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THE CYCLE INDEX OF

THE AUTOMORPHISM GROUP OF Zn

Vladimir Bozovic and Žana Kovijanić Vukićević

Abstract. We consider the group action of the automorphism group Un =
Aut(Zn) on the set Zn, that is the set of residue classes modulo n. Clearly,

this group action provides a representation of Un as a permutation group
acting on n points. One problem to be solved regarding this group action is
to find its cycle index. Once it is found, there appears a vast class of related
enumerative and computational problems with interesting applications. We
provide the cycle index of specified group action in two ways. One of them is
more abstract and hence compact, while another one is basically a procedure of
composing the cycle index from some building blocks. However, those building
blocks are also well explained and finally presented in a very detailed fashion.

1. Introduction

Let Un = Aut(Zn) be the automorphism group of the cyclic additive group of
residues modulo n. Throughout this paper, we treat Zn interchangeably, merely
as a set {0, 1, . . . , n − 1} or as the additive, cyclic group. However, the context in
which it is used will clearly determine its meaning.

As it is well known, Un is isomorphic to the multiplicative group of those
integers in Zn that are relatively prime to n, i.e.,

Un = {πa : Zn 7→ Zn | πa(x) = ax (mod n), 1 6 a 6 n, (a, n) = 1}.

Based on that isomorphism, a mapping πa ∈ Un, can be identified with an element
a ∈ Zn, (a, n) = 1. Further, we will be frequently using that convenient isomorphic
correspondence, without risk of misconception. Hence, the natural group action of
the group Un on the set of elements of Zn could be seen as

(x, a) 7→ ax (mod n) (a ∈ Un, x ∈ Zn),

Clearly, the automorphism group, Un, represented in the described way is a per-
mutation group acting on n points. Although elementary in its nature, it was a
surprising fact that, to the best of our knowledge, the cycle index of the described
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group action is still missing. We found only one paper, [1], that partially deals
with the similar group action, and yet substantially different. Therefore, finding
the cycle index, Z(Un,Zn), of the described group action emerges as the main goal
of this paper.

Based on somewhat distinct, although complement approaches, we get two
forms of the same result. The first one that looks more general, whereas another
one is technically more detailed, supplying raw structure of cycle index Z(Un,Zn).

In the first approach, we get a nice, compact result from Corollary 3.1, while
in the second approach, we use the fact of the direct decomposition of an additive
Abelian group and corresponding decomposition of its automorphism group.

As n can be decomposed as a product of prime number powers, then we proceed
by finding the cycle index Z(Upα ,Zpα ), for a prime number p and α ∈ N, as a
groundwork for utilization of a known result given in [5], that is an algorithm for
finding cycle index of direct product of permutation groups.

Once the cycle index is found, there is a vast class of enumerative and com-
binatorial problems that could be related to it. For example, one of the classical
enumerative, combinatorial “targets" is a number of orbits or equivalence classes of
subsets of Zn.

2. Preliminaries

In this section, we bring up some basic, auxiliary results, notation and assump-
tions that will be used in the rest of the paper.

• By natural number we assume positive integer.
• By

⊎

we denote disjoint union of sets.
• The label φ will be exclusively used for Euler’s phi function.
• By Cn we denote a cyclic group of n elements.
• By Sym(M) we denote the full symmetric group on the set M .
• By ord(g) we denote the order of an element g in a group G.

Regarding a topic of group action, we slightly changed definitions of classical
notions and accordingly, introduce new notation.

Definition 2.1 (Type of a permutation). Let P be a set with |P | = n. A
permutation π ∈ Sym(P ) is of the type (λ1, λ2, . . . , λn), iff π can be written as a
composition of λi disjointed cycles of length i, for i = 1, . . . , n.

Hence, by λi(π) we mean the number of cycles of length i in the decomposition
of π into disjoint cycles. We use the short and symbolic notation

ctype(π) =

n
∏

i=1

x
λi(π)
i

to mean that there are λi(π) cycles of length i in the decomposition of π in product
of disjoint cycles. Note that variable xi has only formal meaning, referring to the
cycle of the length i.

Definition 2.2 (Partial Cycle Index). Let P be a set of |P | = n elements and
let Γ be a subset of finite permutation group GP acting on P . The partial cycle
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index of a subset Γ ⊆ GP is defined as a polynomial in n indeterminates x1, . . . , xn,
defined by

Z(Γ,P )(GP ) :=
1

|GP |

∑

π∈Γ

ctype(π) =
1

|GP |

∑

π∈Γ

n
∏

i=1

x
λi(π)
i .

When Γ = GP , then Z(GP ,P )(GP ) is called the cycle index of GP on P , or shortly
Z(GP ,P ).

It should be emphasized that the natural number n, in the previous definition,
is the upper limit regarding the number of indeterminates of cycle index polyno-
mial. The actual number of indeterminates that could appear in the cycle index
polynomial is λ(n), that is the maximal order among of all orders of elements in
GP .

Directly from the previous definition, we have this simple observation.

Lemma 2.1. Let GP be a permutation group acting on a set P of n elements

and let Γ = {Γi ⊆ GP | 1 6 i 6 k, k ∈ N} be a partition of the set of elements of

GP . Then, the cycle index of GP on P is Z(GP ,P ) =
∑k

i=1 Z(Γi,GP )(GP ).

Proof. It is a direct consequence of Definition 2.1 and the fact that GP is

disjoint union of Γi, i = 1, 2, . . . , k, i.e., GP =
⊎k

i=1 Γi. �

This notion of partial cycle index will be helpful later. Let us introduce the
notion of (r, k)-coprime residue set in Zn.

Definition 2.3. Let n be a natural integer and let k be a divisor of n. Denote
by r a natural integer less than k and coprime with k. The set of integers

Ur
n(k) = {x ∈ Un | x ≡ r (mod k)}

is called (r, k)-coprime residue set in Zn.

We prove that any (r, k)-coprime set in Zn is not empty. It is essentially
restatement and slight modification of the result given in Lemma 2, page 32, [6].
This result will be helpful later, in the characterization of orbits of the examined
group action.

Lemma 2.2. Let r, k, l, n be natural numbers such that gcd(r, k) = 1, r < k and

n = kl. Then the (r, k)-coprime set Ur
n(k) is nonempty.

Proof. We prove for given r, k and n and gcd(r, k) = 1, there exists t such
that gcd(r + kt, n) = 1 Let pvi

i be a prime power dividing n. Then, there exists ti

such that gcd(r + kti, pvi

i ) = 1. Namely, if pi | k, then pi ∤ r and ti = 0 suffices. If
pi ∤ k, than any number ti such that ti 6≡ −r/k (mod pi) will work.

By Chinese Reminder Theorem, there exists t such that t ≡ ti (mod pi) and
gcd(r + kt, n) = 1. We need to prove that there exists x ∈ Un such that x ≡ r
(mod k). Let x ≡ r + kt (mod n). Since k | n then x ≡ r (mod k). Also, it is easy
to see that gcd(x, n) = 1 and therefore x ∈ Un. �

We introduce, without proof, the following textbook lemma.
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Lemma 2.3. Let Cn = 〈a〉 be a cyclic group of n elements and let d be a natural

number such that d | n. By Ad denote the set of all elements of Cn of order d.

Then

Ad = {a
n
d

t | t ∈ N and gcd(t, d) = 1}.

Hence, |Ad| = φ(d). Also, Cn =
⊎

d|n Ad.

Let Ωd
n, where d | n, be the set of elements of additive order d in the Zn. Then,

according to Lemma 2.3, we have Zn =
⊎

d|n Ωd
n and |Ωd

n| = φ(d). The partition

of Zn, we just specified, will play an important role in the analysis of the group
action, we are dealing with.

3. Cycle index of Un – general case

As pointed in Introduction, we consider the natural group action of the group
Un on the set of elements of Zn, given by (x, a) 7→ ax (mod n) (a ∈ Un, x ∈ Zn).

Based on the results from the previous section, we prove that the typical orbit
of the aforementioned group action is actually Ωd

n.

Lemma 3.1. Let d, n be natural numbers, such that d | n. Then

Ωd
n =

n

d
· Ud =

{n

d
t | 1 6 t 6 d and gcd(t, d) = 1

}

.

Also, Ωd
n is an orbit under the action of the group Un on Zn.

Proof. The first fact of the claim is a trivial consequence of Lemma 2.3, so
we have Ωd

n = n
d · Ud. We prove that Ωd

n is an orbit in the action of Un on Zn.
Let x and y be elements of order d. Then we have x = (n/d)k1 and y = (n/d)k2

where k1, k2 ∈ Ud. Therefore, there exists k ∈ Ud and k1 = kk2.
On the other hand, Lemma 2.2 claims that Uk

n(d) is nonempty, i.e., the existence
of an element h ∈ Un such that h ≡ k (mod d). Clearly k1 ≡ hk2 (mod d). By
multiplying both sides by (n/d), we have x ≡ hy (mod n). Thus, Un is transitive
on the set of elements of (additive) order d. �

Let a, d be natural numbers such that gcd(a, d) = 1. Denote by od(a) the order
of a with respect to modulo d, i.e., od(a) = min{k ∈ N | ak ≡ 1 (mod d)}.

The following lemma has the key role in the description of how the mapping
πa : Zn 7→ Zn, defined as πa(x) = ax (mod n), acts on an orbit Ωd

n.

Lemma 3.2. Let d, n, a be natural numbers such that d | n and gcd(a, n) = 1.

Consider τ = πa|Ωd
n
, that is restriction of the mapping πa : Zn 7→ Zn, defined as

πa(x) = ax (mod n), on Ωd
n. In other words, τ(x) = ax (mod n), where x ∈ Ωd

n.

Then, τ is a permutation of Ωd
n and ctype(τ) = xm

k , where k = od(a), m = φ(d)
k .

Proof. We know, from Lemma 3.1, that Ωd
n is an orbit of πa, so we conclude

that τ : Ωd
n 7→ Ωd

n. Since, πa is a bijection, then τ is certainly injection on Ωd
n.

However, Ωd
n is a finite set, so τ must be a bijection.

According to Lemma 3.1, an arbitrary element c ∈ Ωd
n is of the form c = n

d v,
where gcd(v, d) = 1. Let us consider the cycle that c belongs to, considering the
mapping τ . Suppose that s is the length of the cycle (c 7→ ac 7→ a2c 7→ · · · 7→ as−1c).
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From akv ≡ v (mod d) it follows (ak − 1)v = dt, for some t ∈ Z. Therefore,
(ak − 1)n

d v = nt, that means akc ≡ c (mod n). Since s is the least number such
that asc ≡ c (mod n), then s 6 k.

On the other hand, from asc ≡ c (mod n), it follows asv ≡ v (mod d). Since
gcd(v, d) = 1, we conclude as ≡ 1 (mod d). However, k = od(a) and thus k 6 s, so
we finally get k = s. Since c is an arbitrary element in Ωd

n, we conclude that every
cycle of τ is of the same length k = od(a). �

Corollary 3.1. Let n, a be natural numbers such that d | n and gcd(a, n) = 1.

Then the bijection πa : Zn 7→ Zn, defined as πa(x) = ax (mod n), has cyclic

structure ctype(a) =
∏

d|n x
φ(d)/od(a)
od(a) .

Accordingly, the cycle index of Un, acting on the set Zn, is

(3.1) Z(Un,Zn) =
1

φ(n)

∑

a∈Un

∏

d|n

x
φ(d)

od(a)

od(a) .

We should notice that the number of indeterminates in the polynomial Z(Un,Zn)
is actually equal to the maximal multiplicative order among elements in Un, that is
λ(n) = max{on(a) | a ∈ Un}.

In number theory, λ is known as Charmichael’s lambda function. As it is
principally analysed and resolved in [8], for a natural number n represented as a

product of powers of prime numbers n =
∏k

i=1 pei

i , we have that λ(n) is equal to
the least common multiplier of λ(pei

i ), for i = 1, . . . , k. Thus,

λ(n) = lcm(λ(pe1
1 ), λ(pe2

2 ), . . . , λ(pek

k )),

where

λ(pe) =











φ(pe) if p an odd prime, e > 1

φ(2e) if p = 2, e 6 2

2e−2 if p = 2, e > 2.

Therefore, only indeterminates x1, x2, . . . , xλ(n) appear in the cycle index Z(Un,Zn).

4. Cycle index of Upm

In this section, we present a more comprehensive look over the cycle index of
the group Upm acting on Zpm . Since the algebraic structure of Upm differs in two
basic cases: when p = 2 and when p is an odd prime number, we will consider both
in the course of finding cycle index of Un.

Once a cycle index of Upm , for a prime number p, is found, it will serve as a
building block for compounding cycle index of Un, where n is naturally represented
as a product of powers of prime numbers.

4.1. Cycle index of U2m . We start with the case of U2m acting on Z2m .
First of all, we need to determine how elements of U2m look like, considering the
fact that it is not a cyclic group for m > 3, but direct product C2 × C2m−2 . Still,
there is a way for all elements of U2m to be represented in a functional form.
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Definition 4.1. An integer a is said to be a semi-primitive root modulo n if
the order of a modulo n is equal to φ(n)/2, where φ is the Euler function.

It is shown in [9] that 3 is a semi-primitive root modulo 2m. Thus, the order
of 3 modulo 2m is 2m−2, for any integer m > 3 and

U2m = {±3i (mod 2m) : i = 1, . . . , 2m−2}.

Then, the following lemma is just rewording of the previous fact.

Lemma 4.1. For an arbitrary element w ∈ U2m , if m > 3, there exists a unique

pair (a, b), a ∈ {0, 1} and b ∈ {0, 1, . . . , 2m−2 − 1} such that w = (−1)a3b.

It might be useful to mention that 5 is also a semi-primitive for U2m , m > 3.
The following corollaries are either obvious or direct consequences of Lemma 4.1.

Corollary 4.1. Let a = 32sr, d = 2l, where s > 0, r = 1, 3, . . . , 2m−2−s − 1,

l > 1. Then

od(a) =































1 if l = 1; s > 0,

2 if l = 2; s = 0,

1 if l = 2; s > 1,

2l−2−s if l > 3; s < l − 2,

1 if l > 3; s > l − 2.

Corollary 4.2. Let a = −32sr, d = 2l, where s > 0, r = 1, 3, . . . , 2m−2−s −1,

l > 1. Then

od(a) =































1 if l = 1; s > 0,

1 if l = 2; s = 0,

2 if l = 2; s > 1,

2l−2−s if l > 3; s < l − 2,

2 if l > 3; s > l − 2.

Lemma 4.2. Let us consider

Γ1 = {32sr | s = 0, 1, . . . , m − 3, r = 0, 1, 3, . . . , 2m−2−s − 1}

as a subset of the group U2m , for m > 3. Then, the partial cycle index of this set is

Z(Γ1,Z2m )(U2m ) =
1

2m−1

(

x2m

1 + 2m−3x2
1x2

m
∏

l=3

x2
2l−2 +

m−4
∑

t=0

2tx2m−1−t

1

t
∏

i=0

x2m−2−t

2i+1

)

.

Proof. Since all orbits of the multiplicative action of the group U2m on Z2m

are of the form Ω2l

2m , where 0 6 l 6 m, it is important to find out the behaviour
of particular mappings x 7→ 32srx (mod n), where x ∈ Z2m , on those orbits. As

stated before, we are interested in ctypes of those mappings on Ω2l

2m . In order to

find ctype of the mappings 32sr is restricted on orbit Ω2l

2m , we use the results of
Corollary 4.1.

Firstly, all elements from Γ1 are fixing Ω1
2m = {0} and Ω2

2m = {2m−1} as
one-element orbits.
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By considering parameter l in the result of Corollary 4.1, we distinguish two
major cases: when l < 3 and when l > 3. Accordingly, the orbits

Ω1
2m = {0}, Ω2

2m = {2m−1}, Ω22

2m = {2m−2, 2m − 2m−2}

should be treated separately. For example, for the mappings of the form 3r, where
r = 1, 3, . . . , 2m−2−s − 1, we have ctype(3r) = x2

1x2
∏m

l=3 x2
2l−2 .

The total number of these mappings from Γ1 is 2m−3. For those mappings from
Γ1 of the form 32sr, when s > 1, we have

ctype(32sr) = x4
1

s+2
∏

l=3

x2l−1

1

m
∏

l=s+3

x2s+1

2l−2−s = x2s+2

1

m
∏

l=s+3

x2s+1

2l−2−s .

The total number of these elements is 2m−3−s. Clearly, for r = 0, we get
identity and ctype of it is x2m

1 .
Finally, by adding all them together, after some elementary algebraic manipu-

lation, we get a partial cycle index of the subset Γ1

Z(Γ1,Z2m )(U2m) =
1

2m−1

(

x2m

1 +2m−3x2
1x2

m
∏

l=3

x2
2l−2 +

m−4
∑

t=0

2tx2m−1−t

1

t
∏

i=0

x2m−2−t

2i+1

)

. �

Lemma 4.3. Let us consider

Γ2 = −{32sr | s = 0, 1, . . . , m − 3, r = 0, 1, 3, . . . , 2m−2−s − 1},

as a subset of the group U2m , for m > 3. Then, the partial cycle index of this set,

Z(Γ2,Z2m )(U2m), is

1

2m−1

(

x2
1x2m−2

2 + 2m−3x4
1

m
∏

l=3

x2
2l−2 + x2

1

m−4
∑

t=0

2tx2m−t−1−1
2

t
∏

i=1

x2m−t−2

2i+1 ).

Proof. Similarly, as in the proof of Lemma 4.2, we use the result from Corol-
lary 4.2. Note that ctype(−1) = x2

1x2m−2
2 . By using the same type of reasoning

used to prove Lemma 4.2, we get the result. �

Corollary 4.3. Let Γ1 and Γ2 be subsets of the group U2m , m > 3, as intro-

duced in Lemmas 4.2 and 4.3. Then U2m = Γ1 ⊎ Γ2.

Proof. According to Lemma 4.1, every number from U2m , if not −1 or 1, has
the form (−1)a32sr where a ∈ {0, 1}, s ∈ {0, 1, . . . , m − 3} and r is an odd number,
so Γ1 ∪ Γ2 = U2m . Also, from the same lemma it follows that Γ1 ∩ Γ2 = ∅. Hence,
Γ1 ⊎ Γ2 is a disjoint union and equal to U2m . �
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Lemma 4.4. The cycle index Z = Z(U2m ,Z2m ) of the permutation group U2m

acting on Z2m is

Z = x2
1 if m = 1,

Z =
1

2
(x4

1 + x2
1x2) if m = 2,

Z =
1

2m−1 (Z1 + Z2) if m > 3, where

Z1 = x2m

1 + 2m−3x2
1x2

m
∏

l=3

x2
2l−2 +

m−4
∑

t=0

2tx2m−1−t

1

t
∏

i=0

x2m−2−t

2i+1 ,

Z2 = x2
1x2m−2

2 + 2m−3x4
1

m
∏

l=3

x2
2l−2 + x2

1

m−4
∑

t=0

2tx2m−t−1−1
2

t
∏

i=1

x2m−t−2

2i+1 .

Proof. The claim follows trivially for m = 1 and m = 2. For the case m > 3,
we use the results given in Lemmas 4.2 and 4.3, combined with the fact given in
Corollary 4.3, that U2m = Γ1 ⊎ Γ2. �

4.2. Cycle index od Upm , where p is an odd, prime number. The
following lemma considers the case of Upm , where p is an od prime number. As it
has been already noted, this group is cyclic and consequently, it is much easier to
find its cycle index.

Lemma 4.5. Let p be an odd prime. The cycle type of the permutation group

Upm acting on Zpm is

Z(Upm ,Zpm ) =
1

φ(pm)

φ(pm)
∑

k=1

m
∏

i=0

x
v(i,k)
u(i,k),

where v(i, k) = (φ(pi), k) and u(i, k) =
φ(pi)

v(i, k)
.

Proof. It is well known that in the case of an odd prime p, the automorphism
group Upm is cyclic [10]. Let β be a generator of Upm . Then, ord(β) = φ(pm). It is
an elementary fact that in an arbitrary group G and g ∈ G, such that ord(g) = n
it holds that ord(gk) = n/(k, n).

Since opi (β) = φ(pi), for i = 0, 1, . . . , m, we conclude that

opi (βk) =
φ(pi)

(k, φ(pi))
, for i = 0, 1, . . . , m.

Now, the claim follows directly from (3.1). �

4.3. Cycle index of direct product of permutation groups. Since we
found the cycle indices of all groups Upm when p is a prime number, there is a
natural question if there exists a way to combine them together in order to obtain
the cycle index of Un, where n is the product of those prime power components.
Hence, we need something like the cycle index of the direct product of permutation
groups.
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Let G1, G2 be permutation groups acting on sets X1, X2 respectively. Let
G = G1 × G2 and X = X1 × X2 be the direct product of corresponding groups and
sets. For an element x = (x1, x2) of X and an element g = (g1, g2) of G, we define
the action of g on x by (g, a) 7→ (g1x1, g2x2).

Evidently, G is a permutation group on X . Let P and Q be polynomials

P (x1, x2, . . . , xu) =
∑

ai1i2...iu
xi1

1 xi2
2 . . . xiu

u ,

Q(x1, x2, . . . , xv) =
∑

bj1j2...jv
xj1

1 xj2

2 . . . xjv

v

In [5] the following product operator was defined

P ⊛ Q =
∑

ai1i2...iu
bj1j2...jv

∏

16l6u
16m6v

(xi1

l ⊛ xjm
m ),

where xi1

l ⊛ xjm
m = x

i1jm gcd(l,m)
lcm(l,m) .

We need the following lemma. For proof, see [1,5].

Lemma 4.6. The cycle index of the natural action of permutation group G1×G2

on X1 × X2 induced by actions G1 on X1 and G2 on X2 can be expressed as:

Z(G1×G2,X1×X2) = Z(G1,X1) ⊛ Z(G2,X2).

Let n =
∏s

i=1 pαi

i . Applying the ring isomorphism Zn
∼=

⊕s
i=1 Zp

αi
i

, it follows

that Un
∼=

⊕s
i=1 Up

αi
i

. Hence, according to Lemma 4.6, we have

Z(Un,Zn) = Z(U
p

α1
1

,Z
p

α1
1

) ⊛ Z(U
p

α2
2

,Z
p

α2
2

) ⊛ · · · ⊛ Z(U
p

αs
s

,Z
p

αs
s

).

Since the cycle indices of prime power components are given in Lemmas 4.4
and 4.5, the cycle index Z(Un,Zn) can be calculated as above.

Example 4.1. Let us find the cycle index of U60. From Lemmas 4.4 and 4.5,
we know that

Z(U22 ,Z22 ) =
1

2
(x4

1 +x2
1x2), Z(U3,Z3) =

1

2
(x3

1 +x1x2), Z(U5,Z5) =
1

4
(x5

1 +2x1x4 +x1x2
2).

Therefore, and according to Lemma 4.6 Z(U60,Z60) = Z(U22 ,Z22 )⊛Z(U3,Z3)⊛Z(U5,Z5).
Firstly, we calculate the product of the first two cycle indices, that actually is

Z(U12,Z12). So,

Z(U12,Z12) = Z(U22 ,Z22 ) ⊛ Z(U3,Z3)

=
1

2
(x4

1 + x2
1x2) ⊛

1

2
(x3

1 + x1x2) =
1

4
(x12

1 + x4
1x4

2 + x2
1x5

2 + x6
1x3

2).

Finally, we get

Z(U60,Z60) = Z(U12,Z12) ⊛ Z(U5,Z5)

=
1

4
(x12

1 + x4
1x4

2 + x2
1x5

2 + x6
1x3

2) ⊛
1

4
(x5

1 + 2x1x4 + x1x2
2)

=
1

16
(x60

1 + 2x4
1x4

2x12
4 + x4

1x28
2 + 2x2

1x5
2x12

4 + x2
1x29

2 + 2x6
1x3

2x12
4

+ x6
1x27

2 + 2x12
1 x12

4 + x12
1 x24

2 + x10
1 x25

2 + x20
1 x20

2 + x30
1 x15

2 ).
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Certainly, the same result could be obtained by a simple application of (3.1).

5. Conclusions

We studied the group action of the automorphism group Un = Aut(Zn) on the
set Zn, that is the set of residue classes modulo n. The main goal of the paper was
to find the cycle index of that action. Based on some elementary number theory
and algebraic techniques, we get a nice, compact result in Corollary 3.1. Also, in
Lemmas 4.4 and 4.5, we provided a technically more detailed look at the building
blocks of cycle index of the studied group action.

In the further research, as we announced in Introduction, it could be interesting
to examine some combinatorial problems such as a problem of finding the number
of orbits or equivalence classes of subsets of Zn. Namely, there is a natural way to
induce the discussed group action on the set Ok, standing for the set of all subsets
of Zn of size k 6 n and then the task could be principally resolved by Pólya’s theory
application as in [3,11,12].

It is worth mentioning that the number of orbits of sets of Ok is related to the
problem of factorizations of Abelian groups into the direct product of subsets that
is examined in [2, 4, 7]. Hence, it seems that some further research in this topic
could be very fruitful.
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