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ON MATSUMOTO CHANGE OF

m-th ROOT FINSLER METRICS

Akbar Tayebi and Mohammad Shahbazi Nia

Abstract. We consider Matsumoto change of Finsler metrics. First, we find a
condition under which the Matsumoto change of a Finsler metric is projectively
related to it. Then, considering the subspace of m-th root Finsler metrics, if
F̄ is the Matsumoto change of F , we prove that F̄ is locally projectively flat
if and only if it is locally dually flat. In this case, F and F̄ reduce to locally
Minkowskian metrics.

1. Introduction

Let (M, F ) be a Finsler space. In 1984, C. Shibata studied the properties of
Finsler space (M, F̄ ) whose fundamental metric function F̄ is obtained from F
by the relation F (x, y) → F̄ (x, y) = f(F, β), where β(x, y) = bi(x)yi is a 1-form
on M and f = f(F, β) is a positively homogeneous function of F and β. This
change of Finsler metric function has been called a β-change. He studied some
geometrical properties of tensors being invariant by β-change of the metric [9]. If
||β||F := supF (x,y)=1 |β| < 1, then F̄ is again a Finsler metric.

There is a special case of β-change, namely

(1.1) F̄ (x, y) =
F 2

F − β

which is called the Matsumoto change of F . If F reduces to a Riemannian metric

α, then F̄ reduces to the Matsumoto metric F = α2

α−β
. Due to this reason, trans-

formation (1.1) is called the Matsumoto change of Finsler metrics. The Matsumoto
metric is an important metric in the Finsler geometry which is the Matsumoto’s
slope-of-a-mountain metric. This metric was introduced by Matsumoto as a re-
alization of Finsler’s idea “a slope measure of a mountain with respect to a time
measure”.

Two Finsler metrics F and F̄ on a manifold M are called projectively related if
any geodesic of the first is also geodesic for the second and vice versa. In this case,
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there is a scalar function P = P (x, y) defined on T M0 such that Ḡi = Gi + P yi,
where Ḡi and Gi are the geodesic spray coefficients of F̄ and F , respectively. In this
paper, we find a condition under which the Matsumoto change of a Finsler metric
is projectively related to it. Let (M, F ) be a Finsler manifold and β = bi(x)yi a
1-form on M . Put rij := 1

2 (bi|j + bj|i), sij := 1
2 (bi|j − bj|i), r00 = rijyiyj , where

| denotes the horizontal derivation with respect to the Berwald connection of F .
Then, we have the following.

Theorem 1.1. Let (M, F ) be a Finsler manifold. Suppose that F̄ = F 2/(F −β)
be the Matsumoto change of F . Then F̄ is projectively related F if only if β satisfies

sij =
[

Ajrik − Airjk

]

yk, where Ai :=
2(Fi − bi)F − 2Fi(F − β)

F (F − β)
.

In this case, the projective factor is given by P = 1
2(F −β) r00.

Let M be an n-dimensional C∞ manifold, T M its tangent bundle. Let F =
m
√

A be a Finsler metric on M , where A := ai1...im
(x)yi1 yi2 . . . yim with ai1...im

symmetric in all its indices. Then F is called an m-th root Finsler metric [10–18].

The special m-th root metric in the form F = m
√

y1y2 . . . ym is called the Berwald–
Moór metric [1–3,5,6].

A Finsler metric is said to be locally projectively flat if at any point there is
a local coordinate system in which the geodesics are straight lines as point sets.
It is known that a Finsler metric F (x, y) on an open domain U ⊂ R

n is locally
projectively flat if and only if Gi = P yi, where P = P (x, y) is called the projective
factor and is a C∞ scalar function on T M0 satisfying P (x, λy) = λP (x, y) for all
λ > 0.

Theorem 1.2. Let F = m
√

A (m > 2), be an m-th root Finsler metric on an

open subset U ⊂ R
n. Suppose that F̄ = F 2/(F − β) be the Matsumoto change of

F . Then F̄ is locally projectively flat if and only if Axl = 0 and bi = constant.

A Finsler metric F on a manifold M is said to be locally dually flat if at any
point there is a coordinate system (xi) in which the spray coefficients are in the form
Gi = − 1

2 gijHyj , where H = H(x, y) is a positively homogeneous scalar function
on T M0 = T M r {0} [8].

Theorem 1.3. Let F = m
√

A (m > 2), be an m-th root Finsler metric on an

open subset U ⊂ R
n. Suppose that F̄ = F 2/(F − β) be the Matsumoto change

of F . Then F̄ is a locally dually flat Finsler metric if and only if Axl = 0 and

bi = constant.

2. Proof of Theorem 1.1

In this section, we are going to prove Theorem 1.1. To this aim we first prove
the following result.

Lemma 2.1 (Rapcsák [7]). Let F and F̄ be two Finsler metrics on a mani-

fold M . Then F̄ is projectively related to F if and only if F̄ satisfies F̄|k,ly
k−F̄|l = 0,
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where | denotes the horizontal derivation with respect to the Berwald connection

of F . In this case, the spray coefficients are related by Ḡi = Gi + P yi, where

(2.1) P =
F̄|kyk

2F̄
.

The P = P (x, y) is called the projective factor of F (x, y).

Throughout this paper, we use the Berwald connection and the h- and v- co-
variant derivatives of a Finsler tensor field are denoted by “ | " and “ , " respectively.
Now, let (M, F ) be a Finsler manifold and β = bi(x)yi a 1-form on M . Put

rij := 1
2 (bi|j + bj|i), ri0 := rijyj, r00 := rijyiyj ,

sij := 1
2 (bi|j − bj|i), si0 := sijyj ,

Rij :=
1

2

( ∂bi

∂xj
+

∂bj

∂xi

)

, R0i := Rjiy
j, R00 := Rijyiyj .

Proof of Theorem 1.1. The following relations hold

bi|j =
∂bi

∂xl
− Γs

ilbs, Γs
il = Γs

li,

where Γi
jk = Γi

jk(x, y) is the Christoffel symbols of the Berwald connection of F .
Then we have

sij :=
1

2
(bi|j − bj|i) =

1

2

( ∂bi

∂xj
− ∂bj

∂xi

)

,(2.2)

rij :=
1

2
(bi|j + bj|i) =

1

2

( ∂bi

∂xj
+

∂bj

∂xi
− 2bsΓs

ij

)

= Rij − bsΓs
ij .(2.3)

By (2.2) and (2.3), we get

β|l = bi|ly
i =

( ∂bi

∂xl
− Γs

ilbs

)

yi,(2.4)

β|ly
l =

( ∂bi

∂xl
− Γs

ilbs

)

yiyl = R00 − 2bsGs = r00,(2.5)

β|k,ly
k =

( ∂bl

∂xk
− bsΓs

lk

)

yk,(2.6)

whence (2.4) and (2.6) imply β|k,ly
k − β|l = slkyk = sl0. For F̄ = F 2/(F − β), we

have

(2.7)

F̄|l =
β|lF

2

(F − β)2 , F̄|k,l =

[

(2Flβ|k + Fβ|k,l)(F − β) − 2(Fl − bl)Fβ|k
(F − β)3

]

F,

F̄|k,ly
k =

[

(2Flr00 + Fβ|k,ly
k)(F − β) − 2(Fl − bl)Fr00

(F − β)3

]

F.

Then

F̄|k,ly
k − F̄|l =

[

(2Flr00 + Fβ|k,ly
k − F 2β|l)(F − β) − 2(Fl − bl)Fr00

(F − β)3

]

F

=

[

(2Flr00 + Fsl0)(F − β) − 2(Fl − bl)Fr00

(F − β)3

]

F.
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Put

Ai :=
2(Fi − bi)F − 2Fi(F − β)

F (F − β)
.

Then by Lemma 2.1, F̄ is projectively related to F if and only if sl0 = Alr00, which,
taking a vertical derivation, yields

(2.8) sli = Alir00 + 2Alr0i.

Since sli = −sil, then by (2.8) we get Alir00 + 2Alr0i = −Ailr00 − 2Air0l or

(2.9) Alir00 = −Alr0i − Air0l.

By (2.8) and (2.9), we get sij = Air0j − Ajr0i. Now, by (2.5) and (2.7), we have

F̄|yyk =
β|kykF 2

(F − β)2 =
F 2r00

(F − β)2 .

By (2.1), it follows that

P =
F̄|kyk

2F̄
=

r00

2(F − β)
. �

3. Proof of Theorem 1.2

It is known that a Finsler metric F (x, y) on U ⊂ Rn is projective if and
only if its geodesic coefficients Gi are of the form Gi(x, y) = P (x, y)yi, where
P : T U = U × Rn → R is positively homogeneous of degree one with respect to y.
In [4], Hamel showed that a Finsler metric F on U ⊂ Rn is projectively flat if and
only if it satisfies Fxkylyk = Fxl .

Lemma 3.1. Let F = m
√

A (m > 2), be an m-th root Finsler metric on an open

subset U ⊂ Rn. Suppose that the equation

ΨA
2

m
−1 + ΞA

2

m + ΦA
1

m + ΘA
1

m
+1 + ΥA

1

m
−1 + A

1

m
+2Ω + Γ = 0

holds, where Φ, Ψ, Θ, Υ, Ω, Ξ are homogeneous polynomials in y. Then Ψ = Ξ =
Φ = Θ = Υ = Ω = Γ = 0.

For an m-th root metric F = m
√

A, put

Ai =
∂A

∂yi
, Aij =

∂2A

∂yj∂yj
, Axi =

∂A

∂xi
, A0 = Axiyi, A0l = Axkylyk =

∂2A

∂xi∂yl
yk.

Then we have the following.

Proof of Theorem 1.2. For F̄ =
m
√

A2

m
√

A−β
, we infer

(3.1) [F̄ ]xl =
1

m( m
√

A − β)2

[

A
3

m
−2Axl − 2A

2

m
−1Axlβ + mA

2

m βxl

]

,

[F̄ ]xkylyk =
1

m

[

( 1
m

− 2)A0AlA
4

m
−3+A0lA

4

m
−2+(2βlA0 − A0lβ + 2A0Alβ)A

3

m
−2

(A
1

m − β)3

+
(−2βA0l − 2A0βl)A

3

m
−1 + (2 − 3

m
)βA0AlA

3

m
−3 + mβ0lA

3

m

(A
1

m − β)3
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+
(2β2A0l − 2βAlβ0 − 6βA0βl)A

2

m
−1 + ( 4

m
− 2)β2A0AlA

2

m
−2

(A
1

m − β)3
(3.2)

+
(2mβ0βl − mββ0l)A

2

m

(A
1

m − β)3

]

,

where

βxi :=
∂β

∂xi
, βi :=

∂β

∂yi
= bi, β0 := βxi yi, β0l := βxily

i.

Since F̄ is locally projectively flat metric, we have [F̄ ]xkylyk − [F̄ ]xl = 0. By
substituting (3.1) and (3.2) into this, we get

(3.3)
(

1
m

− 2
)

A0AlA
4

m
−3 + (A0l − Axl)A

4

m
−2

+
[

2βlA0 − β(A0l − Axl ) + 2A0Alβ
]

A
3

m
−2

+
[

− 2β(A0l − Axl) − 2A0βl

]

A
3

m
−1 +

(

2 − 3
m

)

βA0AlA
3

m
−3

+ m(β0l − βxl)A
3

m +
[

2β2(A0l − Axl) − 2βAlβ0 − 6βA0βl

]

A
2

m
−1

+
(

4
m

− 2
)

β2A0AlA
2

m
−2 +

[

2mβ0βl − mβ(β0l − βxl)
]

A
2

m = 0.

Simplifying (3.3), it results that
(

1
m

− 2
)

A0AlA
2

m
−1 + (A0l − Axl)A

2

m(3.4)

+
[

2βlA0 − β(A0l − Axl) + 2A0Alβ
]

A
1

m

−
[

2β(A0l − Axl) + 2A0βl

]

A
1

m
+1 +

(

2 − 3
m

)

βA0AlA
1

m
−1

+ m(β0l − βxl)A
1

m
+2 + m

[

2β0βl − β(β0l − βxl)
]

A2

+ 2β
[

β(A0l − Axl) − Alβ0 − 3A0βl

]

A +
(

4
m

− 2
)

β2A0Al = 0.

According to Lemma 3.1, (3.4) reduces to the following

A0Al = 0,(3.5)

A0l − Axl = 0,(3.6)

2βlA0 − β(A0l − Axl) + 2A0Alβ = 0,

β(A0l − Axl) + A0βl = 0,

β0l − βxl = 0,(3.7)

2β0βl − β(β0l − βxl) = 0,

β(A0l − Axl ) − Alβ0 − 3A0βl = 0.(3.8)

By (3.6), we have

(3.9) Axl − A0l = 0.

The relations (3.5), Al 6= 0 and β 6= 0 imply that

(3.10) A0 = 0.
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Taking a vertical derivation of (3.10) yields

(3.11) Axl + A0l = 0.

By (3.9) and (3.11), we get Axl = 0. On the other hand, by substituting (3.9)
and (3.10) in (3.8), we have β0 = 0. Taking a vertical derivation of it implies that
β0l + βxl = 0. By considering (3.7), we get βxl = 0, which means that bi are
constants. �

4. Proof of Theorem 1.3

In [8], Shen proved that the Finsler metric F on an open subset U ⊂ Rn is
dually flat if and only if it satisfies (F 2)xkylyk = 2(F 2)xl . Now, we are going to
characterize locally dually flat Finsler metrics which is obtained by a Matsumoto
change of m-th root metrics. First, we remark the following.

Lemma 4.1. Let F = m
√

A (m > 2), be an m-th root Finsler metric on an open

subset U ⊂ R
n. Suppose that the equation

ΨA
2

m
+1 + ΞA

2

m + ΦA
1

m + ΘA
1

m
+1 + ΥA

1

m
+2 + Ω = 0

holds, where Φ, Ψ, Θ, Υ, Ω, Ξ are homogeneous polynomials in y. Then Ψ = Ξ =
Φ = Θ = Υ = Ω = 0.

Proof of Theorem 1.3. The following holds

(4.1) [F̄ 2]xk =
2A

4

m
−1

[

A
1

m Axl − 2Axlβ + mAβxl

]

m(A
1

m − β)3
,

[F̄ 2]xkylyk =
2

m

[

A0lA
6

m
−1+ (βlA0 − 3A0lβ + Alβ0)A

5

m
−1+ ( 2

m
− 1)A0AlA

6

m
−2

(A
1

m − β)4

+
( 3

m
− 1)βA0AlA

5

m
−2 + mβ0lA

5

m + ( 8
m

− 2)β2A0AlA
4

m
−2

(A
1

m − β)4
(4.2)

+
(2β2A0l − 4βA0βl + 4βAlβ0)A

4

m
−1 + mββ0lA

4

m

(A
1

m − β)4

]

.

Since F̄ is a locally dually flat metric, then

(4.3) [F̄ 2]xkylyk − 2[F̄ 2]xl = 0.

By substituting (4.1) and (4.2) in (4.3), we infer:

(4.4)
(

A0l − 2Axl

)

A
6

m
−1 +

[

βlA0 − 3(A0l − 2Axl)β + Alβ0
]

A
5

m
−1

+
( 2

m
− 1

)

A0AlA
6

m
−2 +

( 3

m
− 1

)

βA0AlA
5

m
−2 + m(β0l − 2βxl)A

5

m

+ 2β
[

β(A0l − 2Axl) − 2A0βl + 2Alβ0
]

A
4

m
−1 +

( 8

m
− 2

)

β2A0AlA
4

m
−2

+ mβ(β0l − 2βxl)A
4

m = 0.
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Simplifying (4.4) implies that

(4.5) (A0l − 2Axl)A
2

m
+1 +

[

βlA0 − 3(A0l − 2Axl)β + Alβ0
]

A
1

m
+1

+
( 2

m
− 1

)

A0AlA
2

m +
( 3

m
− 1

)

βA0AlA
1

m + m
(

β0l − 2βxl

)

A
1

m
+2

+ mβ(β0l − 2βxl)A2 + 2β
[

β(A0l − 2Axl) − 2A0βl + 2Alβ0
]

A

+
( 8

m
− 2

)

β2A0Al = 0.

By Lemma 4.1, (4.5) reduces to

A0Al = 0,(4.6)

A0l − 2Axl = 0,(4.7)

2β(β0l − 2βxl) = 0,

3β(A0l − 2Axl) − A0βl − Alβ0 = 0,(4.8)

β0l − 2βxl = 0,(4.9)

β(A0l − 2Axl) + 2(βlA0 + β0Al) = 0.

By (4.6), we have A0 = 0. Taking a vertical derivation of it implies that
Axl + A0l = 0. Then by (4.7), it follows that Axl = 0. In this case, (4.8) reduces to
β0 = 0. Taking a vertical derivation of it implies that β0l + βxl = 0. Then by (4.9),
we get βxl = 0 which means that bi are constants. This completes the proof. �

Corollary 4.1. Let F = m
√

A (m > 2) be an m-th root Finsler metric on an

open subset U ⊂ R
n. Suppose that F̄ = F 2/(F − β) be the Matsumoto change of

F . Then F̄ is locally projectively flat if and only if it is locally dually flat. In this

case, F and F̄ are Berwald–Moór metrics.

Proof. By Theorem 1.2 and 1.3, F̄ is locally projectively flat if and only if it
is locally dually flat. Since Axi = 0, then ai1...im

(x) = c is a constant. In this case,
we get

F = m
√

c y1y2 . . . ym

which is a locally Minkowskian metric. Since bi = constant and F̄ = F 2/(F − β),
then F̄ is locally Minkowskian, too. �

5. Conclusion

Every locally Minkowskian metric is locally projectively flat and locally dually
flat metric. In this paper, we study the Matsumoto change of a Finsler metric and
prove that the Matsumoto change of an m-th root metric is locally projectively flat if
and only if it is locally dually flat if and only if it is locally Minkowskian. The study
of this Finslerian change on an m-th root metric will enhance our understanding
of the geometric meaning of the class of m-th root metrics.
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