PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 101(115) (2017), 109–119

https://doi.org/10.2298/PIM1715109M

ON CONSTRUCTION OF ORTHOGONAL *d*-ARY OPERATIONS

Smile Markovski and Aleksandra Mileva

In Memory of Prof. G. B. Belyavskaya

ABSTRACT. A *d*-hypercube of order *n* is an $n \times \cdots \times n_d$ (*d* times) array with n^d elements from a set *Q* of cardinality *n*. We recall several connections between *d*-hypercubes of order *n* and *d*-ary operations of order *n*. We give constructions of orthogonal *d*-ary operations that generalize a result of Belyavskaya and Mullen. Our main result is a general construction of *d*-orthogonal *d*-ary operations from *d*-ary quasigroups.

1. Introduction

In this paper we work with positive integers and we assume that $d \ge 2$. A hypercube of order n and dimension d (or d-hypercube of order n, or d-dimensional hypercube of order n) is an $n \times \cdots \times n_d$ (d times) array with n^d elements obtained from the set of n distinct symbols. For $1 \le t \le d$, a t-subarray is a subset of a d-hypercube of order n which is obtained by fixing d - t of the coordinates and allowing the other t coordinates to vary. Given d-hypercube of order n has type t, $0 \le t \le d-1$, if each symbol occurs exactly n^{d-t-1} times in each (d-t)-dimensional subarray [12]. It is clear that every d-hypercube of order n and type t, has also type i, for each $0 \le i \le t-1$. A Latin square of order n is a 2-hypercube of order n and type 1.

A *d*-ary operation f on a nonempty set Q is a mapping $f: Q^d \to Q$ defined by $f: (x_1, \ldots, x_d) \mapsto x_{d+1}$, for which we write $f(x_1, \ldots, x_d) = x_{d+1}$. A *d*-ary groupoid $(d \ge 1)$ is an algebra (Q, f) on a nonempty set Q as its universe and with one *d*-ary operation f. A *d*-ary groupoid (Q, f) is called a *d*-ary quasigroup if any d of the elements $a_1, a_2, \ldots, a_{d+1} \in Q$, satisfying $f(a_1, a_2, \ldots, a_d) = a_{d+1}$, uniquely specifies the remaining one.

²⁰¹⁰ Mathematics Subject Classification: 05B15; 20N05; 20N15.

 $Key\ words\ and\ phrases:$ Latin hypercube, orthogonal hypercubes, orthogonal functions, recursively differentiable quasigroups.

Communicated by Žarko Mijajlović.

MARKOVSKI AND MILEVA

A *d*-ary operation f defined on Q is said to be *i*-invertible if the equation

$$f(a_1, \dots, a_{i-1}, x, a_{i+1}, \dots, a_d) = a_{d+1}$$

has a unique solution x for each d-tuple $(a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_d, a_{d+1})$ of Q^d . Equivalently, we can define a d-ary quasigroup to be a d-ary groupoid (Q, f) such that the d-ary operation f is i-invertible for each $i = 1, \ldots, d$.

Given a *d*-ary quasigroup (Q, f), *d* new *d*-ary operations ${}^{(i)}f$, i = 1, 2, ..., d, can be defined by

$${}^{(i)}f(x_1, x_2, \dots, x_d) = x_{d+1} \Leftrightarrow f(x_1, \dots, x_{i-1}, x_{d+1}, x_{i+1}, \dots, x_d) = x_i.$$

Then $(Q, {}^{(i)}f)$ are *d*-ary quaisgroups too. The operation ${}^{(i)}f$ is called the *i*-th *inverse* operation of f [1]. We note that the following equalities are identities in the algebra $(Q, f, {}^{(i)}f)$:

$$f(x_1, \dots, x_{i-1}, {}^{(i)}f(x_1, x_2, \dots, x_d), x_{i+1}, \dots, x_d) = x_i,$$

$${}^{(i)}f(x_1, \dots, x_{i-1}, f(x_1, x_2, \dots, x_d), x_{i+1}, \dots, x_d) = x_i.$$

A *d*-ary groupoid (Q, f) is of order *n* when |Q| = n. Belyavskaya and Mullen [4] proved that a *d*-ary quasigroup of order *n* is an algebraic equivalent of a *d*-hypercube of order *n* and type d - 1.

In this paper we give generalizations of some results given in [4]. In Section 2 we survey the definitions that can be found in the literature of orthogonality and connections between d-ary hypercubes, d-ary operations and d-ary quasigroups. The main results are given in Section 3, where several new constructions of orthogonal d-tuple are presented.

2. *d*-ary hypercubes, *d*-ary operations, *d*-ary quasigroups and orthogonality

The usual definition of orthogonality states that two *d*-hypercubes of order n are *orthogonal* if each ordered pair occurs exactly n^{d-2} times upon superimposition. Similarly, two *d*-ary operations f and h defined on a set Q of cardinality n are said to be *orthogonal* if the pair of equations $f(x_1, \ldots, x_d) = u$ and $h(x_1, \ldots, x_d) = v$ has exactly n^{d-2} solutions for any given elements $u, v \in Q$.

A set of d hypercubes of order n and dimension d is said to be d-orthogonal (or d-wise orthogonal) if, when superimposed, each of the n^d ordered d-tuples occurs exactly once. (This is the concept of dimensional orthogonality in [8, 9] and of variational cube in [10]). The set of $m \ge d$ hypercubes of order n and dimension d is called *mutually d-orthogonal* (MdOH) if, given any d hypercubes from the set, they are d-orthogonal (also known as d-dimensional variational set in [7]).

One can define a general form of orthogonality that includes standard form of d-orthogonality. For $2 \leq k \leq d$, a set of k hypercubes of order n and dimension d is said to be k-orthogonal if, when superimposed, each of the n^k ordered k-tuples occurs exactly n^{d-k} times. A set of $j \geq k$ hypercubes of order n and dimension d is called *mutually k-orthogonal* if, given any k hypercubes from the set, they are k-orthogonal.

For d-ary operations we have the following definitions.

DEFINITION 2.1 ([**2**, **3**] for k = d, [**4**]). A k-tuple $\langle f_1, f_2, \ldots, f_k \rangle$, $1 \leq k \leq d$, of distinct d-ary operations defined on a set Q is *orthogonal* if the system of equations $\{f_i(x_1, \ldots, x_d) = a_i\}_{i=1}^k$ has exactly n^{d-k} solutions for any $a_1, \ldots, a_k \in Q^n$.

DEFINITION 2.2. [4] A set $\Sigma = \{f_1, f_2, \ldots, f_s\}$ of *d*-ary operations is *k*-orthogonal, $1 \leq k \leq d, k \leq s$, if every *k*-tuple $f_{i_1}, f_{i_2}, \ldots, f_{i_k}$ of distinct *d*-ary operations of Σ is orthogonal.

A set of k-orthogonal d-hypercubes of order n correspond to a set of k-orthogonal d-ary operations of order n.

Let $\langle f_1, f_2, \ldots, f_d \rangle$ be a *d*-tuple of *d*-ary operations defined on a set Q. Then a unique mapping $\theta = (f_1, f_2, \ldots, f_d) \colon Q^n \to Q^n$ is defined by

 $\theta\colon (x_1,\ldots,x_d)\mapsto (f_1(x_1,\ldots,x_d),f_2(x_1,\ldots,x_d),\ldots,f_d(x_1,\ldots,x_d)).$

The following proposition gives a connection between the orthogonal *d*-tuple of *d*-ary operations and the permutations on Q^d .

PROPOSITION 2.1. [3] A d-tuple $\langle f_1, f_2, \ldots, f_d \rangle$ of different d-ary operations on Q is orthogonal if and only if the mapping $\theta = (f_1, f_2, \ldots, f_d)$ is a permutation on Q^n .

Further, we give another connection between *d*-ary hypercubes of order *n* and *d*-ary operations of order *n*. The *d*-ary operation I_j , $1 \leq j \leq d$, defined on *Q* by $I_j(x_1, x_2, \ldots, x_d) = x_j$, is called the *j*-th selector or the *j*-th projection.

DEFINITION 2.3. [3] A set $\Sigma = \{f_1, f_2, \ldots, f_r\}$ of distinct *d*-ary operations defined on a set Q is strong orthogonal (or strong *d*-wise orthogonal) if the set $\{I_1, \ldots, I_d, f_1, f_2, \ldots, f_r\}$ is *d*-orthogonal, where each $I_j, 1 \leq j \leq d$, is the *j*-th selector.

It follows that each operation of a strong orthogonal set, which is not a selector, is a quasigroup operation. Clearly, if $r \ge d$, a strong *d*-orthogonal set is *d*-orthogonal, as well.

Similarly, a set of r hypercubes of order n and dimension d is called *mutually strong d-orthogonal* (MSdOH) if upon superimposition of corresponding j-subarrays of any j hypercubes in the set, $1 \leq j \leq \min(d, r)$, each ordered j-tuple appears exactly once [8]. Letting j = 1, it implies that each hypercube in the set is of type d - 1, and for d = 2 and $r \geq 2$, this definition is equivalent to the definition of MOLS (mutually orthogonal Latin squares). Additionally, if $r \geq d$, strong d-orthogonality implies d-orthogonality. There are at most n - 1 mutually strong d-orthogonal hypercubes of dimension d and order n.

A set of r mutually strong d-orthogonal d-hypercubes of order n corresponds to a set of r mutually strong d-orthogonal d-ary operations of order n.

3. Constructions of orthogonal *d*-ary operations

The main motivation for our first construction is the following theorem.

THEOREM 3.1. [4] Let $\langle f_1, f_2, \ldots, f_d \rangle$ be a d-tuple of d-ary operations defined on a set Q and let $f_i, 1 \leq i \leq d$, be (d-i+1)-invertible d-ary operation. Then the d-tuple $\langle F_1, F_2, \ldots, F_d \rangle$, defined by

$$F_{1}(x_{1}, \dots, x_{d}) = f_{1}(x_{1}, \dots, x_{d}),$$

$$F_{2}(x_{1}, \dots, x_{d}) = f_{2}(x_{1}, \dots, x_{d-1}, F_{1}(x_{1}, \dots, x_{d})),$$

$$F_{3}(x_{1}, \dots, x_{d}) = f_{3}(x_{1}, \dots, x_{d-2}, F_{1}(x_{1}, \dots, x_{d}), F_{2}(x_{1}, \dots, x_{d})),$$

$$\vdots$$

$$F_{d}(x_{1}, \dots, x_{d}) = f_{d}(x_{1}, F_{1}(x_{1}, \dots, x_{d}), F_{2}(x_{1}, \dots, x_{d}), \dots, F_{d-1}(x_{1}, \dots, x_{d})),$$

is orthogonal.

Similarly, we can go one step further.

THEOREM 3.2. Let $\langle f_1, f_2, \ldots, f_d \rangle$ be d-ary operations defined on a set Q and let $f_i, 1 \leq i \leq d$, be i-invertible d-ary operation. Then the d-tuple $\langle F_1, F_2, \ldots, F_d \rangle$, defined by

$$F_{1}(x_{1},...,x_{d}) = f_{1}(x_{1},...,x_{d}),$$

$$F_{2}(x_{1},...,x_{d}) = f_{2}(F_{1}(x_{1},...,x_{d}),x_{2},...,x_{d}),$$

$$F_{3}(x_{1},...,x_{d}) = f_{3}(F_{2}(x_{1},...,x_{d}),F_{1}(x_{1},...,x_{d}),x_{3},...,x_{d}),$$

$$\vdots$$

$$F_{d}(x_{1},...,x_{d}) = f_{d}(F_{d-1}(x_{1},...,x_{d}),...,F_{1}(x_{1},...,x_{d}),x_{d}),$$

is orthogonal.

PROOF. Consider the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ and substitute the values of F_1, \ldots, F_{d-1} into the last of previous equalities

$$F_d(x_1, \ldots, x_d) = a_d = f_d(a_{d-1}, a_{d-2}, \ldots, a_1, x_d).$$

We obtain a unique solution $x_d = b_d$ since the f_d is *d*-invertible operation, and so the F_d is *d*-invertible operation. Next, we substitute this value of x_d and the values of F_1, \ldots, F_{d-2} into the (d-1)-th equation

 $F_{d-1}(x_1,\ldots,x_{d-1},b_d) = f_{d-1}(a_{d-2},a_{d-3},\ldots,a_1,x_{d-1},b_d) = a_{d-1},$

and we obtain a unique $x_{d-1} = b_{d-1}$ using the (d-1)-invertibility of f_{d-1} ; F_{d-1} is (d-1)-invertible too. So, we do similar substitutions in all equalities till the first one, in which we would obtain

$$F_1(x_1, b_2, \dots, b_d) = f_1(x_1, b_2, \dots, b_d) = a_1,$$

and again we obtain a unique $x_1 = b_1$ from 1-invertibility of f_1 .

So, the given system has a unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ and the *d*-tuple F_1, \ldots, F_d is orthogonal.

Now, we give the following generalization of the previous result.

THEOREM 3.3. Let $\langle f_1, f_2, \ldots, f_d \rangle$ be d-ary operations defined on a set Q and let $f_i, 1 \leq i \leq d$, be p_i -invertible d-ary operations, where p_1, \ldots, p_d is a permutation of the positions $1, \ldots, d$. Let the d-tuple $\langle F_1, F_2, \ldots, F_d \rangle$ be defined by the procedure

$$F_1(x_1,\ldots,x_d)=f_1(x_1,\ldots,x_d),$$

$$F_2(x_1, \dots, x_d) = f_2(x_1, \dots, x_{p_1-1}, F_1(x_1, \dots, x_d), x_{p_1+1}, \dots, x_d),$$

$$F_i(x_1, \dots, x_d) = f_i(y_1, \dots, y_d), \quad i = 3, \dots, d,$$

where $y_{p_{i-1}} = F_1(x_1, ..., x_d)$, $y_{p_{i-2}} = F_2(x_1, ..., x_d)$,..., $y_{p_1} = F_{i-1}(x_1, ..., x_d)$, and $y_j = x_j$ for $j \notin \{p_1, ..., p_{i-1}\}$. Then, the d-tuple $\langle F_1, F_2, ..., F_d \rangle$ is orthogonal.

PROOF. Consider the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ and substitute the values of F_1, \ldots, F_{d-1} into the last equation:

$$F_d(x_1,\ldots,x_d) = f_d(y_1,\ldots,y_d) = a_d$$

where $y_{p_{d-1}} = a_1$, $y_{p_{d-2}} = a_2$, ..., $y_{p_1} = a_{d-1}$, and $y_{p_d} = x_{p_d}$. We obtain a unique $x_{p_d} = b_{p_d}$ since the f_d is p_d -invertible operation, and so the F_d is p_d -invertible operation. Next, we substitute this value of x_{p_d} and the values of F_1, \ldots, F_{d-2} into the (d-1)-th equation:

$$F_{d-1}(x_1,\ldots,x_{p_d-1},b_{p_d},x_{p_d+1},\ldots,x_d) = f_{d-1}(y_1,\ldots,y_d) = a_{d-1},$$

where $y_{p_{d-2}} = a_1$, $y_{p_{d-3}} = a_2$, ..., $y_{p_1} = a_{d-2}$, $y_{p_d} = b_{p_d}$, and $y_{p_{d-1}} = x_{p_{d-1}}$. We obtain a unique $x_{p_{d-1}} = b_{p_{d-1}}$ using the p_{d-1} -invertibility of f_{d-1} . So, we do similar substitutions in all equalities till the first one, in which we would obtain

$$F_1(b_1,\ldots,b_{p_1-1},x_{p_1},b_{p_1+1},\ldots,b_d) = f_1(b_1,\ldots,b_{p_1-1},x_{p_1},b_{p_1+1},\ldots,b_d) = a_1,$$

and again we obtain a unique $x_{p_1} = b_{p_1}$ from p_1 -invertibility of f_1 .

So, the given system has a unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ and the *d*-tuple F_1, \ldots, F_d is orthogonal.

The systems from Theorem 3.1 and Theorem 3.2 are special cases of Theorem 3.3, where we use the permutation $d, d-1, \ldots, 1$ in the first case, and $1, 2, \ldots, d$ in the second case.

Another special case of Theorem 3.3 is when $f_1 = \cdots = f_d = f$, where f is d-ary quasigroup operation.

COROLLARY 3.1. Let f be a d-ary quasigroup operation, and let p_1, \ldots, p_d be a permutation of the positions $1, \ldots, d$. Then the system of operations $\langle F_1, \ldots, F_d \rangle$:

$$F_1(x_1, \dots, x_d) = f(x_1, \dots, x_d),$$

$$F_2(x_1, \dots, x_d) = f(x_1, \dots, x_{p_1-1}, F_1(x_1, \dots, x_d), x_{p_1+1}, \dots, x_d),$$

$$F_i(x_1, \dots, x_d) = f(y_1, \dots, y_d), \ i = 3, \dots, d,$$

where $y_{p_{i-1}} = F_1(x_1, \ldots, x_d)$, $y_{p_{i-2}} = F_2(x_1, \ldots, x_d)$,..., $y_{p_1} = F_{i-1}(x_1, \ldots, x_d)$, and $y_j = x_j$ for $j \notin \{p_1, \ldots, p_{i-1}\}$ is orthogonal.

EXAMPLE 3.1. Let (Q, f) be the 4-ary quasigroup on $Q = \{0, 1, 2, 3\}$ defined by $f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4 \mod 4$. Take in Corollary 3.1 the permutation 3, 1, 2, 4 of the positions 1, 2, 3, 4. Then the following 4-tuple $\langle F_1, F_2, F_3, F_4 \rangle$ of orthogonal 4-ary operations is obtained, where F_2, F_3 , and F_4 are not 4-ary quasigroup operations:

$$F_1(x_1, x_2, x_3, x_4) = f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4 \mod 4,$$

$$F_2(x_1, x_2, x_3, x_4) = f(x_1, x_2, F_1(x_1, x_2, x_3, x_4), x_4) = 2x_1 + 2x_2 + x_3 + 2x_4 \mod 4,$$

$$F_3(x_1, x_2, x_3, x_4) = f(F_1(x_1, x_2, x_3, x_4), x_2, F_2(x_1, x_2, x_3, x_4), x_4)$$

= $3x_1 + 2x_3 \mod 4$,
$$F_4(x_1, x_2, x_3, x_4) = f(F_2(x_1, x_2, x_3, x_4), F_1(x_1, x_2, x_3, x_4), F_3(x_1, x_2, x_3, x_4), x_4)$$

= $2x_1 + 3x_2 \mod 4$.

One can see that F_2 is 3-invertible, F_3 is 1-invertible and F_4 is 2-invertible 4-ary operation.

We will prove that this system of functions can not be obtained from some other set of linear 4-ary operations by using Belyavskaya and Mullen method from Theorem 3.1. Let suppose the opposite - that the system F_1, F_2, F_3, F_4 can be obtained by a set $\langle g_1, g_2, g_3, g_4 \rangle$ of linear 4-ary operations using Theorem 3.1, where g_1 is 4-invertible, g_2 is 3-invertible, g_3 is 2-invertible, and g_4 is 1-invertible operation. In other words, we suppose that $\langle G_1, G_2, G_3, G_4 \rangle = \langle F_1, F_2, F_3, F_4 \rangle$, where G_i are got from g_i as in Theorem 3.1. It is clear from Theorem 3.1 that if g_i is k-invertible, then G_i is k-invertible too. Then, the following system with unknown linear functions g_i on $(\mathbb{Z}_4, +)$ should be satisfied:

$$\begin{aligned} G_1(x_1, x_2, x_3, x_4) &= g_1(x_1, x_2, x_3, x_4) = F_1(x_1, x_2, x_3, x_4) \\ &= x_1 + x_2 + x_3 + x_4 \mod 4, \\ G_2(x_1, x_2, x_3, x_4) &= g_2(x_1, x_2, x_3, G_1(x_1, x_2, x_3, x_4)) = F_2(x_1, x_2, x_3, x_4) \\ &= 2x_1 + 2x_2 + x_3 + 2x_4 \mod 4, \\ G_3(x_1, x_2, x_3, x_4) &= g_3(x_1, x_2, G_1(x_1, \dots, x_4), G_2(x_1, \dots, x_4)) \\ &= F_3(x_1, \dots, x_4) = 3x_1 + 2x_3 \mod 4, \\ G_4(x_1, x_2, x_3, x_4) &= g_4(x_1, G_1(x_1, \dots, x_4), G_2(x_1, \dots, x_4), G_3(x_1, \dots, x_4)) \\ &= F_4(x_1, \dots, x_4) = 2x_1 + 3x_2 \mod 4. \end{aligned}$$

It can be easily seen that this system has no 4-ary linear function solutions g_1 , g_2 , g_3 , g_4 . Hence, we conclude that our generalization of Theorems 1 and 2 is sound.

PROPOSITION 3.1. Every d-ary quasigroup (Q, f) of order n can rise at most d! different d-tuples $\langle F_1, F_2, \ldots, F_d \rangle$ of orthogonal d-ary operations generated by the procedure given in Corollary 3.1, where $f_1 = \cdots = f_d = f$.

The following proposition is a generalization of Proposition 7 in [4].

PROPOSITION 3.2. Let (Q, f) be a d-ary quasigroup of order n. Then the (d+1)-tuple $\langle F_1, F_2, \ldots, F_{d+1} \rangle$, defined by

$$F_{1}(x_{1},...,x_{d}) = f(x_{1},...,x_{d}),$$

$$F_{2}(x_{1},...,x_{d}) = f(x_{1},...,x_{d-1},F_{1}(x_{1},...,x_{d})),$$

$$F_{3}(x_{1},...,x_{d}) = f(x_{1},...,x_{d-2},F_{1}(x_{1},...,x_{d}),F_{2}(x_{1},...,x_{d})),$$

$$\vdots$$

$$F_{d}(x_{1},...,x_{d}) = f(x_{1},F_{1}(x_{1},...,x_{d}),F_{2}(x_{1},...,x_{d}),...,F_{d-1}(x_{1},...,x_{d})),$$

$$F_{d+1}(x_{1},...,x_{d}) = f(F_{1}(x_{1},...,x_{d}),F_{2}(x_{1},...,x_{d}),...,F_{d}(x_{1},...,x_{d})),$$
is d-orthogonal.

PROOF. Orthogonality of the *d*-tuple $\langle F_1, F_2, \ldots, F_d \rangle$ follows from Theorem 3.1. Consider the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=2}^{d+1}$. From the last equation $a_{d+1} = F_{d+1}(x_1, \ldots, x_d)$, we have $f(f(x_1, \ldots, x_d), a_2, \ldots, a_d) = a_{d+1}$ and it follows that

$$F_1(x_1,\ldots,x_d) = f(x_1,\ldots,x_d) = {}^{(1)} f(a_{d+1},a_2,\ldots,a_d) = a_1$$

for some $a_1 \in Q$, where $(Q, {}^{(1)}f)$ is the 1-th inverse *d*-ary quasigroup for (Q, f). Now, as before, the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ has a unique solution

Now, as before, the system $\{F_i(x_1,\ldots,x_d) = a_i\}_{i=1}$ has a unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ over Q. Since

$$F_{d+1}(b_1, \dots, b_d) = f(F_1(b_1, \dots, b_d), F_2(b_1, \dots, b_d), \dots, F_d(b_1, \dots, b_d))$$
$$= f({}^{(1)}f(a_{d+1}, a_2, \dots, a_d), a_2, \dots, a_d) = a_{d+1},$$

we have that $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ is the unique solution of the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=2}^{d+1}$ as well, meaning the system is orthogonal.

Finally, for $2 \leq j \leq d$, consider the system

$$\{F_i(x_1,\ldots,x_d)=a_i \mid i \in \{1,\ldots,j-1,j+1,\ldots,d+1\}\}.$$

We have $F_j(x_1, \ldots, x_d) = f(x_1, \ldots, x_{d-j+1}, a_1, \ldots, a_{j-1})$. By replacing the values for $F_t, 1 \leq t \leq d$, in the equation $F_{d+1}(x_1, \ldots, x_d) = a_{d+1}$, we obtain

$$a_{d+1} = f(a_1, \dots, a_{j-1}, f(x_1, \dots, x_{d-j+1}, a_1, \dots, a_{j-1}), a_{j+1}, \dots, a_d),$$

which implies

$$f(x_1, \dots, x_{d-j+1}, a_1, \dots, a_{j-1}) = {}^{(j)} f(a_1, \dots, a_{j-1}, a_{d+1}, a_{j+1}, \dots, a_d) = a_j,$$

for some $a_j \in Q$. As before, the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ has a unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ over Q. Now we compute

$$F_{d+1}(b_1,\ldots,b_d) = f(F_1(b_1,\ldots,b_d),F_2(b_1,\ldots,b_d),\ldots,F_d(b_1,\ldots,b_d))$$

1.

 $= f(a_1, \dots, a_{j-1}, {}^{(j)}f(a_1, \dots, a_{j-1}, a_{d+1}, a_{j+1}, \dots, a_d), a_{j+1}, \dots, a_d) = a_{d+1}.$

We conclude that the system

$$\{F_i(x_1,\ldots,x_d) = a_i \mid i \in \{1,\ldots,j-1,j+1,\ldots,d+1\}\}$$

has the unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ over Q. This completes the proof of the theorem.

Now we can give the second main construction, which is a generalization of Proposition 3.2.

THEOREM 3.4. Let (Q, f) be a d-ary quasigroup of order n. Let p_1, \ldots, p_d be a permutation of the positions $1, \ldots, d$. Then the (d + 1)-tuple $\langle F_1, F_2, \ldots, F_{d+1} \rangle$, defined by

$$F_1(x_1, \dots, x_d) = f(x_1, \dots, x_d),$$

$$F_2(x_1, \dots, x_d) = f(x_1, \dots, x_{p_1-1}, F_1(x_1, \dots, x_d), x_{p_1+1}, \dots, x_d),$$

$$F_i(x_1, \dots, x_d) = f(y_1, \dots, y_d), \ i = 3, \dots, d+1,$$

where $y_{p_{i-1}} = F_1(x_1, \ldots, x_d)$, $y_{p_{i-2}} = F_2(x_1, \ldots, x_d)$,..., $y_{p_1} = F_{i-1}(x_1, \ldots, x_d)$, and $y_j = x_j$ for $j \notin \{p_1, \ldots, p_{i-1}\}$, is d-wise orthogonal. PROOF. Orthogonality of the *d*-tuple $\langle F_1, F_2, \ldots, F_d \rangle$ follows from Proposition 3.2.

Consider the system $\{F_i(x_1, ..., x_d) = a_i\}_{i=2}^{d+1}$. From the last equation, we have $F_{d+1}(x_1, ..., x_d) = f(y_1, ..., y_d) = a_{d+1}$, where $y_{p_k} = a_{d+1-k}$ for k = 1, ..., d-1 and $y_{p_d} = F_1(x_1, ..., x_d) = f(x_1, ..., x_d)$.

It follows that $a_{d+1} = f(y_1, \ldots, y_{p_d-1}, f(x_1, \ldots, x_d), y_{p_d+1}, \ldots, y_d)$, and that implies $f(x_1, \ldots, x_d) = {}^{(p_d)} f(y_1, \ldots, y_{p_d-1}, a_{d+1}, y_{p_d+1}, \ldots, y_d) \in Q$, since $y_t \in Q$. So, $F_1(x_1, \ldots, x_d) = f(x_1, \ldots, x_d) = a_1$ for some $a_1 \in Q$.

Next we replace the value a_1 of $F_1(x_1, \ldots, x_d)$ in the equation for F_d , obtaining $F_d(x_1, \ldots, x_d) = f(y_1, \ldots, y_d) = a_d$, where $y_{p_d} = x_{p_d}, y_{p_{d-1}} = a_1$ and $y_{p_k} = a_{d-k}$ for $k = 1, \ldots, d-2$. Because f is p_d -invertible operation, we obtain a unique $x_{p_d} = b_{p_d} \in Q$.

For $i = d-1, \ldots, 2$, we substitute the value a_1 of $F_1(x_1, \ldots, x_d)$ and the already obtained unique new values $b_{p_d}, \ldots, b_{p_{i+1}}$ of F_d, \ldots, F_{i+1} , respectively, and we obtain $F_i(x_1, \ldots, x_d) = f(y_1, \ldots, y_d) = a_i$, where $y_{p_i} = x_{p_i}, y_{p_{i-1}} = a_1, y_{p_k} = b_{p_k}$ for $k = d, \ldots, i+1$, and $y_{p_k} = a_{i-k}$ for $k = 1, \ldots, i-1$. Because f is p_i -invertible operation, this leads to a unique $x_{p_i} = b_{p_i}$.

Finally, in the equation $F_1(x_1, \ldots, x_d) = f(x_1, \ldots, x_d) = a_1$, we replace x_{p_k} with b_{p_k} for $k = 2, \ldots, d$, and because f is p_1 -invertible operation, we obtain a unique $x_{p_1} = b_{p_1}$. So, the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=2}^{d+1}$ is orthogonal.

To complete the proof, we have to show that the *d*-tuples $\langle F_i \mid i \neq j, i = 1, \dots, d+1 \rangle$ for each $j, 2 \leq j \leq d$, are orthogonal. For that aim, consider the systems of equations $\{F_i(x_1, \dots, x_d) = a_i\}_{i=1, i\neq j}^{d+1}$ for each $j, 2 \leq j \leq d$. We have

$$F_{d+1}(x_1,\ldots,x_d) = f(y_1,\ldots,y_d) = a_{d+1},$$

where $y_{p_{d+1-k}} = a_k$ for $k \neq j$ and k = 1, ..., d, and $y_{p_{d+1-j}} = F_j(x_1, ..., x_d)$. From the equality $f(y_1, ..., y_{p_{d+1-j}-1}, F_j(x_1, ..., x_d), y_{p_{d+1-j}+1}, ..., y_d) = a_{d+1}$,

since $y_t \in Q$, it follows that

$$F_j(x_1,\ldots,x_d) = {}^{(p_{d+1-j})} f(y_1,\ldots,y_{p_{d+1-j}-1},a_{d+1},y_{p_{d+1-j}+1},\ldots,y_d) \in Q,$$

hence we have $F_j(x_1, \ldots, x_d) = a_j$ for some $a_j \in Q$.

There are two cases to consider.

Case j = d. We have $F_d(x_1, \ldots, x_d) = a_d$, and the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ has a unique solution b_1, b_2, \ldots, b_d according to Theorem 4. We compute

$$F_{d+1}(b_1,\ldots,b_d) = f(y_1,\ldots,y_d),$$

where $y_{p_{d+1-k}} = F_k(b_1, ..., b_d) = a_k$ for k = 1, ..., d-1 and

$$y_{p_1} = F_d(b_1, \dots, b_d) = {}^{(p_1)} f(y_1, \dots, y_{p_1-1}, a_{d+1}, y_{p_1+1}, \dots, y_d).$$

The last equation implies $f(y_1, \ldots, y_d) = a_{d+1}$, i.e., $F_{d+1}(b_1, \ldots, b_d) = a_{d+1}$, hence b_1, \ldots, b_d is the unique solution of the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i \neq d, i=1}^{d+1}$. So, the *d*-tuple $\langle F_i | i = 1, \ldots, d-1, d+1 \rangle$ is orthogonal.

Case j < d. We replace the value a_j of $F_j(x_1, \ldots, x_d)$ in the equation for F_d , obtaining $F_d(x_1, \ldots, x_d) = f(y_1, \ldots, y_d) = a_d$, where $y_{p_d} = x_{p_d}$, $y_{p_{d-j}} = a_j$ and

 $y_{p_{d-k}} = a_k$ for $k \neq j$ and $k = 1, \ldots, d-1$. Because f is p_d -invertible operation, we obtain a unique $x_{p_d} = b_{p_d}$.

In the same way, from $F_{d-1}(x_1, \ldots, x_d) = f(y_1, \ldots, y_d) = a_{d-1}$, where $y_{p_d} = x_{p_d} = b_{p_d}$, $y_{p_{d-1}} = x_{p_{d-1}}$, $y_{p_{d-1-j}} = a_j$ and $y_{p_{d-1-k}} = a_k$ for $k \neq j$ and k = 1, $\ldots, d-2$, we can compute the value $x_{p_{d-1}} = b_{p_{d-1}}$, since f is p_{d-1} -invertible. Continuing, we can compute the values $x_{p_d} = b_{p_d}$, $x_{p_{d-1}} = b_{p_{d-1}}$, $\ldots, x_{p_{j+1}} = b_{p_{j+1}}$. For $i = j - 1, \ldots, 1$, we substitute obtained new values in the equation for F_i

For i = j - 1, ..., 1, we substitute obtained new values in the equation for F_i and we obtain $F_i(x_1, ..., x_d) = f(y_1, ..., y_d) = a_i$, where $y_{p_i} = x_{p_i}, y_{p_{i-k}} = b_{p_k}$ for k = d, ..., i + 1, and $y_{p_k} = a_k$ for k = 1, ..., i - 1. Because f is p_i -invertible operation, this leads to a unique $x_{p_i} = b_{p_i}$.

Finally, in the equation $F_j(x_1, \ldots, x_d) = a_j$, we replace x_{p_k} with b_{p_k} for $k \neq j$ and $k = 1, \ldots, d$, and because f is p_j -invertible operation, we obtain a unique $x_{p_j} = b_{p_j}$.

We compute $F_{d+1}(b_1, ..., b_d) = f(y_1, ..., y_d)$, where $y_{p_{d+1-k}} = F_k(b_1, ..., b_d) = a_k$ for $k = 1, ..., d, k \neq j$, and

$$y_{p_{d+1-j}} = F_j(b_1, \dots, b_d) = {}^{(p_{d+1-j})} f(y_1, \dots, y_{p_{d+1-j}-1}, a_{d+1}, y_{p_{d+1-j}+1}, \dots, y_d).$$

The last equation implies $f(y_1, \ldots, y_d) = a_{d+1}$, i.e., $F_{d+1}(b_1, \ldots, b_d) = a_{d+1}$, hence b_1, \ldots, b_d is the unique solution of the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i \neq d, i=1}^{d+1}$. So, the *d*-tuple $\langle F_i \mid i = 1, \ldots, j-1, j+1, \ldots, d+1 \rangle$ is orthogonal. \Box

At the end, we give one more construction.

THEOREM 3.5. Let $\langle f_1, f_2, \ldots, f_d \rangle$ be d-ary operations defined on a set Q and let $f_i, 1 \leq i \leq d$, be 1-invertible d-ary operation. Then the d-tuple $\langle F_1, F_2, \ldots, \ldots, F_d \rangle$, defined by

$$F_{1}(x_{1}, \dots, x_{d}) = f_{1}(x_{1}, \dots, x_{d}),$$

$$F_{2}(x_{1}, \dots, x_{d}) = f_{2}(x_{2}, \dots, x_{d}, F_{1}(x_{1}, \dots, x_{d})),$$

$$F_{3}(x_{1}, \dots, x_{d}) = f_{3}(x_{3}, \dots, x_{d}, F_{1}(x_{1}, \dots, x_{d}), F_{2}(x_{1}, \dots, x_{d})),$$

$$\vdots$$

$$F_{d}(x_{1}, \dots, x_{d}) = f_{d}(x_{d}, F_{1}(x_{1}, \dots, x_{d}), F_{2}(x_{1}, \dots, x_{d}), \dots, F_{d-1}(x_{1}, \dots, x_{d})),$$
is orthogonal.

PROOF. Consider the system $\{F_i(x_1, \ldots, x_d) = a_i\}_{i=1}^d$ and substitute the values of F_1, \ldots, F_{d-1} into the last equation:

$$F_d(x_1, \ldots, x_d) = f_d(x_d, a_1, a_2, \ldots, a_{d-1}) = a_d.$$

We obtain a unique $x_d = b_d$ since the f_d is 1-invertible operation, and so the F_d is *d*-invertible operation. Next, we substitute this value of x_d and the values of F_1, \ldots, F_{d-2} into the (d-1)-th equation:

 $F_{d-1}(x_1,\ldots,x_{d-1},b_d) = f_{d-1}(x_{d-1},b_d,a_1,a_2,\ldots,a_{d-2}) = a_{d-1},$

and we obtain a unique $x_{d-1} = b_{d-1}$ using the 1-invertibility of f_{d-1} ; again, we have that F_{d-1} is a (d-1)-invertible operation. Proceeding in the same way, we do similar substitution in all equations till the first one,

$$F_1(x_1, b_2, \dots, b_d) = f_1(x_1, b_2, \dots, b_d) = a_1.$$

We obtain a unique $x_1 = b_1$ from 1-invertibility of f_1 .

So, the given system has a unique solution $x_1 = b_1, x_2 = b_2, \ldots, x_d = b_d$ and the *d*-tuple $\langle F_1, \ldots, F_d \rangle$ is orthogonal.

A special case of Theorem 3.5 is when $f_1 = \cdots = f_d = f$, where (Q, f) is an arbitrary d-ary quasigroup (this special case of Theorem 3.5 is firstly proved in [11]). The operations F_1, F_2, \ldots, F_d are known as *recursive derivatives* of f[5, 6]. Recursive derivatives are also the functions defined by $F_{i+d}(x_1, \ldots, x_d) =$ $f(F_i(x_1, \ldots, x_d), \ldots, F_{i+d-1}(x_1, \ldots, x_d)), i \ge 1$. A d-ary quasigroup (Q, f) is called *recursively r-differentiable* if all recursive derivatives F_2, \ldots, F_{r+1} are quasigroup operations.

EXAMPLE 3.2. Let (Q, f) be the 4-ary quasigroup on $Q = \{0, 1, 2, 3, 4\}$ with the operation

$$f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4 \mod 5.$$

We compute by Theorem 3.5 the 4-ary operations

$$F_2(x_1, x_2, x_3, x_4) = x_1 + 2x_2 + 2x_3 + 2x_4 \mod 5,$$

$$F_3(x_1, x_2, x_3, x_4) = 2x_1 + 3x_2 + 4x_3 + 4x_4 \mod 5,$$

$$F_4(x_1, x_2, x_3, x_4) = 4x_1 + x_2 + 2x_3 + 3x_4 \mod 5.$$

All of the operations F_2, F_3, F_4 are quasigroup operations, so (Q, f) is an example of a recursively 3-differentiable quasigroup.

References

- V.D. Belousov, M.D. Sandik, n-ary Quasi-groups and Loops, Sib. Math. J. 7(1) (1966), 24–42.
- V. D. Belousov, T. Yakubov, On orthogonal n-ary operations, Vopr. Kibern., Mosk. 16 (1975), 3–17. (in Russian)
- A. S. Bektenov, T. Yakubov, Systems of orthogonal n-ary operations, Izv. Akad. Nauk Mold. SSR, Ser. Fiz.-Tekh. Mat. Nauk 3 (1974), 7–14. (in Russian)
- G. B. Belyavskaya, G. L. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups Relat. Syst. 13 (2005), 73–86.
- E. Couselo, S. Gonsales, V. Markov, A. Nechaev, Recursive MDS-codes and recursively differentiable quasigroup, Discrete Math. 10(2) (1998), 3–29.
- 6. _____, The parameters of recursive MDS-codes, Discrete Math. 12(4) (2000), 3–24.
- J. Dénes, A. D. Keedwell, Latin Squares and Their Applications, Academic Press, New York, 1974.
- J. T. Ethier, Strong Forms of Orthogonality for Sets of Hypercubes, PhD thesis, Pennsylvania State University, 2008.
- J. T. Ethier, G. L. Mullen, Strong forms of orthogonality for sets of hypercubes, Discrete Math. 312(12–13) (2012), 2050–2061.
- A. Heppes, P. Révész, A new generalization of the method of latin squares and orthogonal latin squares and its application to the design of experiments, Magyar Tud. Akad. Mat. Int. Közl. 1 (1956), 379–390.
- V. I. Izbash, P. Syrbu, Recursively differentiable quasigroups and complete recursive codes, Comment. Math. Univ. Carolinae 45 (2004), 257–263.

 C. F. Laywine, G. L. Mullen, G. Whittle, D-dimensional hypecubes and the Euler and Mac-Neish conjectures, Monatsh. Math. 111 (1995), 223–238.

Faculty for Computer Science and Engineering Ss Cyril and Methodius University Skopje, Macedonia smile.markovski@gmail.com

Faculty for Infromatics Goce Delcev University Stip, Macedonia aleksandra.mileva@ugd.edu.mk (Received 04 03 2016)