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ASYMPTOTICS OF

QUANTUM CONTRACT SIGNING

Vladimir Božin and Hana Louka

Abstract. We prove that maximal probability of cheating in quantum signing
protocol of Paunković, Bouda and Matheus behaves as O

(

1/
√

N
)

for large
number of qubits N . This confirms a conjecture that was based on numerical
evidence.

1. Introduction

Distance contract signing has been an important topic in cryptography, rele-
vant to numerous applications, including stock market [1]. It involves two parties,
called Alice and Bob, who want to exchange their commitment to a contract. The
fundamental problem is that one party has to go first in sending their commitment,
which gives the other an advantage, and one would like to design a protocol which
is both fair and viable.

A protocol is fair if neither party can get a commitment if it does not give it
at the same time. An unfair protocol would, for instance, give a trader a right to
trade future or option if it is favorable to him, without having to pay if things do
not turn advantageously. A protocol is viable if it enables signing parties to get
each other commitments provided they both act honestly.

It can be shown (see [3]) that it is impossible to design a fair and viable
contract signing protocol, without involving a third, trusted party (called Trent
in cryptography). If the third party is involved, then Alice and Bob could, for
instance, send their commitments to Trent, who would send them back in a way
that ensures fairness and viability. However, it is desirable to involve Trent only
if necessary. A protocol is called optimistic, if the third, trusted party, is involved
only when one party is cheating or the communication is interrupted.

In optimistic protocols, Alice and Bob exchange messages, so that in the end
both parties will end up with signed contract. However, if there is a disruption or
evidence of cheating, the parties have an option to invoke Trent, who would then
bind the contract, assuring fairness.
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Some protocols are only probabilistically fair, i.e., there is a small probability
of advantage to one party. Such protocols have been designed using classical cryp-
tography, which are both optimistic and probabilistically fair by Rabin in [4] and
Ben-Or, Goldreich, Micali, and Rivest in [5].

However, they rely heavily on digital signatures. In [2], a protocol was proposed
in the context of quantum information theory [6], which does not.

2. Paunković–Bouda–Mateus Protocol

The idea of quantum contract signing is to use a pair of non-commuting observ-
ables (quantum complementarity), and inherent properties of quantum mechanics,
to achieve a probabilistically fair, viable and optimistic protocol, without reliance
on the digital signatures.

In [2], the following protocol is proposed for that purpose. Trent, a trusted
third party, sends to Alice and Bob in initialisation phase, N qubits each, and
classical data about the qubits received by the other party. In exchange phase,
Alice and Bob make measurements of their choice on their qubits, and send the
results to the other party in alternating turns. This phase does not involve Trent
(protocol is optimistic). However, if the exchange is interrupted or there is evidence
of cheating, they have an option to invoke Trent again. In this case binding phase

occurs. They present to Trent their results of measurements and claims about
which observables they measured. Trent then decides if the contract is a void, or if
it is bound by the presented results. The idea is, that the party which was honest,
has a way to enforce the contract (i.e., bind it) or reject it, the moment it notices
a problem (i.e., evidence of cheating by the other party).

Let

|+〉 =
1√
2

(|0〉 + |1〉) and |−〉 =
1√
2

(|0〉 − |1〉).

Thus, {|+〉, |−〉} is an alternative orthonormal qubit frame. We will call this frame
the “reject basis", while {|0〉, |1〉} will be the “accept basis". Define

Â = 1 · |1〉〈1| + 0 · |0〉〈0| and R̂ = 1 · |+〉〈+| + 0 · |−〉〈−|
to be the corresponding accept and reject observables.

In the initialization phase, Trent chooses, at random, N qubits, out of the
set {|+〉, |−〉, |0〉, |1〉}, and sends them to Alice, and similarly, randomly chosen N
qubits from the same set to Bob. In addition, Trent lets Alice know which qubits
are sent to Bob, and lets Bob know which qubits are sent to Alice. Thus, Alice has
N qubits but does not know (without performing measurement) which ones she
has, while Bob knows which qubits are sent to her, and vice versa.

In the exchange phase, Trent is not involved. If Alice wants to accept the
contract, she will measure her first qubit in the accept basis (i.e., measure obserable

Â on her first qubit), end send result to Bob. If she wants to reject the contract,

she will measure R̂ instead. Then Bob reciprociates, by measuring either accept
or reject observable on his first qubit, and sends the result to Alice. The process
continues until all N qubits are measured.
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Note that roughly half of the qubits sent to each Alice and Bob are in reject,
and half in accept bases. Thus, parties can note what the other party is measuring,
by comparing the results sent to them on the qubits which are in the corresponding
basis, when there should be a perfect agreement with the classical information sent
by Trent. Thus, if both parties are honest and want to accept the contract, they
will note this and do not need to invoke Trent (i.e., protocol is viable). However, if
they notice that there is evidence of cheating (for instance, change in basis being
measured), they have an option to stop communication, and proceed to binding.
In this case, they will have an option to try to bind contract, by measuring all the
remaining qubits in the accept basis, or refuse the contract, by measuring all the
remaining qubits in the reject basis. After that they send all of their results to
Trent, together with information about which observables they measured.

In the binding phase, when it occurs, Trent makes the ultimate decision if the
contract is binding, or rejected/void. In order to do that, Trent will get results of
the measurement on all of their qubits by both Alice and Bob. Then he chooses,
according to a pre-defined (by the protocol, this is something defined in advance)
probability distribution a number α between 1/2 and 1. The contract is binding to
both parties, if at least a fraction α of Alice’s qubits from accept basis are measured
correctly, and also less that α fraction of his reject qubits are measured correctly
by Bob, or vice versa. If there is evidence that Alice cheated (did not measure the
basis she reported she had done), only Bob’s results will count, and similarly if
Bob cheated, only Alice will be taken into account. In all other cases, contract is
declared invalid.

Paunković, Bouda and Mateus have shown that a protocol is viable and proba-
bilistically fair, and that the probability of cheating can be made arbitrarily small.
They have hypothesized that as N goes to infinity, probability of cheating goes to
zero as N−1/2, but have shown this only by numerical evidence.

The probability of cheating, computed in [2], depends on the strategy of the
cheating party. Namely, out of N qubits, a number of them, say m, can be measured
in the attempt to cheat, and thus strategies of cheating that they considered are
indexed by a number m. For given m, and α chosen by Trent, probability of
successful cheating is then given by (note that N as a parameter is suppressed in
notation from [2])

Pch(m, α) = Pch(m, α; N) = PR(m; α)(1 − PR(m; α)),

where PR(m; α), the expected probability to reject contract for a given α, is

(2.1) PR(m; α) =
N

∑

NR=0

q(NR)P1(m, α; NR),

where q(NR) is the probability to have exactly NR states from the reject basis,

equal to 2−N
(

N
NR

)

q(NR) = 2−N

(

N

NR

)

,

N
∑

NR=0

q(NR) =

N
∑

NR=0

2−N

(

N

NR

)

= 1
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and P1(m, α; NR) is the probability to (be able to) reject the contract.

P1(m; α, NR) =

m′

∑

n=n′

P2(n; m, NR)P3(n; α, NR)

P2(n; m, NR) =

(

m

n

)(

N − m

NR − n

)(

N

NR

)−1

P3(n; α, NR) = 2−n
T

∑

i=0

(

n

i

)

,

where

(2.2) T = min{n, ⌈(1 − α)NR⌉}

and m′ = min{m, NR}, n′ = max{0, m + NR − N}.
Note that PR, P1, P2, P3 are all numbers between 0 and 1.
Finally, if p(α) is Trent’s probability distribution for choosing α, probability of

cheating for cheater strategy indexed by m is given by

Pch(m) =

∫ 1

1/2
p(α) Pch(m; α) dα

and one wants to estimate maximum of this over all m between 0 and N , which
represents the maximal probability of cheating.

3. Asymptotic Behavior

To assess the asymptotic behavior, the following formulas, coming from the
normal approximation to the binomial distribution, will be useful:

(

n

⌊n/2 − l⌋

)

1

2n+1 =
e−2l2/n

√
2πn

+ O
( 1

n3/2

)

,

(

n

⌈n/2 − l⌉

)

1

2n+1 =
e−2l2/n

√
2πn

+ O
( 1

n3/2

)

In particular, we get estimate for the maximal binomial coefficient

(3.1)

(

n

⌈n/2⌉

)

=
2n+1
√

2πn
(1 + O(1/n)).

These estimates can be obtained from the Stirling expansion formula, and the
following inequalities (see [8])

(3.2)
√

2πn
(n

e

)n

e
1

12n+1 < n! <
√

2πn
(n

e

)n

e
1

12n .

From this, by using elementary inequality (rough, as coefficient 3/2 on right-
hand side is not optimal), valid for all x, |x| < 1,

(3.3) (1 − x) ln(1 − x) + (1 + x) ln(1 + x) 6 3
2 x2,

we can obtain the following (rough) estimates:
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Lemma 3.1. Let n be a positive integer and suppose l is an arbitrary real number

between −n/2 and n/2. Then
(

n

⌊n/2 − l⌋

)

> 2n+1 e−3l2/n

√
2πn

,

(

n

⌈n/2 − l⌉

)

> 2n+1 e−3l2/n

√
2πn

.

Proof. Suppose first that n/2 − l is an integer different from 0 and n. Then,
using

(

n

n/2 − l

)

=
n!

(n/2 − l)!(n/2 + l)!

and inequalities (3.2), we get
(

n

n/2 − l

)

>

√
2πn exp

(

1
12n+1 − 1

12(n/2+l) − 1
12(n/2−l)

)

√

2π(n/2 − l)
√

2π(n/2 + l)
eC

where

C = n(ln n − 1) − (n/2 − l)(ln(n/2 − l) − 1) − (n/2 + l)(ln(n/2 + l) − 1).

Then
(

n

n/2 − l

)

>
2e−1/6
√

2πn
eC .

Also, if x = 2l/n, we have

C = n ln 2 − n
2

(

(1 − x) ln(1 − x) + (1 + x) ln(1 + x)
)

.

So, by (3.3), we have

C > n ln 2 − n

2

(3x2

2

)

= n ln 2 − 3l2

n
,

(

n

n/2 − l

)

>
2n+1e−1/6

√
2πn

e−3l2/n.

Now assume that n/2 > l > 0. We get
(

n

⌊n/2 − l⌋

)

>
2n+1e−1/6

√
2πn

e−3(l+1)2/n >
2n+1e−1/6

√
2πn

e−3l2/ne−6 >
2n+1

500
√

2πn
e−3l2/n.

The case −n/2 6 l 6 0 and
(

n
⌈n/2−l⌉

)

is analogous. �

We also recall Hoeffding’s inequalities (see [7]):

2−n

n(1/2−ε)
∑

i=0

(

n

i

)

6 e−2ε2n, 2−n

n(1/2+ε)
∑

i=0

(

n

i

)

> 1 − e−2ε2n

We now state our main result, using notation introduced in the previous chapter
(also used in [2]).

Theorem 3.1. If the probability density is bounded, i.e., p(α) < B for some

constant B, then there is a constant A such that Pch(m; N) 6 A/
√

N , where

Pch(m; N) =
∫ 1

1/2 p(α) Pch(m, α; N) dα.

To prove this main result, we will need the following lemma.

Lemma 3.2. There is a constant C such that if |m − 2(1 − α)N | > x
√

N , then

Pch(m, α; N) < Ce−x2/128, where α ∈ (1/2, 1), 0 6 m 6 N , x > 0.
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Proof. Note first that from |m − 2(1 − α)N | > x
√

N it follows that x <
√

N .

Next, note that when |NR − N/2| > x
√

N/16, we have, by Hoeffding’s inequality,

(3.4)
∑

NR,|NR−N/2|>x
√

N/16

2−N

(

N

NR

)

6 2e−x2/128

and in particular, contribution of such NR to PR(m, α) in (2.1) is bounded by

2e−x2/128.
Now, assume

(3.5) N/2 − x
√

N/16 < NR < N/2 + x
√

N/16.

Let us estimate in this case the sum
∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR).

Recall that

P2(n; m, NR) =

(

m

n

)(

N − m

NR − n

)(

N

NR

)−1

.

Using (3.5), it follows that if |n − m/2| > x
√

N/4, then we have

|(N/2 − m/2) − (NR − n)| = |(N/2 − NR) − (m/2 − n)|(3.6)

> |(m/2 − n)| − |(NR − N/2)|
> (1/4 − 1/16)x

√
N = 3x

√
N/16.

Using (3.1) and Lemma 3.1, we get
(

N − m

NR − n

)(

N

NR

)−1

6

(

N − m

⌈(N − m)/2⌉

)(

N

⌊N/2 − x
√

N/16⌋

)−1

6 500
2N−m/

√
N − m

2N(e−3x2/256/
√

N)
(1 + O(1/N))

= 2−m
(

e3x2/256500
√

N/(N − m)
)

(1 + O(1/N)),
(

m

n

)(

N

NR

)−1

6

(

m

⌈m/2⌉

)(

N

⌊N/2 − x
√

N/16⌋

)−1

6 500
2m/

√
m

2N
(

e−3x2/256/
√

N
) (1 + O(1/N))

= 2m−N
(

e3x2/256500
√

N/m
)

(1 + O(1/N)).

Note that, by Hoeffding’s inequality, and using m 6 N , we have

∑

n,|n−m/2|>x
√

N/4

(

m

n

)

6
∑

n,|n−m/2|>x
√

m/4

(

m

n

)

6 2e−x2/82m

and, using (3.6)
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∑

n,|n−m/2|>x
√

N/4

(

N − m

NR − n

)

6
∑

n,|(N/2−m/2)−(NR−n)|>3x
√

N/16

(

N − m

NR − n

)

6
∑

n,|(N/2−m/2)−(NR−n)|>3x
√

N−m/16

(

N − m

NR − n

)

6 2e−9x2/1282N−m.

Now, either m 6 N/2, when N/(N − m) 6 2, in which case we use the first of
each pair of the inequalities above, to get

∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR) 6 1000
√

2e−14.5x2/128(1 + O(1/N)),

∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR) = O(e−x2/128),

or when m > N/2, so N/m 6 2, when we get from the second inequalities
∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR) 6 1000
√

2e−7.5x2/128(1 + O(1/N))

∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR) = O(e−x2/128).

So, when (3.5) holds, we have

(3.7)
∑

n,|n−m/2|>x
√

N/4

P2(n; m, NR) = O(e−x2/128).

Now assume that that m − 2(1 − α)N > x
√

N , or m > 2(1 − α)N + x
√

N .
Suppose that (3.5) holds and that

(3.8) m/2 − x
√

N/4 < n < m/2 + x
√

N/4

and also n, m 6 N . We have then (1 − α)N + x
√

N/4 < n and from (3.5) it follows
n > NR(1 − α). So we have that, in formula (2.2), T = ⌈NR(1 − α)⌉. However, we
have then that

T < (1 − α)N/2 + x
√

N(1 − α)/16 + 1 < n/2 − x
√

N/16 + 1

6 n/2 − (x − 16/
√

N)
√

N/16 6 n/2 − (x − 16/
√

N)
√

n/16.

So, by Hoeffding’s inequality, and using |x| <
√

N , we have that, in this case

P3(n, α; NR) = O(e−x2/128).

Now we can estimate PR(m, α). For |NR − N/2| > x
√

N/16, the contribution

to the sum is bounded by 2e−x2/128 by (3.4). When (3.5) holds, using q(NR) as
probability distribution, we can estimate P1. Again, we have two cases. In the
first case, when |n − m/2| > x

√
N/4, we see that the contribution of such n to

P1 is O(e−x2/128) by (3.7). Finally, using P2 as a probability distribution in n
(probability that out of NR chosen elements out of N , specified n chosen elements
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will be among the first m), when (3.8) holds, it is enough to bound P3. But we

have demonstrated that in that case P3(n, α; NR) = O(e−x2/128). Thus,

PR(m, α) 6 2e−x2/128 + O(e−x2/128) + O(e−x2/128) = O(e−x2/128),

and consequently, Pch(m; α, N) = O(e−x2/128).

The case m < 2(1 − α)N − x
√

N is analogous. Namely, from

N/2 − x
√

N/16 < NR < N/2 + x
√

N/16,

m/2 − x
√

N/4 < n < m/2 + x
√

N/4

it follows n < (1 − α)N − x
√

N/4. If in (2.2), T = n, then P3 = 1; otherwise
T = ⌈NR(1 − α)⌉ and

T > (1 − α)N/2 − x
√

N(1 − α)/16 > n/2 + x
√

N/16 > n/2 + x
√

n/16,

So, by Hoeffding’s inequality, we have that P3(n, α; NR) > 1 − e−x2/128.
Now we can estimate PR(m, α). Recall that PR, P1, P2 and P3 take values

between 0 and 1, and that P2 is probability distribution in n and q(NR) = 2−N
(

N
NR

)

is probability distribution in NR. Note that from (3.4) it follows

∑

NR,|NR−N/2|6x
√

N/16

2−N

(

N

NR

)

> 1 − 2e−x2/128,

and that from (3.7) it follows that, if |NR − N/2| 6 x
√

N/16, then
∑

n,|n−m/2|6x
√

N/4

P2(n; m, NR) = 1 − O(e−x2/128).

Now summing just contributions from NR with |NR − N/2| 6 x
√

N/16 to PR, and

from n with |n − m/2| 6 x
√

N/4 to P1, and using P3(n, α; NR) > 1 − e−x2/128,
we get

PR(m, α) > (1 − 2e−x2/128)(1 − O(e−x2/128))(1 − e−x2/128),

PR(m, α) > 1 − 2e−x2/128 − O(e−x2/128) − e−x2/128,

PR(m, α) = 1 − O(e−x2/128),

and consequently, in the case m < 2(1 − α)N − x
√

N , we also get

Pch(m; α, N) = O(e−x2/128). �

Now we are ready to prove our main result, Theorem 3.1.

Proof of Theorem 3.1. Note that α = 1−m/2N +c/
√

N is the relationship

between c and α, then dα = dc/
√

N and hence, assuming p(α) < B, we get

Pch(m; N) =

∫ 1

1/2
p(α) Pch(m, α; N) dα
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6

∫ 1−m/2N+1/
√

N

1−m/2N−1/
√

N

BPch(m, α; N) dα +

∫ ∞

1
2BCe−c2/128dc/

√
N

6 2BC/
√

N + 2BC/
√

N

∫ ∞

0
e−c2/128dc 6 2BC/

√
N

(

1 +
√

32π
)

. �

This proves the conjecture from [2].
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