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ON THE MIKUSIŃSKI–ANTOSIK DIAGONAL THEOREM
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Andrzej Kamiński and Sławomir Sorek

In memory of Professors Jan Mikusiński and Piotr Antosik

Abstract. We present a simple proof of the Mikusiński–Antosik diagonal
theorem and apply this result to prove, in an extended form, the theorem on
the equivalence of the strong and weak boundedness of sets and, consequently,
of the strong and weak convergence of sequences in Köthe spaces.

1. Introduction

The known sliding-hump method, used in functional analysis in its early period,
was expressed by some authors in the form of abstract theorems of various types.
Such a theorem, the first version of the so-called diagonal theorem, was given in [20]
by Jan Mikusiński and applied by him in proofs of several theorems of measure
theory and functional analysis. The theorem was slightly reformulated in [4] and
this version of the theorem, presented then in the book [7, pp. 217–219], is called
after [15] the Mikusiński–Antosik diagonal theorem.

Various diagonal type theorems were proved later by Piotr Antosik in several
papers (see e.g. [6]) and, in common with other authors, in [9] and [8]. These and
other abstract forms of the sliding-hump method, including Rosenthal’s lemma [25],
the Antosik–Swartz basic matrix theorem [9,33], Antosik’s lemma [6,37], Weber’s
lemma [36], were studied by many authors; see e.g. [1–3,15,23,35,37–40] and the
references in [9] and [33]. It should be also noticed that the Mikusiński–Antosik
diagonal theorem is related to the famous Ramsey theorem (see [24] and [23]) whose
various versions and generalizations have been investigated and applied in varied
areas for many years by numerous authors (see e.g. [11,12,14,16,19,22,26–32]).
In particular, the theorems of Nash-Williams [21] and Ellentuck [13] originated
the infinite Ramsey theory (see e.g., [34]). Lately, Solecki [32] has discovered that
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the Nash–Williams theorem is a particular case of a special general form of the
induction principle.

In the first part of this article we discuss the proof of the Mikusiński–Antosik
diagonal theorem. The proof given in [4] and [7, pp. 218–219] is based on a clever
idea and its beauty justifies our wish to clarify all details and to resolve any doubts
concerning completeness of the reasoning. In this note we show a precise and simple
proof (simpler than that given in [18]) of this elegant theorem, explaining the role
of implication (∗) (see Section 2). We present the theorem in a more general form
than in [7] and its proof in a concise but clear way.

The diagonal type theorems stand for a very useful tool in proving numerous
theorems in measure theory and functional analysis formulated in a more general
way than their previous versions proved by means of the Baire category method;
see the articles [4,6,20,35–38,40], the monographs [9,33] and references there.

The theorems have important applications in the theory of generalized func-
tions. Lately, diagonal methods appeared to be very efficient in the theory of prod-
uct of tempered distributions (see [17]). Earlier, they played an important role in
an elementary proof of the equivalence of the functional and sequential approaches
to theory of distributions presented in [7,18]. The main idea of this proof consists
in using Hermite expansions of tempered distributions and replacing two types of
convergence in the space S′ by the corresponding types of convergence of matrices
of Hermite coefficients of tempered distributions. This allows one to reduce the
problem to the equivalence of strong and weak boundedness of sets in Köthe spaces
and the proof of the equivalence given in [7] is based on the Mikusiński–Antosik
diagonal theorem.

However the proof of this equivalence given in [7] contains, in our opinion,
a subtle gap. We discuss certain nuances concerning the proof in Remark 3.1 at
the beginning of Section 3 and present in Section 3 an essential modification of
the original proof which allows us to fill the gap. We extend our proofs of the
equivalences of the strong and weak boundedness of sets and of the strong and
weak convergence of sequences in Köthe spaces to some more general cases (see
Theorems 3.1, 3.2 and Remarks 3.1, 3.2).

2. Mikusiński–Antosik diagonal theorem

The symbols N, N0 and R denote the sets of all positive integers, all non-
negative integers and all real numbers, respectively. The symbol F denotes the
family of all finite subsets of N and the symbol i > J for i ∈ N and J ∈ F means
that i > j for all j ∈ J . By a quasi-normed group (X, | · |) we mean an Abelian
group (X, +) endowed with a functional |·| : X → R, called a quasi-norm, satisfying
the conditions

1◦ |0| = 0; 2◦ | − x| = |x|; 3◦ |x + y| 6
∣

∣x| + |y|, x, y ∈ X.

Let (X, | · |) be a quasi-normed group (not necessarily complete) and J be a
subset (finite or not) of N. For every sequence (xn) in X such that

(2.1)
∑

i∈J

|xi| < ∞,
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denote

(2.2)

∣

∣

∣

∣

∑

i∈J

xi

∣

∣

∣

∣

:= lim
n→∞

∣

∣

∣

∣

∑

i∈Jn

xi

∣

∣

∣

∣

,

where (Jn) is a nondecreasing sequence of finite subsets of J such that
⋃

∞

n=1 Jn = J .
The notation makes sense, because (2.1) implies that the limit in (2.2) exists and
does not depend on the selection of (Jn).

We present the diagonal theorem in the form given in [4] (cf. [7, p. 217]); see
comments in Introduction. The version of the theorem given in [5] for topological
groups easily follows from that formulated below, due to the result obtained in [10].

Theorem 2.1 (Mikusiński–Antosik diagonal theorem). Let (X, | · |) be a quasi-
normed group and xi,j ∈ X for i, j ∈ N. Assume that

(2.3) lim
j→∞

|xi,j | = 0 for i ∈ N.

Then there is an infinite I ⊆ N and a subset J (finite or not) of I such that

(2.4)
∑

j∈J

|xi,j | < ∞ and

∣

∣

∣

∣

∑

j∈J

xi,j

∣

∣

∣

∣

>
1

2
|xi,i| for i ∈ I.

The starting point of the proof of Theorem 2.1 shown in [4] (and repeated
in [7]) is the following observation: to show the assertion, one may additionally
assume that the following implication holds for all J ∈ F :

(∗) ∀i ∈ J

∣

∣

∣

∣

∑

j∈J

xi,j

∣

∣

∣

∣

>
1

2
|xi,i| ⇒ ∃i0 > J ∀i > i0

∣

∣

∣

∣

∑

j∈J

xi,j

∣

∣

∣

∣

<
1

2
|xi,i|.

In fact, if implication (∗) does not hold for some set J ∈ F , say J =: J0, then one
can select an increasing sequence (ιn) of positive integers such that

∣

∣

∣

∣

∑

j∈J0

xιn,j

∣

∣

∣

∣

>
1

2
|xιn,ιn

| for n ∈ N

and the assertion is then true for J := J0 and I := J0 ∪ {ιn : n ∈ N}. Thus it
remains to consider the opposite case, assuming (∗) for all J ∈ F .

Under assumption (∗), one can construct an increasing sequence (in) of positive
integers in such a way that the inequalities in (2.4) are satisfied for J = I := {in :
n ∈ N}. In the inductive construction, to select an index in+1 > Jn := {i1, . . . , in}
for a given n ∈ N the right-hand side of implication (∗) is used, so it is necessary
to verify that the left-hand side of (∗) is satisfied for i ∈ J := Jn. The verification,
omitted in [4] and [7], can be carried out exactly as in formula (2.9) below; the
same idea is used in formula (8) in [4] and [7, p. 219], placed at the end of the proof
to conclude the second part of (2.4). This means that the same reasoning is used
twice in such a form of the proof, even if the first use is not marked explicitly.

To avoid repeating the reasoning and clarify the proof we impose on the se-
quence (in), inductively constructed, beside conditions (2.7) and (2.6) (cf. (5) and
(6) in [4] and [7]) an additional condition (2.5) which directly guarantees that the
left hand side of (∗) is satisfied for the indices i ∈ J = Jn selected prior to in+1.
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Obviously, we need not repeat the reasoning used in (2.9) at the end of our proof,
because the second part of (2.4) follows due to property (2.5) of the sequence (in)
proved earlier by induction. On the other hand, according to remarks in the pre-
ceding paragraph, the proof given below contains another form of the proof given
in [4] and [7].

Proof of Theorem 2.1. Due to the above comment we assume that impli-
cation (∗) is true.

Since the left hand side of implication (∗) holds for J := {1}, there is an index
i1 ∈ N r {1} such that |xi,i| > 0 for i > i1. Starting from this index i1 and
ε1 := 1/2, we will construct inductively an increasing sequence of indices in ∈ N,
denoting Jn := {i1, . . . , in}, and a sequence of εn ∈ (0, 1/2] for n ∈ N such that the
following conditions are satisfied:

∣

∣

∣

∣

∑

j∈Jm

xi,j

∣

∣

∣

∣

>
1

2
|xi,i| for m ∈ N, i ∈ Jm;(2.5)

∑

j∈JmrJl

|xil,j | < εl|xil,il
| for l, m ∈ N, l < m,(2.6)

where

(2.7) εm :=

(

1

2
|xim,im

| −

∣

∣

∣

∣

∑

j∈Jm−1

xim,j

∣

∣

∣

∣

)

|xim,im
|−1, m ∈ N,

with Jm−1 := ∅ for m = 1 in (2.7) and the convention (used also later) that any
sum over the empty set of indices is 0.

Clearly, (2.5) is true for m = 1 and the fixed i1, ε1. Condition (2.6) makes
sense for m > 2 and it will be satisfied for m = 2 after a proper choice of the
index i2 made in the course of the induction construction. Suppose that indices
i1 < · · · < in−1 and ε1, . . . , εn−1 ∈ (0, 1/2] are selected so that (2.5) holds for
m < n in case n > 2 and (2.6) is true for l < m < n in case n > 3. Due to (2.5) for
m = n − 1, the left and so the right hand side of implication (∗) hold for J = Jn−1.
Thus there is an index i′

n > in−1 such that

(2.8)

∣

∣

∣

∣

∑

j∈Jn−1

xi,j

∣

∣

∣

∣

<
1

2
|xi,i|, i > i′

n.

Applying for m = n − 1 inequality (2.3) and, in case n > 3, inequality (2.6), we
find an index in > i′

n such that
∑

j∈JnrJl

|xil ,j| < εl|xil,il
|, l < n,

i.e., condition (2.6) holds for m = n. By (2.7) and (2.8), εn ∈ (0, 1/2]. Moreover,

(2.9)

∣

∣

∣

∣

∑

j∈Jn

xil,j

∣

∣

∣

∣

> |xil,il
| −

∣

∣

∣

∣

∑

j∈Jl−1

xil,j

∣

∣

∣

∣

−
∑

j∈JnrJl

|xil ,j| >
1

2
|xil ,il

|,

whenever l 6 n, due to (2.6) and (2.7), i.e., (2.5) holds for m = n. By induction,
conditions (2.5) and (2.6) hold true for all l, m ∈ N, l < m.
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Now put I = J := {in : n ∈ N}. It follows from (2.6) that

∞
∑

k=l+1

|xil,ik
| 6 εl|xil,il

| < ∞, l ∈ N

and this implies the first part of (2.4). But from (2.5) we obtain
∣

∣

∣

∣

∑

j∈J

xil,j

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

n
∑

k=1

xil,ik

∣

∣

∣

∣

>
1

2
|xil,il

|, l ∈ N,

i.e., the second part of (2.4) is also true. �

3. Köthe spaces

Let K be a fixed countable set of indices. We can order it e.g. in the form
K := {ki : i ∈ N}. Let X = (X, | · |) be a semi-normed space, i.e., a linear space
over R with a semi-norm | · | meant as a functional | · | : X → R, satisfying the
conditions:

1◦ |αx| = |α||x|, 2◦ |x + y| 6 |x| + |y|, α ∈ R, x, y ∈ X.

A mapping A : K → X , i.e., A ∈ XK =: X, is denoted by A =: [ak] and called
a vector and the values ak are called its coordinates. The space of all vectors with
coordinates belonging to X (to R) is denoted by X (by R). A vector in R is called
positive if all its coordinates are positive. By ek we denote the vector whose k-th
coordinate is 1 and the remaining ones are 0.

If A = [ak] ∈ X, B = [bk] ∈ X and α ∈ R, then we define A+B := [ak +bk] ∈ X,
αA := [αak] ∈ X. We will use the notation AB = [akbk], under the assumption,
adopted always in the sequel, that A ∈ R and B ∈ X or, vice versa, A ∈ X and
B ∈ R.

Define the seminorms

|A|1 :=
∑

k∈K

|ak|, |A|∞ := sup
k∈K

|ak|, A = [ak] ∈ X.

If X is complete and |AB|1 =
∑

k∈K |akbk| < ∞, then |(A, B)| is the value of
the semi-norm | · | on the element (A, B) ∈ X uniquely defined by

(A, B) :=
∑

k∈K

akbk := lim
n→∞

n
∑

i=1

aki
bki

.

In general, if X is a semi-normed space (not necessarily complete), the number
|(A, B)| is meant as follows:

|(A, B)| := lim
n→∞

∣

∣

∣

∣

n
∑

i=1

aki
bki

∣

∣

∣

∣

.

Definition 3.1. Let (Wi)i∈N be a sequence of positive vectors on T satisfying
the following condition:

(3.1)
∣

∣WiW
−1
j

∣

∣

∞
< 2i−j , i, j ∈ N, i < j.
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A vector S ∈ R is rapidly decreasing, if |WiS|1 < ∞ for i ∈ N. The set of all rapidly
decreasing vectors will be called Köthe echelon space and denoted by S. A vector
A ∈ X is tempered if there is an index i0 ∈ N such that |W −1

i0
A|∞ < ∞. The set of

all tempered vectors in X will be called Köthe co-echelon space and denoted by T.

Definition 3.2. A set A ⊆ T of tempered vectors in X is said to be

(a) strongly bounded if there exist an i0 ∈ N and a positive number β such
that |W −1

i0
A|∞ < β for all A ∈ A;

(b) weakly bounded if the numerical set {|(A, S)| : A ∈ A} is bounded for all
S ∈ S.

Definition 3.3. Let An = [an,k] ∈ T for n ∈ N0. We say that An is

(a) strongly convergent to A0 (in symbols: An
s

→ A0) if An → A0 coordinate-
wise, i.e., |an,k − a0,k| → 0 as n → ∞ for each k ∈ K and, moreover, is
strongly bounded;

(b) weakly convergent to A0 (in symbols: An
w
→ A0) if (An, S) → (A0, S) as

n → ∞ for every S ∈ S.

Theorem 3.1. Every countable set T ⊆ T is weakly bounded if and only if it
is strongly bounded.

Remark 3.1. In the original proof of Theorem 3.1, given in [7, pp. 220–221],
two sequences (ni) and (si) of positive integers are inductively constructed, of which
only the sequence (ni) is evidently strictly increasing. However nothing is known
about the constructed sequence (si); it can be bounded, for instance (because of the
"a contrario" method used in this part of the proof in [7]). However, the definition
of the vector S given in (3.7), which is crucial for the proof, requires that the
constructed sequence (si) does not contain any constant subsequence.

To overcome this hindrance and construct in our proof below a strictly increas-
ing sequence (si) we select indices si more specifically imposing on the inductively
constructed sequences certain stronger conditions. More exactly, we define induc-
tively in (3.4) an increasing sequence of positive numbers βi which satisfy inequali-
ties in (3.3). As a consequence, inequalities in (3.5) are satisfied and they force the
increase of the constructed sequence (si).

Proof of Theorem 3.1. Let T = {Tn : n ∈ N}, where Tn ∈ T. Assume that
T is strongly bounded, i.e., there are an index i0 ∈ N and a constant β > 0 such
that |W −1

i0
Tn|∞ 6 β for all n ∈ N. Let S ∈ S, i.e., |WiS|1 < ∞ for all i ∈ N. The

set T is weakly bounded, because

|(Tn, S)| 6 |TnS|1 6 |W −1
i0

Tn|∞ · |Wi0
S|1 6 β|Wi0

S|1, n ∈ N.

Suppose now that T is weakly but not strongly bounded, i.e., the following two
assertions hold:

(I) the sequence (|W −1
i Tn|∞) is unbounded for each i ∈ N;

(II) for each pair of indices i, s ∈ N there exists a βi,s > 1 such that

(3.2) |(Tn, Ri,s)| = |Ri,sTn|∞ 6 βi,s, n, i, s ∈ N,

where Ri,s := W −1
i es ∈ S for i, s ∈ N.
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We will construct inductively increasing sequences (ni) and (si) of positive
integers such that

(3.3) βi < |W −1
i Tni

|∞ − 1 < |Ri,si
Tni

|∞, i ∈ N,

where

(3.4) β1 := β1,1; βi := max{βi,s : s 6 si−1} + βi−1, i > 1.

Obviously, βn ↑ ∞ as n ↑ ∞.
Applying (I), we can find an n1 ∈ N fulfilling the first inequality and then

an s1 ∈ N satisfying the second inequality in (3.3) for i = 1. Assume that indices
n1 < · · · < np and s1 < · · · < sp, satisfying (3.3) for i = 1, . . . , p, are already chosen.

We apply (I) for i = p + 1 to find an index np+1 > np such that |W −1
p+1Tnp+1

|∞ >

βp+1 + 1. Now we can select, again by (I), an index sp+1 ∈ N such that the second
inequality in (3.3) for i = p + 1 holds, i.e., |Rp+1,sp+1

Tnp+1
|∞ > βp+1. On the other

hand, by (3.2) and (3.4), we have

(3.5) |Rp+1,sTnp+1
|∞ 6 βp+1,s 6 βp+1 for all s 6 sp,

i.e., the index sp+1 just selected cannot be among indices s 6 sp. Consequently, it
must be sp+1 > sp. Thus the inductive construction of increasing sequences (ni)
and (si) satisfying (3.3) is completed.

Put xi,j := (Tni
, Rj,sj

) ∈ X for i, j ∈ N. Since Tni
∈ T, there are qi ∈ N and

λi > 0 such that |W −1
qi

Tni
|∞ 6 λi for all i ∈ N. Hence, due to (3.1),

|xi,j | 6 |W −1
qi

Tni
|∞ · |Wqi

W −1
j |∞ 6 λi · 2qi−j , i, j ∈ N

and thus limj→∞ |xi,j | = 0 for every i ∈ N. It follows from Theorem 2.1 that
there exists an infinite set I ⊆ N and its subset J (finite or infinite) such that
∑

j∈J |(Tni
, Rj,sj

)| < ∞ and we have, for all i ∈ I,

(3.6)
1

2
|(Tni

, Ri,si
)| 6

∣

∣

∣

∣

∑

j∈J

(Tni
, Rj,sj

)

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∑

j∈Jn

(Tni
, Rj,sj

)

∣

∣

∣

∣

,

where finite Jn form an nondecreasing sequence such that
⋃

∞

n=1 Jn = J .
We are now in a position to define the vector S whose sj-th coordinate coincides

with the sj-th coordinate of W −1
j for all j ∈ J and the remaining coordinates are

equal to 0, i.e.,

(3.7) S :=
∑

j∈J

Rj,sj
= lim

n→∞

Sn,

where Sn :=
∑

j∈Jn
Rj,sj

and the convergence is coordinatewise. Since the con-

structed sequence (sj) of indices is strictly increasing, the above definition of S is
correct also in case J is infinite. Fix i, q, r ∈ N such that i < q < r. We have

∣

∣

∣

∣

Wi

r
∑

j=q+1

Rj,sj

∣

∣

∣

∣

1
6

r
∑

j=q+1

|WiW
−1
j |∞ 6

r
∑

j=q+1

2i−j ,

which implies that |WiS|1 < ∞ for all i ∈ N, i.e., S ∈ S and

lim
n→∞

|Wi(S − Sn)|1 = 0 for i ∈ N,
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i.e., (3.7) holds also in the sense of the convergence in S. Hence, by (3.6), we have

|(Tni
, S)| = lim

n→∞

|(Tni
, Sn)| =

∣

∣

∑

j∈J

(Tni
, Rj,sj

)| >
1

2
|(Tni

, Ri,si
)|,

which means, by (3.3), that |(Tni
, S)| → ∞ and this contradicts the assumption

that the set T is weakly bounded. �

Theorem 3.2. Let Tn ∈ T for n ∈ N0. Then Tn
w
→ T0 if and only if Tn

s
→ T0.

Proof. Let Tn = [tn,k] ∈ T for n ∈ N0. If Tn
w
→ T0, then (Tn, S) → (T0, S),

so a sequence (Tn, S) is bounded for all S ∈ S, i.e., (Tn) is weakly bounded. By
Theorem 3.1, (Tn) is strongly bounded. Moreover,

tn,k = (Tn, ek) → (T0, ek) = a0,k, k ∈ K,

because ek ∈ S for k ∈ K. Consequently, Tn
s

→ T0.

Assume now that Tn
s

→ T0. Fix S := [sj ] ∈ S and ε > 0. By strong bounded-
ness of the sequence (Tn) and by (3.1), there are i0 ∈ N and β > 0 such that

(3.8) |W −1
i0

Tn|∞ 6 β for n ∈ N0.

Since

|Wi0
S|1 =

∞
∑

j=1

wi0,j |sj | < ∞,

there is an index j0 ∈ N such that

(3.9)

∞
∑

j=j0+1

wi0,j |sj | <
ε

4β
.

Define s̃j := sj if j 6 j0 and s̃j := 0 if j > j0. Clearly, S̃ := [s̃j ] ∈ S. By the
assumption, Tn → T0 coordinate wise. Hence

(Tn, S̃) =

j0
∑

j=0

tn,jsj →

j0
∑

j=0

t0,jsj = (T0, S̃).

Due to (3.8) and (3.9), we get

|(Tn − T0, S)| 6 |(Tn − T0, S̃)| + |(Tn − T0, S − S̃)|

<
ε

2
+ |W −1

i0
(Tn − T0)|∞ · |Wi0

(S − S̃)|1 < ε

for sufficiently large n ∈ N. This completes the proof. �

Remark 3.2. The assertions of Theorems 3.1 and 3.2 are true if X is a locally
convex spaces, because the reasoning used in the proofs of Theorems 3.1 and 3.2
can be applied to each semi-norm of the family describing the topology of such a
space.
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