\sin x_{1} A_{1}-\cos x_{1} A_{2}\right)=-\tan x_{2} \partial_{x_{1}} f \\
& \partial_{x_{2} x_{2}}^{2} f=-p
\end{aligned}
$$

Also, straightforwardly we have $f \times \frac{\partial_{x_{1}} f}{\cos x_{2}}=\partial_{x_{2}} f$, so $\partial_{x_{1}} f$ and $\partial_{x_{2}} f$ span an almost complex distribution, with integral manifolds being totally geodesic spheres, parameterized by x_{1}, x_{2}. Moreover this makes f a CR immersion of a required form. Also, note that by reparameterization of the curve γ we obtain the same CR submanifold, so the condition that x_{3} is the arc-length parameter is not necessary. This completes the proof.

Acknowledgments. Supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, project 174012.

References

1. M. Antić, L. Vrancken, Three-dimensional minimal CR submanifolds of the sphere $S^{6}(1)$ contained in a hyperplane, Mediterr. J. Math. 12 (2015), 1429-1449.
2. A. Bejancu, Geometry of CR-submanifolds, D. Reidel Publishing, Dordrecht, Holland, 1986.
3. M. Djorić, L. Vrancken, Three dimensional minimal CR submanifolds in S^{6} satisfying Chen's equality, J. Geom. Phys. 56 (2006), 2279-2288.
4. N. Ejiri, Totally real submanifolds in a 6-sphere, Proc. Am. Math. Soc. 83 (1981), 759-763.
5. R. Harvey, H. B. Lawson, Calibrated geometries, Acta Math. 148 (1982), 47-157.
6. H. Hashimoto, K. Mashimo, On some 3-dimensional CR submanifolds in S^{6}, Nagoya Math. J. 156 (1999), 171-185.
7. K. Sekigawa, Some CR submanifolds in a 6-dimensional sphere, Tensor, New Ser. 41 (1984), 13-20.

Faculty of Mathematics
(Received 3103 2016)
University of Belgrade
Belgrade
Serbia
mira@math.rs

[^0]: 2010 Mathematics Subject Classification: Primary 53B25; Secondary 53C42, 53C40.
 Key words and phrases: CR submanifold, nearly Kähler six sphere, ruled submanifolds.
 Communicated by Stevan Pilipović.

