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ON THE NUMBER OF SUBGROUPS OF A GIVEN

EXPONENT IN A FINITE ABELIAN GROUP

Marius Tărnăuceanu and László Tóth

Abstract. This paper deals with the number of subgroups of a given ex-
ponent in a finite abelian group. Explicit formulas are obtained in the case
of rank two and rank three abelian groups. An asymptotic formula is also
presented.

1. Introduction

One of the most important problems of combinatorial abelian group theory is
to determine the number of subgroups of a finite abelian group. This topic has
enjoyed a constant evolution starting with the first half of the 20th century. Since
a finite abelian group is a direct product of abelian p-groups, the above counting
problem can be reduced to p-groups. Formulas which give the number of subgroups
of type µ of a finite p-group of type λ were established by Delsarte [4], Djubjuk
[5] and Yeh [15]. An excellent survey on this subject together with connections to
symmetric functions was written by Butler [2] in 1994.

Another way to find the total number of subgroups of finite abelian p-groups
was described by Bhowmik [1] by using divisor functions of matrices. By invoking
different arguments, formulas in the case of rank two p-groups were obtained by
Călugăreanu [3], Tărnăuceanu [11, 12], Hampejs, Holighaus, Tóth, Wiesmeyr [6],
Tóth [14] and for rank three p-groups by Hampejs, Tóth [7], Oh [8]. Note that
the papers [6, 7, 14] include also direct formulas for the groups Zm × Zn and
Zm × Zn × Zr, respectively, where m, n, r ∈ N∗ := {1, 2, . . . } are arbitrary.

The purpose of the current paper is to count the number of subgroups of a
given exponent in a finite abelian p-group. Explicit formulas are obtained for
rank two and rank three p-groups. The numbers of subgroups of exponent p,
respectively p2 in an arbitrary p-group are also considered. We prove that if two
finite abelian groups have the same number of subgroups of any exponent, then they
are isomorphic. We also deduce compact formulas for the number of subgroups of a
given exponent of the group Zm ×Zn, where m, n ∈ N∗ are arbitrary. Furthermore,
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we obtain an exact formula for the sum of exponents of the subgroups of Zm ×Zn,
and an asymptotic formula for the arithmetic means of exponents of the subgroups
of Zn × Zn.

For the proofs we use two different approaches. The first one is based on
the known formula for the number of subgroups of a given type in an abelian p-
group, given in terms of gaussian coefficients (Theorem 2.1). The second method,
applicable only for rank two groups, uses the representation of the subgroups of
Zm × Zn obtained by the second author in [14] (Theorem 3.1).

Most of our notation is standard and usually will not be repeated here. For
basic notions and results on group theory we refer the reader to [10].

2. First approach

Let G be a finite abelian group of order n and G = G1 × G2 × · · · × Gm be the
primary decomposition of G, where Gi is a pi-group (i = 1, 2, . . . , m). For every
divisor d = pα1

1 pα2

2 . . . pαm
m of n we denote Ed(G) = {H 6 G : exp(H) = d}.

Since the subgroups H of G are of type H = H1 × H2 × · · ·× Hm with Hi 6 Gi

(i = 1, 2, . . . , m), we infer that

(2.1) |Ed(G)| =

m∏

i=1

|Ep
αi
i

(Gi)|.

Equality (2.1) shows that the problem of counting the number of subgroups of
exponent d in G is reduced to p-groups. So, in this section we will assume that G
is a finite abelian p-group, that is a group of type Zpλ1 × Zpλ2 × · · · × Zpλk with
λ1 > λ2 > · · · > λk > 1. In this case we will say that G is of type λ, where λ is the
partition (λ1, λ2, . . . , λk, 0, . . . ), and we will denote it by Gλ.

We recall the following well–known result, which gives the number of subgroups
of type µ of Gλ (see [4, 5, 15]).

Theorem 2.1. For every partition µ � λ (i.e., µi 6 λi for every i ∈ N∗) the

number of subgroups of type µ in Gλ is

αλ(µ; p) =
∏

i>1

p(ai−bi)bi+1

(
ai − bi+1

bi − bi+1

)

p

,

where λ′ = (a1, a2, . . . , aλ1
, 0, . . . ), µ′ = (b1, b2, . . . , bµ1

, 0, . . . ) are the partitions

conjugate to λ and µ, respectively, and
(

n

k

)

p

=

∏n
i=1(pi − 1)

∏k
i=1(pi − 1)

∏n−k
i=1 (pi − 1)

is the gaussian binomial coefficient (it is understood that
∏m

i=1(pi − 1) = 1 for

m = 0).

By using Theorem 2.1 a way to compute the number of subgroups of exponent
pi in Gλ can be inferred, namely

|Epi (Gλ)| =
∑

µ�λ, µ1=i

αλ(µ; p) (i = 0, 1, . . . , λ1),
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which is a polynomial in p with integer coefficients. If i > 1 and k > 2 are arbitrary,
then the polynomial |Epi(Gλ)| can not be given explicitly, but we will do this in
some particular cases. Namely, we will consider the following cases: k ∈ {2, 3} and
i > 1 arbitrary, i ∈ {1, 2} and k > 2 arbitrary.

We remark first that since
∑

H∈E
pi (Gλ) H 6 Gλ and

∑

H∈E
pi (Gλ) H is of type

Zpi × · · · × Zpi × Zpλr × · · · × Zpλk , where r = min{j : λj < i}, we have

|Epi (Gλ)| = |Epi(Zpi × · · · × Zpi × Zpλr × · · · × Zpλk )|

with the convention that the direct product Zpλr × · · · × Zpλk is trivial for i 6 λk.
Our first result gives a precise expression for |Epi(Gλ)| in the case k = 2.

Proposition 2.1. Let Gλ = Zpλ1 × Zpλ2 with λ1 > λ2 > 1. Then

|Epi (Gλ)| =

{
pi+1+pi−2

p−1 , 1 6 i 6 λ2,
pλ2+1−1

p−1 , λ2 < i 6 λ1.

Proof. We have λ = (λ1, λ2, 0, . . . ) and consequently

λ′ = (2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . ),

where the number of 2’s is λ2 and the number of 1’s is λ1 − λ2. Then

|Epi (Gλ)| =

i∑

j=0

Ni,j,

where Ni,j denotes the number of subgroups of type (i, j) in Gλ, or equivalently in
Zpi × Zpi if i 6 λ2 or in Zpi × Zpλ2 if λ2 < i 6 λ1.

In the first case we obtain Ni,j = (p + 1)pi−j−1 for j = 0, 1, . . . , i − 1, and
Ni,i = 1. Therefore

|Epi (Zpi × Zpi )| = 1 +

i−1∑

j=0

(p + 1)pi−j−1 =
pi+1 + pi − 2

p − 1
.

In the second case we obtain Ni,j = pλ2−j for j = 0, 1, . . . , λ2. Therefore

|Epi(Zpi × Zpλ2 )| =

λ2∑

j=0

pλ2−j =
pλ2+1 − 1

p − 1
.

This completes the proof. �

Example 2.1. We have

|Epi (Zp4 × Zp2 )| =







1, i = 0,

p + 2, i = 1,

p2 + 2p + 2, i = 2,

p2 + p + 1, i = 3 or i = 4.

In particular, by summing all quantities |Epi (Gλ)| (i = 0, 1, . . . , λ1), we obtain
the total number of subgroups of Gλ (see also [11, Prop. 2.9], [12, Th. 3.3]).
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Corollary 2.1. The total number of subgroups of Gλ = Zpλ1 × Zpλ2 where

λ1 > λ2 > 1, is

(2.2)
1

(p−1)2

[
(λ1−λ2+1)pλ2+2−(λ1−λ2−1)pλ2+1−(λ1+λ2+3)p+(λ1+λ2 + 1)

]
.

Example 2.2. The total number of subgroups of Zp4 × Zp2 is 3p2 + 5p + 7.

Now consider the case of rank three p-groups. We need the following lemma.

Lemma 2.1. Let Ni,j,ℓ denote the number of subgroups of type (i, j, ℓ) (i > j >

ℓ > 0) in Gλ = Zpλ1 × Zpλ2 × Zpλ3 with λ1 > λ2 > λ3 > 1. Then

Ni,j,ℓ =







p2i−2ℓ−3(p + 1)(p2 + p + 1), ℓ < j < i 6 λ3,

p2(i−ℓ−1)(p2 + p + 1), ℓ < j = i 6 λ3 or ℓ = j < i 6 λ3,

1, ℓ = j = i 6 λ3,

pλ3+i−2ℓ−2(p + 1)2, ℓ < j 6 λ3 < i 6 λ2,

pλ3+i−2j−1(p + 1), ℓ = j 6 λ3 < i 6 λ2,

p2λ3+i−j−2ℓ−1(p + 1), ℓ 6 λ3 < j < i 6 λ2,

p2(λ3−ℓ), ℓ 6 λ3 < j = i 6 λ2,

pλ2+2λ3−j−2ℓ, ℓ 6 λ3 < j 6 λ2 < i 6 λ1,

pλ2+λ3−2ℓ−1(p + 1), ℓ < j 6 λ3 6 λ2 < i 6 λ1,

pλ2+λ3−2ℓ, ℓ = j 6 λ3 6 λ2 < i 6 λ1.

Proof. We use Theorem 2.1. We distinguish the following three cases:

I. If i 6 λ3, then Ni,j,ℓ is the number of subgroups of type (i, j, ℓ) in Zpi ×
Zpi × Zpi . Here we need to consider λ = (i, i, i, 0, . . . ) with λ′ = (3, 3, . . . , 3, 0 . . . ),
where the number of 3’s is i, and µ = (i, j, ℓ, 0, . . . ) with

µ′ = (3, 3, . . . , 3, 2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . ),

where the number of 3’s is ℓ, the number of 2’s is j − ℓ, the number of 1’s is i − j.
In the subcase ℓ < j < i 6 λ3 we deduce

Ni,j,ℓ = (p2)j−ℓ−1p(p + 1)(p2)i−j−1(p2 + p + 1) = p2i−2ℓ−3(p + 1)(p2 + p + 1).

The subcases ℓ < j = i 6 λ3, ℓ = j < i 6 λ3 and ℓ = j = i 6 λ3 are treated
similar.

II. If λ3 < i 6 λ2, then Ni,j,ℓ is the number of subgroups of type (i, j, ℓ) in Zpi ×
Zpi × Zpλ3 . We consider λ = (i, i, λ3, 0, . . . ) with λ′ = (3, 3, . . . , 3, 2, 2, . . . , 2, 0 . . . )
where the number of 3’s is λ3, the number of 2’s is i−λ3, and µ, µ′ like in the case I.

For example, in the subcase ℓ = j 6 λ3 < i 6 λ2 we obtain

Ni,j,ℓ = (p2)λ3−jpi−λ3−1(p + 1) = pλ3+i−2j−1(p + 1).

III. If λ2 < i 6 λ1, then Ni,j,ℓ is the number of subgroups of type (i, j, ℓ) in
Zpi × Zpλ2 × Zpλ3 . We consider λ = (i, λ2, λ3, 0, . . . ) with

λ′ = (3, 3, . . . , 3, 2, 2, . . . , 2, 1, 1, . . . , 1, 0 . . . ),
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where the number of 3’s is λ3, the number of 2’s is λ2 − λ3, the number of 1’s is
i − λ2, and µ, µ′ like in the case I. �

Proposition 2.2. Let Gλ = Zpλ1 ×Zpλ2 ×Zpλ3 with λ1 > λ2 > λ3 > 1. Then

|Epi (Gλ)| =







p2i−1((i+1)p4+(i−1)p3−p2−(i+2)p−i)+3
(p2−1)(p−1) , 1 6 i 6 λ3,

(λ3+1)pλ3+i(p2−1)(p+1)−2p2λ3+2+2
(p2−1)(p−1) , λ3 < i 6 λ2,

(λ3+1)pλ2+λ3+1(p2−1)−p2λ3+2+1
(p2−1)(p−1) , λ2 < i 6 λ1.

Proof. We have |Epi(Gλ)| =
∑

06ℓ6j6i Ni,j,ℓ and use Lemma 2.1.
Case I. If i 6 λ3, then

|Epi (Gλ)| = Ni,i,i +

i−1∑

ℓ=0

i−1∑

j=ℓ+1

Ni,j,ℓ +

i−1∑

ℓ=0

Ni,i,ℓ +

i−1∑

ℓ=0

Ni,ℓ,ℓ

= 1 +

i−1∑

ℓ=0

i−1∑

j=ℓ+1

p2i−2ℓ−3(p + 1)(p2 + p + 1) + 2

i−1∑

ℓ=0

p2(i−ℓ−1)(p2 + p + 1)

= 1 +
p2 + p + 1

(p2 − 1)(p − 1)
((i − 1)p2i+1 − ip2i−1 + p) + 2(p2 + p + 1)

p2i − 1

p2 − 1

=
p2i−1((i + 1)p4 + (i − 1)p3 − p2 − (i + 2)p − i) + 3

(p2 − 1)(p − 1)
,

by direct computations.
II. If λ3 < i 6 λ2, then we have

|Epi(Gλ)| =

λ3∑

ℓ=0

λ3∑

j=ℓ+1

Ni,j,ℓ +

λ3∑

ℓ=0

i−1∑

j=λ3+1

Ni,j,ℓ +

λ3∑

ℓ=0

Ni,i,ℓ +

λ3∑

ℓ=0

Ni,ℓ,ℓ

=

λ3∑

ℓ=0

λ3∑

j=ℓ+1

pλ3+i−2ℓ−2(p + 1)2 +

λ3∑

ℓ=0

i−1∑

j=λ3+1

p2λ3+i−j−2ℓ−1(p + 1)

+

λ3∑

ℓ=0

p2(λ3−ℓ) +

λ3∑

ℓ=0

pλ3+i−2ℓ−1(p + 1)

=
λ3pi−2(p + 1)2 + pλ3 + pi + pi−1

pλ3 (p2 − 1)
(p2λ3+2 − 1)

−
pi−2(p2λ3+2 − (λ3 + 1)p2 + λ3)

pλ3 (p − 1)2 +
(p2λ3+2 − 1)(pi−λ3−1 − 1)

(p − 1)2 ,

which gives the above formula.
III. Finally, if λ2 < i 6 λ1, then

|Epi(Gλ)| =

λ3∑

ℓ=0

λ2∑

j=λ3+1

Ni,j,ℓ +

λ3−1∑

ℓ=0

λ3∑

j=ℓ+1

Ni,j,ℓ +

λ3∑

ℓ=0

Ni,ℓ,ℓ
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=

λ3∑

ℓ=0

λ2∑

j=λ3+1

pλ2+2λ3−j−2ℓ +

λ3−1∑

ℓ=0

λ3∑

j=ℓ+1

pλ2+λ3−2ℓ−1(p + 1) +

λ3∑

ℓ=0

pλ2+λ3−2ℓ

=
(p2λ3+2 − 1)(pλ2−λ3 − 1)

(p2 − 1)(p − 1)
+

pλ2−λ3+1

(p2 − 1)(p − 1)
λ3p2λ3+2 − (λ3 + 1)p2λ3 + 1)

+ pλ2−λ3
p2λ3+2 − 1

p2 − 1
,

leading to the given result. �

Note that Proposition 2.2 is valid also in the case λ3 = 0, when it reduces to
Proposition 2.1.

Example 2.3. We have

|Epi(Zp4 × Zp2 × Zp2 )| =







1, i = 0,

2p2 + 2p + 3, i = 1,

3p4 + 4p3 + 6p2 + 3p + 3, i = 2,

3p4 + 2p3 + 2p2 + p + 1, i = 3 or i = 4.

Corollary 2.2. The total number of subgroups of Gλ = Zpλ1 × Zpλ2 × Zpλ3 ,

where λ1 > λ2 > λ3 > 1, is

A

(p2 − 1)2(p − 1)
,

where

A = (λ3 + 1)(λ1 − λ2 + 1)pλ2+λ3+5 + 2(λ3 + 1)pλ2+λ3+4

− 2(λ3 + 1)(λ1 − λ2)pλ2+λ3+3 − 2(λ3 + 1)pλ2+λ3+2

+ (λ3 + 1)(λ1 − λ2 − 1)pλ2+λ3+1 − (λ1 + λ2 − λ3 + 3)p2λ3+4

− 2p2λ3+3 + (λ1 + λ2 − λ3 − 1)p2λ3+2

+ (λ1 + λ2 + λ3 + 5)p2 + 2p − (λ1 + λ2 + λ3 + 1).

Proof. The total number of subgroups of Gλ is

λ1∑

i=0

|Epi(Gλ)| =
∑

06i6λ3

|Epi (Gλ)| +
∑

λ3<i6λ2

|Epi(Gλ)| +
∑

λ2<i6λ1

|Epi(Gλ)|

and summing the quantities given in Proposition 2.2 we deduce the result. �

We remark that an equivalent formula to that given in Corollary 2.2 was ob-
tained in [8, Cor. 2.2] by using different arguments. Corollary 2.2 is valid also in
the case λ3 = 0, when it reduces to Corollary 2.1.

Example 2.4. The total number of subgroups of Zp4 ×Zp2 ×Zp2 is 9p4 +8p3 +
12p2 + 7p + 9.
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Next consider the number of subgroups of exponent p (that is, the number of
elementary abelian subgroups) in Gλ, which equals the total number of nontrivial
subgroups of (Zp)k. Since (Zp)k is a k–dimensional linear space over Zp, the number
in question is exactly the total number of nonzero subspaces, which is, as well-

known,
∑k

i=1

(
k
i

)

p
(Galois number). So we have the following result.

Proposition 2.3. Let Gλ = Zpλ1 × Zpλ2 × · · · × Zpλk with λ1 > λ2 > · · · >

λk > 1. Then |Ep(Gλ)| =
∑k

r=1

(
k
r

)

p
.

We give a direct proof of this formula based on Theorem 2.1.

Proof. We use Theorem 2.1 in the case λ = (1, 1, . . . , 1, 0, . . . ), where the
number of 1’s is k, and µ = (1, 1, . . . , 1, 0, . . . ), where the number of 1’s is r with
1 6 r 6 k. Here λ′ = (k, 0, 0, . . . ), µ′ = (r, 0, 0, . . . ) and obtain that the number of

subgroups of type µ is
(

k
r

)

p
, while the number of subgroups of exponent 1 is exactly

∑k
r=1

(
k
r

)

p
. �

Example 2.5. We have for any λ1 > λ2 > λ3 > λ4 > 1,

|Ep(Zpλ1 × Zpλ2 × Zpλ3 × Zpλ4 )| = p4 + 3p3 + 4p2 + 3p + 4.

Concerning the number of subgroups of exponent p2 in Gλ, we have the follow-
ing formula.

Proposition 2.4. Let Gλ = Zpλ1 × Zpλ2 × · · · × Zpλk with λ1 > λ2 > · · · >
λt > λt+1 = · · · = λk = 1, where 0 6 t 6 k is fixed (t = 0 if each λj is 1 and t = k
if each λj is > 2). Then

|Ep2 (Gλ)| =
∑

16r6t
06s6k−r

pr(k−r−s)
(

k − r

s

)

p

(
t

r

)

p

,

which is zero (empty sum) for t = 0.

Proof. Let t > 1. Use Theorem 2.1 for λ = (2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . ),
where the number of 2’s is t and the number of 1’s is k − t and

µ = (2, 2, . . . , 2, 1, 1, . . . , 1, 0, . . . ),

where the number of 2’s is r and the number of 1’s is s with 1 6 r 6 t, 0 6 s 6 k−r.
Now λ′ = (k, t, 0, . . . ), µ′ = (r+s, r, 0, . . . ) and obtain that the number of subgroups

of type µ is pr(k−r−s)
(

k−r
s

)

p

(
t
r

)

p
and the number of subgroups of exponent p2 is

deduced by summing over r and s. �

Example 2.6. (k = 4, t = 2) We have

|Ep2 (Zp4 × Zp2 × Zp × Zp)| = p5 + 5p4 + 6p3 + 4p2 + 2p + 2.

In what follows, let Gλ = Zpλ1 × Zpλ2 × · · · × Zpλk and Gκ = Zpκ1 × Zpκ2 ×
· · · × Zpκℓ be two finite abelian p-groups, where λ1 > λ2 > · · · > λk > 1 and
κ1 > κ2 > · · · > κℓ > 1. Assume that Gλ and Gκ have the same number of
subgroups of exponent pi for every i, i.e., |Epi(Gλ)| = |Epi (Gκ)| (i > 0). Then
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λ1 = κ1. On the other hand, since the function f : N∗ → N∗, f(k) =
∑k

i=1

(
k
i

)

p
is

one–to–one, by Proposition 2.3 we infer that k = ℓ. Clearly, if k = 1 one obtains
Gλ

∼= Gκ. The same thing can be also said for k = 2 and k = 3 by Propositions 2.1
and 2.2. Inspired by these remarks, we state and prove the following result.

Proposition 2.5. Two finite abelian p-groups Gλ and Gκ are isomorphic if

and only if they have the same number of subgroups of exponent pi, for every i > 0.

Proof. Let λ = (λ1, λ2, . . . , λk, 0, . . . ) and κ = (κ1, κ2, . . . , κℓ, 0, . . . ), where
λk, κℓ > 0, be partitions such that for p-groups Gλ and Gκ one has |Epi (Gλ)| =
|Epi(Gκ)|, for every i > 0. As noted before, λ1 = κ1 and k = ℓ hold true.

Let us define λk+1 = κk+1 = 0. We prove, by reverse induction on t 6 k + 1
that λt = κt. So, let us assume that λi = κi for all k + 1 > i > t + 1, and prove
that λt = κt.

Suppose to the contrary that w.l.o.g. λt > κt. Since λ1 = κ1, one has t > 1.
Consider the partitions λλt and κλt defined with

λλt = (λt, . . . , λt
︸ ︷︷ ︸

t

, γt+1, . . . , γk, 0, . . . ),

κλt = (λt, . . . , λt
︸ ︷︷ ︸

s

, κs+1, . . . , κt, γt+1, . . . , γk, 0, . . . ),

where γi = λi = κi, for i > t + 1, and s = max{j : κj > λt}. Note that by our
assumption s < t, and since κ1 = λ1 > λt also s > 1.

From the definition of numbers αω(µ; p), it is clear that for any three partitions
µ, σ, τ , which satisfy µ � σ � τ , we have ασ(µ; p) 6 ατ (µ; p).

Using this remark, the fact that κλt � λλt and αλλt (λλt ; p) = 1, one has

1 + |Epλt (Gκ)| = 1 + |Epλt (Gκλt )| = 1 +
∑

µ�κλt , µ1=λt

ακλt (µ; p)

6 αλλt (λλt ; p) +
∑

µ�κλt , µ1=λt

αλλt (µ; p) 6
∑

µ�λλt , µ1=λt

αλλt (µ; p)

= |Epλt (Gλλt )| = |Epλt (Gλ)|,

a contradiction. �

Corollary 2.3. Two arbitrary finite abelian groups are isomorphic if and only

if they have the same number of subgroups of any exponent.

Finally, we note that another interesting problem is to find the polynomial
|Epi(Gλ)| in the case k = 4.

3. Second approach

We need the following result giving the representation of subgroups of the group
Zm × Zn. For every m, n ∈ N∗ let

Jm,n :=
{

(a, b, c, d, ℓ) ∈ (N∗)5 : a | m, b | a, c | n, d | c,
a

b
=

c

d
,
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ℓ 6
a

b
, gcd

(

ℓ,
a

b

)

= 1
}

.

Note that here gcd(b, d) · lcm(a, c) = ad and gcd(b, d) | lcm(a, c).
For (a, b, c, d, ℓ) ∈ Jm,n define

Ka,b,c,d,ℓ :=
{(

i
m

a
, iℓ

n

c
+ j

n

d

)

: 0 6 i 6 a − 1, 0 6 j 6 d − 1
}

.

Theorem 3.1. [14, Th. 3.1] Let m, n ∈ N∗.

i) The map (a, b, c, d, ℓ) 7→ Ka,b,c,d,ℓ is a bijection between the set Jm,n and

the set of subgroups of (Zm × Zn, +).
ii) The invariant factor decomposition of the subgroup Ka,b,c,d,ℓ is

Ka,b,c,d,ℓ ≃ Zgcd(b,d) × Zlcm(a,c).

iii) The order of the subgroup Ka,b,c,d,ℓ is ad and its exponent is lcm(a, c).

Let sE(m, n) stand for the number of subgroups of exponent E of the group
Zm × Zn.

Proposition 3.1. For every m, n ∈ N∗, E | lcm(m, n) we have

sE(m, n) =
∑

i|m,j|n
lcm(i,j)=E

gcd(i, j)(3.1)

=
1

E

∑

i|m,j|n
lcm(i,j)=E

ij.(3.2)

Proof. According to Theorem 3.1,

sE(m, n) =
∑

a|m
b|a

∑

c|n
d|c

∑

a/b=c/d=e
lcm(a,c)=E

φ(e),

where φ is Euler’s totient function. This can be written (with m = ax, a = by,
n = cz, c = dt) as

sE(m, n) =
∑

bxe=m
dze=n

e lcm(b,d)=E

φ(e) =
∑

ix=m
jz=n

∑

be=i
de=j

e lcm(b,d)=E

φ(e)

=
∑

i|m
j|n

lcm(i,j)=E

∑

e|gcd(i,j)

φ(e) =
∑

i|m
j|n

lcm(i,j)=E

gcd(i, j),

which is (3.1). Formula (3.2) is its immediate consequence. �

Remark 3.1. Proposition 2.1 is a direct consequence of the above result. The
total number s(m, n) of subgroups of the group Zm × Zn is (see [6, Th. 3], [14,
Th. 4.1])

(3.3) s(m, n) =
∑

i|m,j|n

gcd(i, j)



130 TĂRNĂUCEANU AND TÓTH

and (3.1) shows the distribution of the number of subgroups according to their
exponents. Formula (2.2) can be obtained also by using (3.3).

Example 3.1. The total number of subgroups of Z12×Z18 is s(12, 18) = 80 and
we have s1(12, 18) = 1, s2(12, 18) = 4, s3(12, 18) = 5, s4(12, 18) = 3, s6(12, 18) =
20, s9(12, 18) = 4, s12(12, 18) = 15, s18(12, 18) = 16, s36(12, 18) = 12.

Corollary 3.1 (m = n). For every n ∈ N∗ and E | n,

(3.4) sE(n, n) =
∑

i|E,j|E
gcd(E/i,E/j)=1

gcd(i, j),

which equals the number of cyclic subgroups of the group ZE × ZE.

The fact that sE(n, n) equals the number of cyclic subgroups of the group
ZE ×ZE , but without deriving formula (3.4) is [6, Th. 8], proved by using different
arguments.

Proof. In the case m = n, for every E | n we have by (3.1),

sE(n, n) =
∑

i|n,j|n
lcm(i,j)=E

gcd(i, j) =
∑

ia=E,jb=E
lcm(E/a,E/b)=E

gcd(i, j) =
∑

ia=E,jb=E
gcd(a,b)=1

gcd(i, j),

giving (3.4), which equals the number of cyclic subgroups of the group ZE ×ZE by
[6, eq. (16)]. �

Proposition 3.2. For every m, n ∈ N∗ the sum of exponents of the subgroups

of Zm × Zn is σ(m)σ(n), where σ(k) =
∑

d|k d.

Proof. By (3.2) the sum of exponents of the subgroups of Zm × Zn is

∑

E|lcm(m,n)

EsE(m, n) =
∑

E|lcm(m,n)

E ·
1

E

∑

i|m,j|n
lcm(i,j)=E

ij =
∑

i|m,j|n
lcm(i,j)|lcm(m,n)

ij

=
∑

i|m

i
∑

j|n

j = σ(m)σ(n). �

By Proposition 3.2, the arithmetic mean of exponents of the subgroups of
Zm × Zn is σ(m)σ(n)/s(m, n), where s(m, n) is given by (3.3). Now consider the
case m = n. Let A(n) stand for the arithmetic mean of exponents of the subgroups
of Zn × Zn. We have

(3.5) A(n) =
σ(n)2

s(n)
, where s(n) := s(n, n).

Recall that a function f : N∗ → C is said to be multiplicative if f(nn′) =
f(n)f(n′) whenever gcd(n, n′) = 1. It is well known that the sum-of-divisors func-
tion σ is multiplicative. The function s(n) =

∑

i,j|n gcd(i, j) is also multiplicative,
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as shown by the following direct proof: Let gcd(n, n′) = 1. Then

s(nn′) =
∑

i,j|nn′

gcd(i, j) =
∑

a,b|n

a′,b′|n′

gcd(aa′, bb′)

=
∑

a,b|n

gcd(a, b)
∑

a′,b′|n′

gcd(a′, b′) = s(n)s(n′).

We conclude that the function A given by (3.5) is multiplicative and and for
every prime power pν ,

A(pν) =
(pν+1 − 1)2

pν+2 + pν+1 − (2ν + 3)p + 2ν + 1
,

cf. Corollary 2.1.
Since the exponent of every subgroup of Zn ×Zn is a divisor of n, whence 6 n,

we deduce that A(n) 6 n (n ∈ N∗). For the function n 7→ f(n) := A(n)/n ∈ (0, 1]
the series taken over the primes

∑

p

1 − f(p)

p
=

∑

p

p − 1

p2(p + 3)

is convergent, and it follows from a theorem of H. Delange (see, e.g., [9]) that the
function f has a nonzero mean value M given by

M := lim
x→∞

1

x

∑

n6x

f(n) =
∏

p

(

1 −
1

p

) ∞∑

ν=0

f(pν)

pν

=
∏

p

(

1 −
1

p

) ∞∑

ν=0

(pν+1 − 1)2

p2ν(pν+2 + pν+1 − (2ν + 3)p + 2ν + 1)
.

the products being over the primes.
We prove the following more exact result.

Proposition 3.3. We have

(3.6)
∑

n6x

A(n) =
M

2
x2 + O(x log3 x).

Proof. Let f(n) =
∑

d|n g(d) (n ∈ N∗), that is g = µ ∗ f in terms of the

Dirichlet convolution, where µ is the Möbius function. Here g(pν) = f(pν)−f(pν−1)
for every prime power pν (ν ∈ N∗). Note that

A(pk) =
(
∑k

i=0 pi)2

∑k
i=0(2i + 1)pk−i

(k > 0),

so if we denote S =
∑ν−1

i=0 pi and T =
∑ν−1

i=0 (2i + 1)pν−1−i, we have

g(pν) =
(Sp + 1)2

pν(T p + 2ν + 1)
−

S2

pν−1T
=

2ST p + T − pS2(2ν + 1)

pνT (T p + 2ν + 1)
.
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Since S 6 T and T 6 (2ν − 1)S, we have

|g(pν)| <
max{2ST p + T − pS2(2ν − 1), pS2(2ν + 1) − 2ST p}

pνT (T p + 2ν + 1)

6
1

pν
max

{
ST p + T

T (T p + 1)
,

pS2(2ν − 1)

T 2p

}

6
1

pν
max{1, 2ν − 1} =

2ν − 1

pν
,

valid for every prime power pν (ν ∈ N∗). Hence, |g(n)| 6 τ(n2)/n for every n > 1,
where τ(k) stands for the number of positive divisors of k.

We deduce that
∑

n6x

f(n) =
∑

de6x

g(d) =
∑

d6x

g(d)
∑

e6x/d

1 =
∑

d6x

g(d)(x/d + O(1))

= x
∞∑

d=1

g(d)

d
+ O

(

x
∑

d>x

|g(d)|

d

)

+ O

(
∑

d6x

|g(d)|

)

= Mx + O

(

x
∑

d>x

τ(d2)

d2

)

+ O

(
∑

d6x

τ(d2)

d

)

,

where in the main term the coefficient of x is M by Euler’s product formula. It
is known that

∑

n6x τ(n2) = cx log2 x + O(x log x) with a certain constant c and

partial summation shows that
∑

n>x τ(n2)/n2 = O((log2 x)/x),
∑

n6x τ(n2)/n =

O(log3 x). Therefore,

(3.7)
∑

n6x

f(n) = Mx + O(log3 x).

Now (3.6) follows from (3.7) by partial summation. �

Formula (3.6) and its proof are similar to those of [13, Th. 3.1.3].
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