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ON REDUCTION OF AUTOMATA

IN LABYRINTHS

Goran Kilibarda

Abstract. It is shown that every automaton acceptable for rectangular lab-
yrinths can be reduced to an automaton that behaves according to either the
left-hand rule or the right-hand rule, or does not move at all, in every plane
rectangular labyrinth without leaves. This enables us to approach certain fun-
damental problems of the theory of automata in labyrinths in a quite different
way.

1. Introduction

In the past fifty years much attention has been devoted to research dealing with
automata analysis of geometric environment, images, graphs, formal languages and
other discrete structures. The obtained results enabled the formation of a new
direction in automata theory, namely, the behavior of automata in labyrinths.

Shannon’s paper on maze-solving machine [1] played an important role in the
formation of the direction and outlined the range of research problems for the
coming years. There he considers a model of a mouse, presented as an automaton,
which should find a certain target in a maze.

One of the fundamental problems in the theory of automata in labyrinths is the
question of existence of a perfect trap for an arbitrary finite automaton acceptable
for rectangular labyrinths (the difference between mazes and mosaic labyrinth is
negligible here). Intuitively it was clear that the answer to the question is positive,
but the problem turned out to be far from simple and easy. The proof of the
corresponding theorem was first given in [2], then it was considerably shortened in
[6] chiefly by passing from the clear algebraic language in [2] to the language of
the theory of automata in [6]. An altogether different solution of the problem was
presented in [5].

Developing the ideas from [5], in this paper, we approach this and similar
problems in a new way: while [2, 6] focused on the construction of the trap,
here we focus on automata and prove that every automaton can be reduced to
an automaton whose behavior in every plane rectangular labyrinth without leaves
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follows either the left-hand or the right-hand rule (when an automaton finds itself in
a vertex of such a labyrinth, it always chooses the direction of its further movement
which is the first either to the left or to the right, respectively, of the direction
by which it reached the vertex), or does not move in it at all. By reduction we
mean simplification of the automaton behavior. This reduction is done in such
a way that for every given automaton A we can construct the corresponding two
basic “blocks” (also in the form of plane rectangular labyrinths) with which we
can replace all the edges in an arbitrary plane rectangular labyrinth L so that
the behavior of A in thus obtained labyrinth, in respect to the vertices of L, is
equivalent to the behavior of the corresponding reduced automaton in L. The
above mentioned equivalence of behaviors allows us to approach some fundamental
problems in the theory of automata in labyrinths in a considerably simpler way,
because actually we reduce some of these problems to the corresponding problems
for thus obtained reduced automata. The advantage of this method is illustrated
with the proof of a theorem which is similar to the above mentioned theorem from
[2, 6], but for plane rectangular labyrinths.

The paper is self-contained, but one can find the basic notions and the basic
results in the theory of automata in labyrinths in [3, 4], where there is also a more
or less complete list of literature on this theory.

2. Automata and labyrinths

Denote the power set of a set X by P(X), and let P0(X) = P(X) r {∅}. Let
X1, . . . , Xn be arbitrary sets. For every 1 6 i 6 n, by pri denote the projection
map of the Cartesian product X1 × · · · ×Xn onto Xi. Denote the set of all words
over an alphabet A by A∗; by Λ denote the empty word.

Let D = {e,n,w, s}. Take that e−1 = e = w, n−1 = n = s, w−1 = w = e, and
s−1 = s = n. The elements of the set D can be interpreted as the cardinal points:
east, north, west, and south. If α = ω1 . . . ωn ∈ D∗, then α−1 = ω−1

n . . . ω−1
1 ;

certainly, Λ−1 = Λ.
A connected edge-labeled symmetric simple digraph (L, f), L = (V,E), where

V is the set of vertices, E is the set of edges and f : E → D is an edge labeling
of L, is a rectangular labyrinth (or simply a labyrinth) if f [(y, x)] = (f [(x, y)])−1

for every (x, y) ∈ E, and if f(u) 6= f(v) for every u, v ∈ E such that u 6= v and
pr1(u) = pr1(v).

Let |u|L = f(u) for each u ∈ E. Also, let [x]L = {|u|L | pr1(u) = x, u ∈ E}
for every x ∈ V . If it is clear from the context what labyrinth L is meant, then
instead of |u|L and [x]L we write |u| and [x] respectively. Adding to D the element
which we denote by 0 (the corresponding interpretation of this element will be
given in the sequel), extend the definition of f on the pairs (x, x), x ∈ V , taking
that |(x, x)| = 0.

Further on, we shall omit f in the designation of a labyrinth (L, f) considering
that in every concrete case f is determined. Sometimes, the set of all vertices and
the set of all edges of a labyrinth L are labeled by V (L) and E(L) respectively.

A labyrinth L is finite if V (L) is a finite set; otherwise L is infinite. All
labyrinths in the sequel will be finite if it is not stated otherwise.
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Let L be a labyrinth. Instead of L we write (L;x′) (or (V,E;x′)) [(L;x′, x′′)
(or (V,E;x′, x′′))] if in L a vertex x′ [two different vertices x′ and x′′] is marked
[are marked] as the entrance [the entrance and the exit]; such vertices x′ and x′′

are sometimes denoted by xs(L) and xf(L) respectively. If L is a labyrinth with an
entrance x′ and an exit x′′, then by L−1 we denote the same labyrinth, but with
the entrance x′′ and the exit x′.

Suppose that L is a labyrinth and ρ = x0, u1, x1, . . . , un, xn is a walk in L.
Then by |ρ| we denote the word |u1| . . . |un|. Let x be a vertex of the labyrinth
L and let α ∈ D∗. If in L there exists a walk ρ starting at x such that |ρ| = α,
then by (xα)L we denote the end vertex of ρ. Let us take that xΛ = x for every
x ∈ V (L). If it is clear from the context what labyrinth L is meant, then in the
sequel we often write xα instead of (xα)L.

Let L be a labyrinth. Replacing each pair of opposite edges in L with the
corresponding non-labeled undirected edge, we obtain an undirected graph G(L).
A labyrinth L is a tree if the graph G(L) is a tree. A labyrinth (L;x′, x′′) is an
ω1ω2-tree, ω1, ω2 ∈ D, if L is a tree, [x′] = {ω1}, and [x′′] = {ω2}; if ω1 = ω2 = ω,
then an ω1ω2-tree L is called an ω-tree. A labyrinth L is a labyrinth without leaves

if G(L) has no leaves.
Let M and N , M 6= N , be some points of the plane. By MN denote the line

segment which is defined by the given points, and by |MN | its length. Let i and
j be the unit vectors in the direction of the x-axis and y-axis of the rectangular

coordinate system respectively. The vector
−−→
MN = α1i + α2j goes in the direction:

1) e if α1 > 0 and α2 = 0; 2) n if α1 = 0 and α2 > 0; 3) w if α1 < 0 and α2 = 0;
and 4) s if α1 = 0 and α2 < 0.

A set T of line segments in the plane R2 is called a configuration (of line

segments) if any two different line segments of the set T can have not more than
one common point, and if such a point exists, it must be an end point for both the
line segments. A labyrinth L = (V,E), V ⊆ R2, is plane if the set of line segments
T = {xy | (x, y) ∈ E} is a configuration and the vector −→xy goes in the direction
|(x, y)| for every (x, y) ∈ E. If L is a plane, and, in addition, it holds that |xy| = 1
for every (x, y) ∈ E, then we say that L is a mosaic labyrinth. Moreover, a mosaic
labyrinth M is a maze if it satisfies that for every x, y ∈ V (M) from |xy| = 1, it
follows that (x, y) ∈ E(M).

For every plane labyrinth L, the set L =
⋃

(x,y)∈E(L) xy is the (geometric)

realization of a L. A plane labyrinth L is bounded if diam L < ∞; otherwise it is
unbounded.

Labyrinths L1 and L2 are called isomorphic, L1
∼= L2, if there exists a bijective

function g : V (L1)→ V (L2) such that:

(1) g is an isomorphism of edge-labeled digraphs L1 and L2, i.e., (x, y) ∈
E(L1) iff (g(x), g(y)) ∈ E(L2) for every x, y ∈ V (L1), and |(x, y)|L1 =
|(g(x), g(y))|L2 for every (x, y) ∈ E(L1);

(2) if one of the labyrinths has an entrance [an entrance and an exit], then
the other of them has an entrance [an entrance and an exit], too, and
xs(L2) = g[xs(L1)] [xs(L2) = g[xs(L1)] and xf(L2) = g[xf(L1)]].
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Such a function g is called an isomorphism from L1 to L2. The set of all labyrinths
isomorphic to a labyrinth L is denoted by [L].

A plane [mosaic] labyrinth (L;x′, x′′) is regular [perfect ] if there exists an un-
bounded plane [mosaic] labyrinth L1 such that L ∩ L1 = {x′′} and x′′ ∈ V (L1).

By automaton A we mean a quintuple (A,Q,B, ϕ, ψ), where the finite non-
empty sets A, Q and B are the input alphabet, the set of states and the output
alphabet of the automaton respectively, ψ : Q×A→ B is its output function and
ϕ : Q × A → Q is its state-transition function. If a state q0 is marked in Q, we
get an initial automaton Aq0 = (A,Q,B, ϕ, ψ, q0) (in other words, Aq0 is a Mealy
machine). For the given initial or non-initial automaton A, we sometimes denote
the input alphabet, the set of states, the output function, the output function, and
the transition function by AA, QA, BA, ϕA, and ψA respectively.

An automaton (initial or non-initial) A is said to be acceptable if AA = P(D),
BA = D∪ {0} and ψA (q, a) ∈ a∪{0} for all q ∈ QA and a ∈ AA. In the sequel, all
automata will be acceptable, and because of that we just say ‘automaton’ instead
of ‘acceptable automaton’ for the sake of brevity. An automaton A is trivial if
ψA (q, a) = 0 for every q ∈ QA and a ∈ P(D).

Let L = (V,E;x0) be a labyrinth and Aq0 = (A,Q,B, ϕ, ψ, q0) be an initial
automaton.

A sequence (q0, x0), (q1, x1), . . . in Q×V is called the behavior of the automaton
Aq0 in the labyrinth (L;x0), and it is denoted by π(Aq0 ;L), if for every i > 0 it holds
that (xi, xi+1) ∈ E or xi = xi+1, qi+1 = ϕ(qi, [xi]) and ψ(qi, [xi]) = |(xi, xi+1)|;
the sequence τ(Aq0 ;L) = x0, x1, . . . is the trajectory of Aq0 in L. Let πi(Aq0 ;L) =
(qi, xi) for each i > 0. If L has also an exit y0 and xi = y0 for some i > 1, then we
say that Aq0 goes out of the labyrinth (L;x0, y0); otherwise we say that (L;x0, y0)
is a trap for Aq0 . If Aq0 goes out of (L;x0, y) for every y ∈ V r {x0}, we say that
Aq0 searches (L;x0).

Let V ′ ⊆ V . If all the pairs (qi, xi) for which xi /∈ V ′ are thrown out
of π(Aq0 ;L), we get ether a finite (empty or non-empty), or infinite sequence
(qi0 , xi0 ), (qi1 , xi1 ), . . . which is called the V ′-behavior of Aq0 in (L;x0). The se-
quence xi0 , xi1 , . . . is the V ′-trajectory of Aq0 in (L;x0). It is clear that π(Aq0 ;L)
[τ(Aq0 ;L)] is the V -behavior [V -trajectory] of Aq0 in (L;x0).

For every V1 ⊆ V , determine the values st(π, V1), pl(π, V1), dr(π, V1), tm(π, V1),
dr0(π, V1) and st0(π, V1), where π = π(Aq0 ;L), in the following way. If there exists
t > 0 such that xt ∈ V1 and xt′ /∈ V1 for every 0 < t′ < t, then st(π, V1) = qt,
pl(π, V1) = xt, dr(π, V1) = ψ(qt, [xt]L) and tm(π, V1) = t; otherwise st(π, V1),
pl(π, V1), dr(π, V1) are not determined and tm(π, V1) = +∞. If st(π, V1) is deter-
mined and if there exists the number

i0 = min{i ∈ N | i > tm(π, V1) ∧ |(xi, xi+1)| 6= 0},

then let dr0(π, V1) = |(xi0 , xi0+1)| and st0(π, V1) = qi0 . By dr(π, t) denote the su-
perword |(xt, xt+1)||xt+1, xt+2)| . . . . Also, by dr0(π, t) denote the superword which
results from the superword dr(π, t) by replacing all the appearances of the one-letter
subword 0 by the empty word.
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Let A1 and A2 be initial automata, and let (L1;x′
1) and (L2;x′

2) be laby-

rinths. For a V1 ⊆ V (L1), let (q
(1)
i0
, x

(1)
i0

), (q
(1)
i1
, x

(1)
i1

), . . . be the V1-behavior of A1

in L1, and for a V2 ⊆ V (L2), let (q
(2)
j0
, x

(2)
j0

), (q
(2)
j1
, x

(2)
j1

), . . . be the V2-behavior
of A2 in L2. We say that the V1-behavior of A1 in L1 and the V2-behavior of

A2 in L2 are isomorphic if: 1) for every k > 0, (q
(1)
ik

), x
(1)
ik

) exists iff (q
(2)
jk
, x

(2)
jk

)

exists; and 2) there exist bijections g : QA1 → QA2 and h : V1 → V2 such that

(g(q
(1)
im

), h(x
(1)
im

)) = (q
(2)
jm
, x

(2)
jm

) for every m > 0 satisfying that (q
(1)
im

), x
(1)
im

) exists.

For example, for every initial automaton Aq0 , if (L1;x′
1) ∼= (L2;x′

2), then π(Aq0 ;L1)
and π(Aq0 ;L2) are isomorphic.

As the behaviors of an automaton in isomorphic labyrinths are isomorphic and,
consequently, as it is not important for the problems, we investigate here which of
isomorphic labyrinths is taken, we do not differentiate isomorphic labyrinths and we
adopt the following convention. In the sequel, we introduce some binary operations
on labyrinths, which are partially defined and which satisfy the following condition:
if ∗ is one of such operations, and L1 and L2 some labyrinths, then the labyrinth
[edge-labeled digraph] L ∗ L′ belongs to the same class of isomorphic labyrinths
[edge-labeled digraphs] [L1 ∗L2] for every L ∈ [L1] and L′ ∈ [L2] for which it is de-
fined. In fact, we will consider these operations as operations on the corresponding
classes of isomorphic labyrinths, and when we say ‘given a labyrinth [edge-labeled
digraph] L1 ∗ L2’ we mean, in fact, that is given a labyrinth [edge-labeled digraph]
from the class [L1∗L2], and, consequently, the result of the application of operation
∗ may exist even in the case when L1 ∗ L2 does not exist.

If by applying some operation on some labyrinths the new edges do not appear
and we do not change the original labels of the remaining edges which they had
in given labyrinths, we do not describe the edge labeling function of the resulting
labyrinth [edge-labeled digraph] for the sake of shortness.

Let L1 =(V1, E1) and L2 =(V2, E2) be arbitrary labyrinths such that V1∩V2 = ∅.
By L1 ∪̇L2 denote the disjoint union of labyrinths L1 and L2, i.e., L1 ∪̇L2 =
(V1 ∪ V2, E1 ∪E2).

Let L be a labyrinth, and let x and y, x 6= y, be its vertices (not obviously
adjacent). Denote the labyrinth (V (L), E(L) r {(x, y), (y, x)}) by L − 〈x, y〉. If x
and y are not adjacent, and [x] ∩ [y] = ∅, then by vi(L, x, y) denote the labyrinth

(V r{y}, [Er(({y}×V )∪(V ×{y}))]∪
←−
E (x, y)∪

−→
E (x, y)), where

←−
E (x, y) = {(yω, x) |

ω ∈ [y]},
−→
E (x, y) = {(x, yω) | ω ∈ [y]}, and |(x, yω)| = ω and |(yω, x)| = ω for

every ω ∈ [y] (we do not change the labels of the other edges).
Let L and (L1;x′

1, x
′′
1 ) be labyrinths such that V (L)∩V (L1) = ∅, and let x and y

be different vertices of L. Suppose that [x]L−〈x,y〉∩ [x′
1]L1 = [y]L−〈x,y〉∩ [x′′

1 ]L1 = ∅.
By L x+y L1 denote the labyrinth vi(vi((L− 〈x, y〉) ∪̇L1, x, x

′
1), y, x′′

1 ). The idea of
the described operation is the following: labyrinth L1 is “put” in L between the
vertices x and y.

Let (L1;x′
1, x

′′
1 ) and (L2;x′

2, x
′′
2 ) be labyrinths such that V (L1) ∩ V (L2) = ∅

and [x′′
1 ]L1 ∩ [x′

2]L2 = ∅. Denote the labyrinth (vi(L1 ∪̇L2, x
′′
1 , x

′
2);x′

1, x
′′
2 ) by L1L2.

For given labyrinths (Li;x
′
i, x

′′
i ), 1 6 i 6 n, by L1 . . . Ln denote the expression
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(. . . ((L1L2)L3) . . . Ln−1)Ln; denote the entrance x′
1 [the exit x′′

n] of this labyrinth
by (L1 . . . Ln; 0) [(L1 . . . Ln;n)], and for every 1 6 i 6 n−1, by (L1 . . . Ln; i) denote,
now in L1 . . . Ln, the vertex x′′

i . If L1
∼= · · · ∼= Ln

∼= L, we can write Ln instead of
L1 . . . Ln (see the above convention).

For every a ∈ P0(D), let V ′(a) = {xω | ω ∈ a}, V (a) = {x0} ∪ V ′(a) and
E(a) = (a× {x0}) ∪ ({x0} × a). By L(a) denote the labyrinth (V (a), E(a);x0) for
which it holds that (|(x0, xω)|, |(xω , x0)|) = (ω, ω) for all ω ∈ a. For brevity, let
〈ω〉 = L({ω}) for every ω ∈ D.

For every word α ∈ D∗ by ν(α) denote the word obtained from α by replacing
in it, until it is possible, each subword of the form ωω−1, ω ∈ D, with the empty
word (for example, if α = wwnsesnn, then ν(α) = wn). A nonempty word α ∈ D∗

is a simple word over D if α = ν(α); by Sim(D) denote the set of all simple words
over D. For every α = ω1 . . . ωn ∈ Sim(D) by 〈α〉 denote a labyrinth 〈ω1〉 . . . 〈ωn〉.
A labyrinth L is snakelike if L ∼= 〈α〉 for an α ∈ Sim(D); for a given snakelike
labyrinth L the corresponding simple word α is unique and we denote it by α(L).

Proposition 2.1. If (L;x0, x1) is a regular labyrinth, U is an open disk which

contains L, then there exists a plane snakelike labyrinth (L1;x1, x2) such that

V (L1) r U = {x2} and L ∩ L1 = {x1}.

Let L = (V,E;x′, x′′) be a labyrinth. If there exists an injective mapping
µ : V → R2 such that the labyrinth µ(L) = (µ(V ), µ(E);µ(x′), µ(x′′)), where
µ(E) = {(µ(x), µ(y)) | (x, y) ∈ E} and |(µ(x), µ(y))|µ(L) = |(x, y)|L for every
(x, y) ∈ E, is plane, then L is embeddable and µ is an embedding of L. Obviously,
if µ is an embedding of L, then L and µ(L) are isomorphic. If, in addition, µ(L) is
regular, then L is said to be perfectly embeddable and µ is a perfect embedding of
L. In the sequel, by an embedding [a perfect embedding] we sometimes mean µ(L)

or even µ(L). For example, if (L;x′, x′′) is a tree, then it is embeddable; moreover,
if [x′′]L 6= D, then L is perfectly embeddable.

A labyrinth (L;x′, x′′) is called a regular trap for an initial automaton A if
(L;x′, x′′) is a trap for A and if it is perfectly embeddable. A labyrinth (L;x′)
is a regular trap for an initial automaton A if there exists x′′ ∈ V (L) such that
(L;x′, x′′) is a regular trap for A.

A labyrinth L = (V,E;x′, x′′) is an ω-labyrinth, ω ∈ {e,n}, if [x′] = {ω}, [x′′] =
{ω}, and if there exists an embedding µ of L such that prk1

(µ(x′)) = prk1
(µ(x′′)),

prk2
(µ(x′′))− prk2

(µ(x′)) = r > 0 and

| prk2
(µ(z))− prk2

(µ(x′))|+ | prk2
(µ(x′′))− prk2

(µ(z))| = r

for every z ∈ V , where (k1, k2) = (2, 1) or (k1, k2) = (1, 2) if ω = e or ω = n

respectively; such embedding µ of L is called a standard embedding of ω-labyrinth L.
It follows from the definition that for every positive reals r1 and r2 there exists a
standard embedding µ of L such that |µ(x′)µ(x′ω)| > r1, |µ(x′′)µ(x′′ω)| > r1 and
diam(V r {x′, x′′}) < r2.

Let L = (V,E) be a labyrinth and V1 ⊆ V . For every x ∈ V , let Vx =
{x} × (D r [x]L) and Ex = {(x, y) | y ∈ Vx} ∪ {(y, x) | y ∈ Vx}. By Cross(L, V1)
denote the labyrinth (V ∪ (

⋃

x∈V1
Vx), E ∪ (

⋃

x∈V1
Ex)) for which |(x, (x, ω))| = ω
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and |((x, ω), x)| = ω for every x ∈ V1 and ω ∈ Dr [x]L, and |(x, y)| = |(x, y)|L for
all (x, y) ∈ E. If V1 = V , then instead of Cross(L, V ) write Cross(L).

Suppose that α = ω1 . . . ωn ∈ Sim(D) and xi = (〈α〉; i) for every 0 6 i 6 n.
Let

⊣α⊢ = Cross(L, {xi | 1 6 i 6 n− 1}), ⊣α⊣ = Cross(L, {xi | 1 6 i 6 n}),

⊢α⊢ = Cross(L, {xi | 0 6 i 6 n− 1}), ⊢α⊣ = Cross(L, {xi | 0 6 i 6 n}).

Suppose that L is a labyrinth, L1 is an e-labyrinth and L2 is an n-labyrinth.
Arrange in a sequence (x1, y1), . . . , (xm, ym) all edges (x, y) ∈ E(L) for which
|(x, y)| ∈ {e,n}. By ∆(L;L1, L2) denote the labyrinth

(· · · (L x1+y1Lκ(x1,y1))x2+y2 · · · xm−1+ym−1Lκ(xm−1,ym−1))xm
+ym

Lκ(xm,ym),

and by Σ(L;L1, L2) the labyrinth ∆(Cross(L);L1, L2); here, if |(x, y)| = e, then
κ(x, y) = 1, and if |(x, y)| = n, then κ(x, y) = 2.

Let L be a labyrinth, L1 be an e-labyrinth, L2 be an n-labyrinth, and let
V1 ⊆ V (L). Suppose that L′ is one of the labyrinths Cross(L, V1), ∆(L;L1, L2) and
Σ(L;L1, L2). Let us agree that if x ∈ V (L) is the entrance or the exit of L, then x
is the entrance or the exit of L′ respectively, unless otherwise stated. It is obvious
that the following assertion holds.

Proposition 2.2. Let L1 be an e-labyrinth and L2 be an n-labyrinth. If L is

an embeddable [a perfectly embeddable] labyrinth, then Σ(L;L1, L2) [∆(L;L1, L2)]
is an embeddable [a perfectly embeddable] labyrinth, too.

3. The reduction of automata in a plane

Suppose that (L;x′, x′′) is a labyrinth such that [x′]L = {ω} for an ω ∈ D.
If there exists a perfect embedding µ of L such that the ray going out from µ(x′)
in the direction ω does not intersect with this embedding, then µ is said to be
an extraperfect embedding for L, and L is an extraperfectly (or ω-extraperfectly)
embeddable labyrinth.

Let A = (A,Q,B, ϕ, ψ) be an automaton, (L;x′, x′′) be an ω-extraperfectly
embeddable labyrinth for an ω ∈ D and L1 = Cross(L, {x′}). If there exists
q ∈ Q such that ψ(q,D) ∈ {ω,0} and pl(π(Aq;L1), {x′, x′′}) 6= x′′, then A is an
L-reducible automaton, and L reduces A. An automaton A is reducible if there
exists a labyrinth L such that A is L-reducible; otherwise it is irreducible. Directly
from the definition we get the following proposition.

Proposition 3.1. Let A be an irreducible automaton and (L;x′) be a tree such

that [x′]L = {ω} for an ω ∈ D. Then, for every q ∈ QA and every x ∈ V (L)r {x′}
which satisfy that ψA (q,D) = ω and [x]L 6= D, it holds that tm(π(Aq;L1), {x′}) >
tm(π(Aq;L1), {x}), where L1 = Cross(L, {x′}).

Proposition 3.2. If A is an irreducible automaton, then |QA| > 1 and for

every q ∈ QA it holds that ψA (q,D) 6= 0.

Proof. We have that ψA (q,D) 6= 0 for every q ∈ QA directly from the defini-
tion. Now suppose that q0 is the unique state of A. Without loss of generality we
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can suppose that ψA (q0,D) = e. But then the labyrinth ⊣ en⊢ reduces A. From
the obtained contradiction we get that |QA| > 1. �

If A is L-reducible and L or L−1 is an e-labyrinth or an n-labyrinth, then L
is an absorbing labyrinth for A. From Proposition 2.1 we get that the following
assertion holds.

Proposition 3.3. If an automaton A is reducible, then there exists an absorb-

ing labyrinth for A.

Assume that Aq0 = (A,Q,B, ϕ, ψ, q0) is an initial automaton such that ω1 =
ψ(q0,D) 6= 0. Take an α = ω1 . . . ωn ∈ Sim(D), n > 2. Let L = ⊢α⊢, τ(Aq0 ;L) =
x0, x1, . . . and zi = (〈α〉; i) for every 0 6 i 6 n. We say that Aq0 returns on α if for
some i and j, 0 6 i < j < n, there exist m1 and m2 such that m2 < m1, xm1 = zi,
xm2 = zj and xk 6= zn for every k < m1.

Proposition 3.4. If A is an irreducible automaton, then Aq does not return

on every ψA(q,D)ω2 . . . ωn ∈ Sim(D), n > 2, for each q ∈ QA.

Proof. Use the above designations. Suppose, on the contrary, that Aq returns
on an α = ω1 . . . ωn ∈ Sim(D), where ω1 = ψA (q,D) and n > 2, for a q ∈ QA.
So there exists a trajectory segment xm3 , . . . , xm2 , . . . , xm1 , m3 < m2 < m1, such
that for some i and j, 0 6 i < j < n, it holds that xm1 = xm3 = zi and xm2 = zj .
Hence ⊣ωi+1 . . . ωn⊢ reduces A. Contradiction. �

Suppose that A = (A,Q,B, ϕ, ψ) is an automaton, L1 is an e-labyrinth and
L2 is an n-labyrinth. Let K = ∆(L(D);L1, L2) and π(q) = π(Aq;K) for every
q ∈ Q. Suppose that for some q ∈ Q the value q′ = st(π(q), V (D)) exists. Then,
if pl(π(q), V (D)) = x0, write q≃∗ q′, and if pl(π(q), V (D)) = xω, ω ∈ D, write
q⇒∗ q′. By ≃ denote the smallest equivalence relation on Q that contains ≃∗, and
by ⇒ the composition of relations ≃ and ⇒∗.

Let Q(L1, L2) = {q ∈ Q | (∃q′) q ⇒ q′} and q0 ∈ Q. For every q ∈ Q,
if q ∈ Q(L1, L2) and q 6≃ q0, let [q] = {q′ ∈ Q | q′ ≃ q}; otherwise [q] =
(Q r Q(L1, L2)) ∪ {q′ ∈ Q | q′ ≃ q0}. Let Q′ = {[q] | q ∈ Q} (generally,
Q′ 6= Q/≃). Construct the automaton A[L1, L2, q0] = (A,Q′, B, ϕ′, ψ′) in the
following way. Given an arbitrary a ∈ P0(D). For every q ∈ Q(L1, L2), if the value
q′ = st(π(q), V ′(a)) exists, let ϕ′([q], a) = [q′] and ψ′([q], a) = ω(q), where ω(q) such
that xω(q) = pl(π(q), V ′(a)), and if st(π(q), V ′(a)) is not defined, let ϕ′([q], a) = [q]
and ψ′([q], a) = 0; additionally, if q0 ∈ QrQ(L1, L2), take that ϕ′([q], a) = [q] and
ψ′([q], a) = 0 for every q ∈ Q r Q(L1, L2). Finally, by taking that ϕ′([q], ∅) = [q]
and ψ′([q], ∅) = 0 for every q ∈ Q, we have completely defined the functions ϕ′ and
ψ′ (for every element of Q′ × A). For every q ∈ Q, by A[L1, L2, q0; q] denote the
automaton A[L1, L2, q0] with the initial state [q]. Note that |QA[L1,L2,q0]| 6 |QA|
for every q0 ∈ QA.

Obviously the following assertion holds.

Proposition 3.5. Let L1 be an e-labyrinth, L2 be an n-labyrinth, and let

A be an automaton such that |QA| > 1. If one of the labyrinths L1, L2, L−1
1
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and L−1
2 is an absorbing labyrinth for A, then there exists q0 ∈ QA such that

|QA[L1,L2,q0]| < |QA|.

Further on, when we consider the automaton A[L1, L2, q0] and if the conditions
of the previous proposition are satisfied, then q0 is chosen in such a way that
|QA[L1,L2,q0]| < |QA|. If it is not important which q0 satisfying the condition of the
last proposition we have chosen, or if it is clear from the context which q0 is meant,
then instead of A[L1, L2, q0] we write simply A[L1, L2].

The first of the following two assertions follows from Propositions 3.2 and 3.3,
and the second one is obvious.

Proposition 3.6. If A is an automaton satisfying |QA| = 1, then there exist an

e-labyrinth L1 and an n-labyrinth L2 such that the automaton A[L1, L2] is trivial.

Proposition 3.7. If A is a trivial automaton, then A[L1, L2] is trivial for

every e-labyrinth L1 and n-labyrinth L2.

Suppose that A is an initial automaton, (L; y0) is a labyrinth and W ⊆ V (L).
Let x0, x1, . . . be the W -trajectory of A in (L; y0). The sequence (finite or infinite)
which we obtain by replacing each maximal block of equal elements in x0, x1, . . .
with one of these elements (i.e., every finite segment x, y, . . . , y, z and, if it exists, the
infinite segment x, y, y, . . . in x0, x1, . . . is replaced with x, y, z and x, y respectively;
here, x 6= y and y 6= z) is called the cleaned W -trajectory of A in (L; y0).

Given two automata A1 and A2, two labyrinths L1 and L2, and a mapping
f : QA2 → QA1 . We say that the pair (A1, L1) f -imitates the pair (A2, L2), and we
write (A1, L1) 6f (A2, L2), if:

(1) there exist a V ′ ⊆ V (L2) and a bijection g : V (L1) → V ′ such that for
every x0 ∈ V (L1) and for every q ∈ QA2 the cleaned V ′-trajectory of
(A2)q in (L2; g(x0)) is either the infinite sequence g(x0), g(x1), . . . or the
finite sequence g(x0), g(x1), . . . , g(xm) for some m > 0, where

τ((A1)f(q); (L1;x0)) = x0, x1, . . . ;

(2) for an x0 ∈ V (L1) and a q ∈ QA2 , (L1;x0) is a regular trap for (A1)f(q),
then (L2; g(x0)) is a regular trap for (A2)q.

We say that A1 imitates A2, and we write A1 6 A2, if there exists a mapping
f : QA2 → QA1 such that for every labyrinth L1 there exists a labyrinth L2 satisfying
that (A1, L1) 6f (A2, L2). The following theorem holds.

Theorem 3.1. If A is an automaton, L1 is an e-labyrinth and L2 is an n-

labyrinth, then A[L1, L2] 6 A.

Proof. Use the above given designations. Let f(q) = [q] for every q ∈ QA.
Given an arbitrary labyrinth L. Consider the labyrinth L′ = Σ(L;L1, L2). Take
g : V (L)→ V (L′) such that g(x) = x for every x ∈ V (L). Directly from the defini-
tion of the automaton A[L1, L2] we get: 1) the first condition of the above definition
holds for the pairs (A[L1, L2], L) and (A, L′); and 2) if (L;x0, y0) is a regular trap
for (A[L1, L2])f(q), then for some ω ∈ D r [y0]L, the labyrinth (L′; g(x0), (y0, w))
is a regular trap for Aq (see Proposition 2.2). Therefore, (A[L1, L2], L) 6f (A, L′),
and as L is an arbitrary labyrinth, we have that A[L1, L2] 6 A. �
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Theorem 3.2. The relation 6 in the set of all automata is transitive.

Proof. Let A1, A2 and A3 be automata. Suppose that A1 6 A2 and A2 6 A3.
From A1 6 A2 [A2 6 A3] it follows that there exists a mapping f1 : QA2 → QA1

[f2 : QA3 → QA2 ] such that for every labyrinth K1 [M1] there exists a labyrinth K2

[M2] satisfying (A1,K1) 6f1 (A2,K2) [(A2,M1) 6f2 (A3,M2)]. Let f3 = f1 ◦ f2.
Take an arbitrary labyrinth L1. As we have seen, there exists a labyrinth L2 such
that (A1, L1) 6f1 (A2, L2), and there exists a labyrinth L3 such that (A2, L2) 6f2

(A3, L3). Showing that (A1, L1) 6f3 (A3, L3), we get that A1 6 A3, which proves
the theorem.

So, there exist a W1 ⊆ V (L2) and a bijection g1 : V (L1)→ W1 such that for ev-
ery (q, x0) ∈ QA2×V (L1) the cleanedW1-trajectory of (A2)q in (L2; g1(x0)) is either
g1(x0), g1(x1), . . . or g1(x0), . . . , g1(xm) for anm > 0, where τ((A1)f1(q); (L1;x0)) =
x0, x1, . . . Also, there exist a W2 ⊆ V (L3) and a bijection g2 : V (L2) → W2

such that for every (q′, y0) ∈ QA3 × V (L2) the cleaned W2-trajectory of (A3)q′

in (L3; g2(y0)) is either g2(y0), g2(y1), . . . or g2(y0), . . . , g2(yn) for an n > 0, where
τ((A2)f2(q′); (L2; y0)) = y0, y1, . . .

By g3 denote the bijection g2 ◦ g1 : V (L1) → W3, where W3 = g2(W1) ⊆
V (L3). Take an x̂0 ∈ V (L1) and a q̂ ∈ QA3 . Let τ((A2)f2(q̂); (L2; g1(x̂0))) =
ŷ0, ŷ1, . . . and τ((A1)f3(q̂); (L1; x̂0)) = x̂0, x̂1, . . . But from our assumption it follows
that there exists a finite or an infinite sequence of integers 0 = i0 < i1 < i2 <
. . . such that ŷij

= g1(x̂j) for every element ij of this sequence, and ŷi0 , ŷi1 , . . .
is the cleaned W1-trajectory of (A2)f2(q̂) in (L2; g1(x̂0)). As W3 ⊆ W2, and as
the cleaned W2-trajectory of (A3)q̂ in (L3; g2(g1(x̂0))) is either g2(ŷ0), g2(ŷ1), . . .
or g2(ŷ0), . . . , g2(ŷn̂) for some n̂ > 0, then the cleaned W3-trajectory of (A3)q̂

in (L3; g3(x̂0)) is either g2(ŷi0 ), g2(ŷi1 ), . . . or g2(ŷi0 ), . . . , g2(ŷim̂
), i.e., is either

g3(x̂0), g3(x̂1), . . . or g3(x̂0), . . . , g3(x̂m̂), for some m̂ > 0.
Further, if for an x0 ∈ V (L1) and a q ∈ QA3 , (L1;x0) is a regular trap for

(A1)f1◦f2(q), then (L2; g1(x0)) is a regular trap for (A2)f2(q), and, consequently,
(L3; g2 ◦ g1(x0)) is a regular trap for (A3)q. So we have that (A1, L1) 6f3 (A3, L3),
and our assertion is true. �

Theorem 3.3. Let A1, . . . ,An be arbitrary automata. Then there exist au-

tomata A′
1, . . . ,A

′
n, satisfying that each of them is irreducible or trivial, such that

A′
i 6 Ai for every 1 6 i 6 n.

Proof. Take an arbitrary e-labyrinth L1 and an arbitrary n-labyrinth L2. Let

A
(0)
i = Ai[L1, L2] for every 1 6 i 6 n. If for some 1 6 j 6 n, either |Q

A
(0)
j

| > 1

and A
(0)
j is reducible or |Q

A
(0)
j

| = 1 and A
(0)
j is non-trivial, then Propositions

3.5 and 3.6 imply that there exist an e-labyrinth L
(0)
1 and n-labyrinth L

(0)
2 such

that |Q
A

(0)
j

[L(0)
1 , L

(0)
2 ]| < |QA

(0)
j

| or A
(0)
j [L

(0)
1 , L

(0)
2 ] is trivial respectively. Let A

(1)
i =

A
(0)
i [L

(0)
1 , L

(0)
2 ] for every 1 6 i 6 n. Continue with this procedure and suppose that

we obtain automata A
(k)
i , 1 6 i 6 n. If for a 1 6 j 6 n, either |Q

A
(k)
j

| > 1 and A
(k)
j
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is reducible or |Q
A

(k)
j

| = 1 and A
(k)
j is non-trivial, then there exist an e-labyrinth

L
(k)
1 and n-labyrinth L

(k)
2 such that

(3.1) |Q
A

(k)
j

[L(k)
1 , L

(k)
2 ]| < |QA

(k)
j

|

or A
(k)
j [L

(0)
1 , L

(k)
2 ] is trivial respectively. Let A

(k+1)
i = A

(k)
i [L

(k)
1 , L

(k)
2 ] for every

1 6 i 6 n. Because of (3.1) and Proposition 3.7 this procedure must be finished,

i.e., there exists a minimal integer m > 0 such that A
(m)
i is trivial or irreducible

for every 1 6 i 6 n. Let A′
i = A

(m)
i for every 1 6 i 6 n. Fix an 1 6 i 6 n. From

Theorem 3.1 it follows immediately that A
(k+1)
i = A

(k)
i [L

(k)
1 , L

(k)
2 ] 6 A

(k)
i . Hence,

we have that A′
i = A

(m)
i 6 · · · 6 A

(1)
i 6 A

(0)
i 6 Ai, and from Theorem 3.2, we get

that A′
i 6 Ai. �

Let Aq0 = (A,Q,B, ϕ, ψ, q0) be an initial automaton, σ be one of the two
permutations

σr =

(

e n w s

n w s e

)

and σl =

(

e s w n

s w n e

)

of the set D and ω0 ∈ D. Let us introduce two special classes of labyrinths which
play an important role in the sequel.

Suppose that L0 = L2 = 〈ω0〉, L1 is a σ(ω0)ω0-tree, and y0 ∈ V (L1). Let
L′ = Cross(L0L1L2, {x0, x1, x2, x3}), where xi = (L0L1L2; i) for every 0 6 i 6 3,
and π = π(Aq0 ;L′). The 4-tuple (L0, L1, L2; y0) is a pre-absorbing (or (ω0, σ)-pre-

absorbing) labyrinth for Aq0 if:

(1) for every δ > 0 and ∆ > 0 there exists a extraperfect embedding µ

of (L0L1L2 x1+x3〈ω0〉〈σ(ω0)〉;x0, y0) such that |µ(x1)µ(x1σ(ω0))| > ∆,

|µ(x2)µ(x2ω0)| > ∆ and diam µ(V (L0L1L2) r {x0, x1, x2, x3}) < δ;
(2) ψ(q0,D) = ω0, ω1 = dr0(π, {x3}) ∈ {σ(ω0), ω0}, dr0(π, {x1}) = σ(ω0)

and pl(π, {x3, y0}) = x3

(in Fig. 1a is given an (e, σr)-pre-absorbing labyrinth).
Note that the figures given in the paper represent plane labyrinths or the em-

beddings of labyrinths by their realizations. A point v of such a realization W is a
vertex of the given plane labyrinth or of the given embedding iff there does not exist
an open disk with the center at v whose intersection with W is an open segment
or v is marked with a small black closed disk.

Assume that L′
1 = 〈ω0〉, L′′

1 is a ω1σ(ω0)-tree, where ω1 6= ω0, and L2 =
〈σ(ω0)〉. Let L1 = Cross(L′

1L
′′
1 , {z1}) and y0 ∈ V (L1), where zi = (L′

1L
′′
1 ; i) for

each 0 6 i 6 2. Also, let xj = (L1L2; j) for each 0 6 j 6 2. The ordered 3-tuple
(L1, L2; y0) is an (ω0, σ)-incomplete pre-absorbing labyrinth for Aq0 if:

(1) for every δ,∆ ∈ R+ there exists a perfect embedding µ of the labyrinth
(L1L2 x0+x2〈σ(ω0)〉〈ω0〉;x0, y0) satisfying

|µ(x0)µ(x0ω0)| > ∆, |µ(x1)µ(x2)| > ∆, diamµ(V (L1L2) r {x0, x2}) < δ;

(2) ψ(q0,D) = ω0 and pl(π(Aq0 ; Cross(L1L2, {x0, x1, x2})), {x2, y0}) = x2.
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Because of condition (1) from the above definition, an (ω0, σ)-incomplete pre-
absorbing labyrinth (L1, L2; y0), given in Fig. 1b, will be depicted as in Fig. 1c
(here, ω0 = e, ω1 = n, and σ = σl).

c
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.
.
.

...
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L0

L2
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x2 x3

<w >0

<w >0
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a b

Figure 1.

Theorem 3.4. Let A be an automaton. If for a q0 ∈ QA there exists a pre-

absorbing labyrinth (L0, L1, L2; z0) for Aq0 , then A is reducible.

Proof. We use the above given designations. Obviously m = |QA| > 1. Let
L4 = (V4, E4;x′

4, x
′′
4 ) = 〈ω0〉m1 , L5 = (V5, E5;x′

5, x
′′
5 ) = 〈ω0〉m2 , V ′

4 = V4 r {x′
4, x

′′
4}

and V ′
5 = V5 r {x′

5, x
′′
5}; here m1 and m2 are natural numbers which we are going

to determine. Obviously there exists an ω1σ
−1(ω0)-tree L3 such that for every m1

and m2 the labyrinth

L = ((L0 . . . L5 x5 +x3 〈σ(ω0)〉) x6 +x1 〈ω0〉;x0, z0),

where xi = (L0 . . . L5; i) for every 0 6 i 6 6, is extraperfectly embeddable. Suppose
that ω0 = ω1 = w and σ = σl (see Fig. 2); the other cases are discussed similarly.
Take some m1 > m + 1, and put L′ = Cross(L, {xi | 0 6 i 6 6} ∪ V ′

4 ∪ V
′

5).
Let π = π(Aq0 ;L′) and πt = πt(Aq0 ;L′) for every t > 0. Prove the theorem by
contradiction, that is, suppose that A is irreducible.

.

.

.

...
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L4 L5

L3

L2
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x011

Figure 2.

Since dr0(π, {x1}) = n and dr0(π, {x3}) = w, then from Proposition 3.1 it
follows that Aq0 cannot find itself again in x1 and x3 until it searches all the



ON REDUCTION OF AUTOMATA IN LABYRINTHS 59

vertices of the set V ′
4 ∪ {x5}. Note that if Aq0 finds itself in some vertex z ∈

V ′
4 ∪ V

′
5 ∪ {x1, x5, x6} at some moment t > 1 and |(pr2(πt−1), pr2(πt))| = e, then

dr0(π, t) = (sn)k0 n . . . (case 1 for z) or dr0(π, t) = (sn)k0 e . . . (case 2 for z) for
some k0 > 0 (since A is irreducible, dr0(π, t) 6= (sn)k0 w . . . ; otherwise ⊣ e2 ⊢
reduces A).

Let yi = x4(ω0)i for every 1 6 i 6 m1 +m2; note that ym1 = x5 and ym1+m2 =
x6. If Aq0 finds itself for the first time in x5, and for x5 case 2 holds, then, since
m1 > m + 1, there exists 1 6 m0 6 m such that case 2 holds for all the vertices
ym1+jm0 , where jm0 < m2 and j ∈ N. Now if we choose m2 = 2m0 − 1, then for
x1 case 2 takes place, and, consequently, A is (L′;x0, z0)-reducible. Hence case 1
holds for x5, and Aq0 finds itself at a moment t′ > t again in x3 (assume that t′ is

the first of such moments). Now if dr0(π, t′) = (ns)k0 e . . . for a k0 > 0, then the
labyrinth

L̃ = Cross(L2 . . . L5 x′

3
+x′

1
〈σ(ω0)〉, {x′

1, x
′
2, x

′
3} ∪ V

′
4)

reduces A, where x′
i = (L2 . . . L5; i), 0 6 i 6 4, and m2 = 1; if dr0(π, t′) =

(ns)k1 s . . . for a k1 > 0, then ⊣nw⊢ reduces A. Therefore, we may suppose that
dr0(π, t′) = (ns)k2 w . . . for a k2 > 0. Hence Aq0 reaches x5 again without visiting
vertex x3, and we may repeat our reasoning. But if Aq0 visits x5 more than m

times and case 1 always takes place for x5, then Aq0 “moves in loops”, and L̃ again
reduces A. Contradiction. �

Suppose that A is an initial automaton, (L;x0) is a labyrinth and τ = y0, y1, . . .
is the cleaned trajectory of A in (L;x0) (τ is finite or infinite). Let z ∈ V (L)rLf(L),
where Lf(L) is the set of all leaves of L. A finite segment τ ′ = ym, ym+1, . . . , yn

(0 6 m 6 n) or an infinite segment τ ′ = ym, ym+1, . . . (m > 0) of τ is called a
z-block of τ if τ ′ has at least one appearance of z and contains, besides z, only
leaves of L. A z-block τ ′ of τ is regular if it is maximal, i.e., there is no other
different z-block which contains τ ′. A segment τ ′ of τ is a regular block if there
exists a z ∈ V (L) such that τ ′ is a regular z-block.

If τ contains at least one z /∈ Lf(L), then it has at least one regular block, its
regular blocks cover it, and any two different regular blocks of τ are disjoint.

Suppose that τ ′ is a regular block of τ . Let z ∈ V (L)rLf(L) be such that τ ′ is
a regular z-block. Perform the following procedure on the elements of τ ′ beginning
with the first and taking them one by one: if a segment of the form z, w, z, where
w ∈ Lf(L), appears in τ ′ for the first time, do not touch it, and if we have already
had a segment exactly the same, then replace it by z (e.g., this procedure transforms
z-block z, w1, z, w2, z, w2, z, w1, z, w3, z, where w1, w2 and w3 are different leaves of
L, into z, w1, z, w2, z, w3, z). Perform the above procedure on each regular block of
τ . The obtained sequence is called the doubly cleaned trajectory of A in (L;x0).

An initial automaton Aq0 is a snakelike σ0-walker, σ0 ∈ {σr, σl}, if ω1 =
ψAq0

(q0,D) 6= 0, and if for every α = ω1 . . . ωn ∈ Sim(D), n > 2, the dou-
bly cleaned trajectory y0, y1, . . . of Aq0 in ⊢ α ⊢ is such that there exists i0 =
min{j | yj = xf(⊢α⊢)}, and it holds that |(yi, yi+1)| = σ0(|(yi, yi−1)|) for every
1 6 i 6 i0 − 1 satisfying that yi is not a leaf. A snakelike σ0-walker is a snakelike

rightwalker [snakelike leftwalker ] if σ0 = σr [σ0 = σl].
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Theorem 3.5. If A is an irreducible automaton, and if for a q0 ∈ QA and

a σ0 ∈ {σr, σl} the initial automaton Aq0 is not a snakelike σ0-walker, then there

exists a (ψA(q0,D), σ0)-incomplete pre-absorbing labyrinth for Aq0 .

Proof. Note that Proposition 3.2 implies that ω1 = ψA(q0,D) 6= 0. As Propo-
sitions 3.1 and 3.4 hold, and as Aq0 is not a snakelike σ0-walker, then there exist
the shortest word α = ω1 . . . ωm ∈ Sim(D), m > 2, such that yk+1 = xf(⊢α⊢),
|(yk, yk+1)| = ωm, σ0(|(yk, yk−1)|) 6= ωm, and yj 6= xf(⊢α⊢) for some k > 1 and for
each 0 < j < k, where y0, y1, . . . is the doubly cleaned trajectory of Aq0 in ⊢α⊢.
Let α1 = ασ0(ωm)ασ0(ω1), L1 = ⊣α1 ⊢, L2 = 〈σ0(ω1)〉, and

z0 = (xs(L1)ω1 . . . ωm−1σ0(|(yk, yk−1)|))L1 .

Clearly, (L1, L2; z0) is an (ω1, σ0)-incomplete absorbing labyrinth for Aq0 . �

In the sequel, wherever we use the result of the last assertion, by ∗α| denote the
word ασ0(ωm)ασ0(ω1), by |α∗ denote σ0(ω1), and let ∗α∗ = ∗α||α∗. Denote the
(ω1, σ0)-incomplete pre-absorbing labyrinth (L1, L2; z0) constructed in the proof of
Theorem 3.5 by (L1, L2; z0;α).

By Lplwl denote the class of all plane labyrinths without leaves. An initial
automaton Aq0 is a σ0-walker, σ0 ∈ {σr, σl}, if for every L ∈ Lplwl and every
x0 ∈ V (L) the doubly cleaned V (L)-trajectory y0, y1, . . . of Aq0 in (Cross(L);x0) is
infinite and |(yi, yi+1)| = σ0(|(yi, yi−1)|) for every i > 1 satisfying that yi ∈ V (L);
we say that a σ0-walker Aq0 is a σ0-walker with the guided vector ω if |(y0, y1)| =
|(x0, y1)| is always the first element from [y0]L which goes after ω according to σ0.
A σ0-walker Aq0 is said to be a rightwalker [leftwalker ] if σ0 = σr [σ0 = σl].

Proposition 3.8. Let A be an irreducible automaton, q0 ∈ QA, and α =
ω1 . . . ωn ∈ Sim(D), where ω1 = ψA (q0,D) and n > 2. If Aq0 is a snakelike σ0-

walker, σ0 ∈ {σr, σl}, then Aq1 , where q1 = st(π(Aq0 ;⊢ α ⊢), {xf(⊢ α ⊢)}), is a

σ0-walker with the guided vector ωn.

Assume that A = (A,Q,B, ϕ, ψ) is an automaton and ω ∈ D. A q ∈ Q is
called an ω-turning state of A if for some σ0 ∈ {σl, σr} it holds that ψ(q,D) = ω
and ψ(ϕ(q,D),D) = σ0(ω). A state q of A is a turning state of A if there exists
ω ∈ D such that q is an ω-turning state of A.

Let q0 be a state of an automaton A such that ω1 = ψA (q0,D) 6= 0, and let α =
ω1 . . . ωn ∈ Sim(D), n > 1. Suppose that π = π(Aq0 ;⊢ α ⊢) = (q0, x0), (q1, x1), . . .
and zj = (〈α〉; j) for each 0 6 j 6 n. We say that q0 can be turned by α if there
exists t1 > 0 such that xt1 = zn−1, qt1 = trn(q0, α) is a ωn-turning state of A,
and xt 6= zn for every 0 6 t 6 t1. A state q of A can be turned if there exists
α ∈ Sim(D) such that q can be turned by α.

Theorem 3.6. Each state of an irreducible automaton A = (A,Q,B, ϕ, ψ) can

be turned.

Proof. Suppose our assertion does not hold for a q ∈ Q. Without loss of
generality take that ψ(q,D) = w. Consider the labyrinth (L; y0) given in Fig. 3. Let
L′ = Cross((L; y0), {y0}), τ(Aq ;L′) = x0, x1, . . . and π = π(Aq;L′). Proposition
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z0
y3

y4 y5

y1y2 y0

Figure 3.

3.2 implies that there is no i > 0 such that xi = xi+1 = yj for an 1 6 j 6 5. Now
from our assumption we get that x0 = y0, x1 = y1 and x2 = y2. Notice that from
the irreducibility of A it follows that pl(π, {y0, z0}) 6= y0. According to Proposition
3.4, Aq does not return on any of the words w2s(senws)k, k > 0. As Proposition
3.1 holds and q cannot be turned by any of the words w2s(senws)k, 0 6 k 6 |Q|,
then the labyrinth (L; y0, z0) reduces Aq. Contradiction. �

Let A be an automaton. A state q ∈ QA orients A [with the guided vector ω]
if Aq is an leftwalker or an rightwalker [with the guided vector ω].

Assume that Aq0 is an initial automaton, L1 is a snakelike e-labyrinth and L2

is a snakelike n-labyrinth. Let L = ∆(L(D);⊣ α(L1) ⊢,⊣ α(L2) ⊢). We say that
the pair (L1, L2) orients Aq0 if the state st(π(Aq0 ;L), V ′(D)) exists and orients
A with the guided vector ω, where xω = pl(π(Aq0 ;L), V ′(D)); denote the state
st(π(Aq0 ;L), V ′(D)) by q(Aq0 ;L1, L2).

Theorem 3.7. If an automaton A = (A,Q,B, ϕ, ψ) is irreducible, then for

every q ∈ QA there exist a snakelike e-labyrinth L1 and a snakelike n-labyrinth L2

such that the pair (L1, L2) orients Aq.

Proof. Fix a q0 ∈ QA. Introduce four variables βe, βw, βn and βs whose
values are words from the set Sim(D) ∪ {Λ} and take Λ as their initial value, i.e.,
take that βe := Λ, βw := Λ, βn := Λ, and βs := Λ.

As A is irreducible, then ω = ϕ(q0,D) 6= 0 for an ω ∈ D, and from Theorem
3.6 it follows that there exists a word α0 ∈ Sim(D) such that q0 can be turned by
α0. Let q1 = trn(q0, α0) be an ω0-turning state and ψ(q2,D) = ω1 = σ0(ω0), where
q2 = ϕ(q1,D) and σ0 ∈ {σl, σr} (in Fig. 4 we suppose that ω0 = w, ω1 = s and
σ0 = σl).

If Aq2 is a snakelike σ0-walker, then put βω := α0ω1. If Aq2 is not a snakelike
σ0-walker, then from Theorem 3.5 it follows that there exists an (ω1, σ0)-incomplete
pre-absorbing labyrinth (L1, L2; y0;α1) for Aq2 , where L1 =⊣∗α1|⊢ and L2 = 〈ω0〉.
Let L0 = 〈ω0〉, L̃1 = L0L1L2, and let

L′ = Cross(L̃1, {x
′
0, x

′
1, x

′
2, x

′
3}),

where x′
i = (L̃1; i) for every 0 6 i 6 3. As A is irreducible and L′ ∼= ⊢ω0α1⊣,

then from Propositions 3.1, 3.2, and 3.4 it follows that ω2 = dr(π(Aq1 ;L′), {x′
3}) =

dr0(π(Aq1 ;L′), {x′
3}) exists and ω2 6= ω0. Now, if ω2 ∈ {ω0, ω1}, then the ordered
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tuple (L0, L1, L2; y0) is a pre-absorbing labyrinth for Aq1 , and from Theorem 3.4
we get the contradiction. Hence ω2 = ω1.

y0

y1

x0

L2

L3

L1

L0

L4 q1q2

q3q4

x4x5

x3 x2

x1

Figure 4.

Let π(Aq1 ;L′) = (x̂0, q̂0), (x̂1, q̂1), . . . and t = tm(π(Aq1 ;L′), {x′
3}) (obviously,

(x̂0, q̂0) = (x′
0, q1) and x̂t = x′

3). It is clear that x̂t−1 = x′
2 and x̂t+1 = x′

3ω1.
Let q3 = q̂t−1 and q4 = q̂t. If the automaton Aq4 is not a snakelike σ−1

0 -walker,

then Theorem 3.4 implies the existence of an (ω1, σ
−1
0 )-incomplete pre-absorbing

labyrinth (L3, L4; y1;α2) for Aq4 , where L3 =⊣ ∗α2| ⊢ and L4 = 〈ω0〉. Let L̃2 =

L0L1L2L3L4 and L′′ = Cross(L̃2, {xi | 0 6 i 6 5}), where xi = (L̃2; i) for every 0 6

i 6 5. It is obvious again that ω3 = dr(π(Aq1 ;L′′), {x5}) = dr0(π(Aq1 ;L′′), {x5})
exists and ω3 6= ω0. Now, if ω3 ∈ {ω0, ω1}, then the 4-tuple (L0, L1L2L3, L4; y0) is
a pre-absorbing labyrinth for Aq1 , and if ω3 = ω1, then the 4-tuple (L2, L3, L4; y1)
is a pre-absorbing labyrinth for Aq3 . From Theorem 3.4 we get the contradiction

and, consequently, we have to suppose that Aq4 is a σ−1
0 -walker. Put that βω :=

α0(∗α1∗)ω1.
It is clear that there exists a simple word γ1 [γ2] over D such that α1 =

βeγ1(βw)−1 [α2 = βnγ1(βs)−1] is also a simple word over D, and L1 = 〈α1〉 [L2 =
〈α2〉] is an e-labyrinth [n-labyrinth]. Now from Proposition 3.8 we get that the pair
(L1, L2) orients Aq0 . �

By way of illustration, let us prove an assertion which is an analogy for the
plane labyrinths of the main theorem from [2].

x5

x1

x0

x2 x3

x4

x6x7

x8

Figure 5.
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Theorem 3.8. For every initial automaton there exists a regular trap.

Proof. Let Aq0 be an initial automaton, and let A be the corresponding non-
initial automaton. Theorem 3.3 implies that there exists an irreducible or trivial
automaton A′ and a mapping f :QA → QA′ such that for every labyrinth L′ there
exists a labyrinth L such that (A′, L′) 6f (A, L). Let (K ′;x0) be the labyrinth
given in Fig. 5, and let K be a labyrinth such that (A′,K ′) 6f (A,K). Also, let
g be the corresponding mapping from the definition of 6f for the pairs (A,K)
and (A′,K ′). Consider the automaton A′

f(q0). Now if A′ is trivial, then (K ′;x0)

is a regular trap for A′
f(q0) (take x4 as an exit) and, consequently, (K; g(x0)) is

a regular trap for Aq0 . If A′ is irreducible, then by Theorem 3.7, there exist a
snakelike e-labyrinth L1 and a snakelike n-labyrinth L2 such that the pair (L1, L2)
orients A′

f(q0). Consider the labyrinth M ′ = Cross(∆(K ′;L1, L2)) and note that

∆(K ′;L1, L2) ∈ Lplwl. Without loss of generality take that ψA′(f(q0),D) = n.
But then for a σ0 ∈ {σl, σr} the automaton A′

q1
, where q1 = q(A′

f(q0);L1, L2), is

a σ0-walker with the guided vector n. So, (M ′;x0, x2s) is a trap for A′
f(q0), and,

because of Proposition 2.2, it is a regular trap for A′
f(q0). Now, since A′ 6 A, it

follows that there exists a regular trap for Aq0 . �

By carefully analyzing the proof of Theorem 3.8 and the proofs of all the theo-
rems cited in the proof, we come to the conclusion that for every initial automaton
it is possible to construct a regular trap in an effective way.
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