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MAPPING i2 ON THE FREE

PARATOPOLOGICAL GROUPS

Fucai Lin and Chuan Liu

Abstract. Let F P (X) be the free paratopological group over a topological
space X. For each nonnegative integer n ∈ N, denote by F Pn(X) the subset
of F P (X) consisting of all words of reduced length at most n, and in by the
natural mapping from (X ⊕ X−1 ⊕ {e})n to F Pn(X). We prove that the
natural mapping i2 : (X ⊕ X

−1

d
⊕ {e})2 → F P2(X) is a closed mapping if and

only if every neighborhood U of the diagonal ∆1 in Xd × X is a member of
the finest quasi-uniformity on X, where X is a T1-space and Xd denotes X

when equipped with the discrete topology in place of its given topology.

1. Introduction

In 1941, free topological groups were introduced by Markov in [9] with the clear
idea of extending the well-known construction of a free group from group theory
to topological groups. Now, free topological groups have become a powerful tool of
study in the theory of topological groups and serve as a source of various examples
and as an instrument for proving new theorems, see [1].

As in free topological groups, Romaguera, Sanchis and Tkachenko in [12] de-
fined free paratopological groups and proved the existence of the free paratopo-
logical group FP (X) for every topological space X . Recently, Elfard, Lin, Nick-
olas, and Pyrch have investigated some properties of free paratopological groups,
see [2,3,7,8,10,11].

For each nonnegative integer n ∈ N, denote by FPn(X) the subset of FP (X)
consisting of all words of reduced length at most n, and in by the natural mapping
from (X ⊕X−1 ⊕{e})n to FPn(X). Here we mainly improve some results of Elfard
and Nickolas. The main result is that the natural mapping i2 : (X ⊕X−1

d ⊕{e})2 →
FP2(X) is a closed mapping if and only if every neighborhood U of the diagonal ∆1

in Xd × X is a member of the finest quasi-uniformity on X , where X is a T1-space
and Xd denotes X when equipped with the discrete topology in place of its given
topology.

2010 Mathematics Subject Classification: Primary 22A30; Secondary 54D10; 54E99; 54H99.
Key words and phrases: free paratopological groups; quotient mappings; closed mappings;

finest quasi-uniformity.
Communicated by Rade Živaljević.

213



214 LIN AND LIU

2. Preliminaries

All mappings are continuous. We denote by N and Z the sets of all natural
numbers and the integers, respectively. The letter e denotes the neutral element of
a group. Readers may consult [1,4–6] for notations and terminology not explicitly
given here.

Recall that a topological group G is a group G with a (Hausdorff) topology such
that the product mapping of G × G into G is jointly continuous and the inverse
mapping of G onto itself associating x−1 with an arbitrary x ∈ G is continuous.
A paratopological group G is a group G with a topology such that the product
mapping of G × G into G is jointly continuous.

Definition 2.1. [12] Let X be a subspace of a paratopological group G.
Assume that

(1) The set X generates G algebraically, that is < 〈X〉 = G;
(2) Each continuous mapping f : X → H to a paratopological group H ex-

tends to a continuous homomorphism f̂ : G → H .

Then G is called the Markov free paratopological group on X and is denoted by
FP (X).

Again, if all the groups in the above definitions are Abelian, then we get the
definition of the Markov free Abelian paratopological group on X which will be
denoted by AP (X).

By [12], FP X and AP (X) exist for every space X and the underlying ab-
stract groups of FP X and AP (X) are the free groups on the underlying set of the
topological space X respectively. We denote these abstract groups by FPa(X) and
APa(X) respectively.

Since X generates the free group FPa(X), each element g ∈ FPa(X) has the
form g = xε1

1 . . . xεn
n , where x1, . . . , xn ∈ X and ε1, . . . , εn = ±1. This word for g

is called reduced if it contains no pair of consecutive symbols of the form xx−1 or
x−1x. It follows that if the word g is reduced and nonempty, then it is different
from the neutral element of FPa(X). For every nonnegative integer n, denote by
FPn(X) and APn(X) the subspace of paratopological groups FP (X) and AP (X)
that consists of all words of reduced length 6 n with respect to the free basis X ,
respectively.

Let X be a T1-space. For each n ∈ N, denote by in the multiplication map-
ping from

(
X ⊕ X−1

d ⊕ {e}
)n

to Bn(X), in(y1, . . . , yn) = y1 · · · yn for every point

(y1, . . . , yn) ∈
(
X ⊕ X−1

d ⊕ {e}
)n

, where X−1
d denotes the set X−1 equipped with

the discrete topology and Bn(X) denotes FPn(X) or APn(X).
By a quasi-uniform space (X,U) we mean the natural analog of a uniform space

obtained by dropping the symmetry axiom. For each quasi-uniformity U the filter
U−1 consisting of the inverse relations U−1 = {(y, x) : (x, y) ∈ U} where U ∈ U is
called the conjugate quasi-uniformity of U.

Let X be a topological space. Then Xd denotes X when equipped with the
discrete topology in place of its given topology. We denote the diagonals of Xd ×X
and X × Xd by ∆1 and ∆2, respectively. In [10], the authors proved that X−1 is
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discrete in free paratopological group FP (X) and AP (X) over X if X is a T1-space.
We denote the sets {(x−1, y) : (x, y) ∈ X × X} and {(x, y−1) : (x, y) ∈ X × X} by
∆∗

1 and ∆∗

2, respectively.

3. Main results

First, we recall some results in the free paratopological groups.

Theorem 3.1. [3] If X is a T1-space, then the mapping

i2|i−1

2
(F P2(X)rF P1(X)) : i−1

2 (FP2(X) r FP1(X)) → FP2(X) r FP1(X)

is a homeomorphism.

Theorem 3.2. [2] Let X be a T1-space and let w = xǫ1

1 xǫ2

2 . . . xǫn
n be a reduced

word in FPn(X), where xi ∈ X and ǫi = ±1, for all i = 1, 2, . . . , n, and if xi = xi+1

for some i = 1, 2, . . . , n − 1, then ǫi = ǫi+1. Then the collection B of all sets of the
form U ǫ1

1 U ǫ2

2 . . . U ǫn
n , where, for all i = 1, 2, . . . , n, the set Ui is a neighborhood of

xi in X when ǫi = 1 and Ui = {xi} when ǫi = −1 is a base for the neighborhood
system at w in FPn(X).

Theorem 3.3. [2] Let X be a T1-space and let w = ǫ1x1 + ǫ2x2 + · · · + ǫnxn

be a reduced word in APn(X), where xi ∈ X and ǫi = ±1, for all i = 1, 2, . . . , n,
and if xi = xj for some i, j = 1, 2, . . . , n, then ǫi = ǫj. Then the collection B of all
sets of the form ǫ1U1 + ǫ2U2 + · · · + ǫnUn, where, for all i = 1, 2, . . . , n, the set Ui

is a neighborhood of xi in X when ǫi = 1 and Ui = {xi} when ǫi = −1 is a base
for the neighborhood system at w in APn(X).

Theorem 3.4. If X is a T1-space, then the mapping

f = i2 |i−1

2
(AP2(X)rAP1(X)) : i−1

2 (AP2(X) r AP1(X)) → AP2(X) r AP1(X)

is a 2 to 1, open and perfect mapping.

Proof. Obviously, f is a 2 to 1 mapping. Next, we shall prove that f is open
and closed. Let C2(X) = AP2(X)rAP1(X) and C∗

2 (X) = i−1
2 (AP2(X)rAP1(X)).

Obviously, we have

C∗

2 (X) = (X × X) ⊕ (X−1
d × X−1

d ) ⊕ (X−1
d × X) r ∆∗

1 ⊕ (X × X−1
d ) r ∆∗

2.

(1) The mapping f is open. Let (xǫ1

1 , xǫ2

2 ) ∈ C∗

2 (X), where x1, x2 ∈ X and
x1 6= x2 if ǫ1 6= ǫ2. Let U be a neighborhood of (xǫ1

1 , xǫ2

2 ) in C∗

2 (X). By Theorem 3.3,
f(U) is a neighborhood of xǫ1

1 xǫ2

2 in C2(X). (Indeed, the argument is similar to the
proof of [3, Theorem 3.4].) Therefore, f is open.

(2) The mapping f is closed. Let E be a closed subset of C∗

2 (X). To show

that i2(E) is closed in C2(X) take w ∈ i2(E). Next, we shall show that w ∈ i2(E).
Indeed, it is obvious that w has a reduced form w = ǫ1x1 + ǫ2x2, where ǫi = 1 or
-1 (i = 1, 2), x1, x2 ∈ X and x1 6= x2 if ǫ1 6= ǫ2.

Suppose that w = x + y /∈ i2(E), where x = ǫ1x1 and y = ǫ2x2. Then
{(x, y), (y, x)} ∩ E = ∅. Since E is closed, we can pick open neighborhoods V (x)
of x in X ∪ X−1

d , V (y) of y in X ∪ X−1
d such that (V (x) × V (y)) ∩ E = ∅ and
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(V (y) × V (x)) ∩ E = ∅. Let U = (V (x) × V (y)) ∪ (V (y) × V (x)). Then U is open.
Since f is an open map, we have f(U) is a neighborhood of w and f(U)∩i2(E) = ∅.

This contradicts with w ∈ i2(E). �

For an arbitrary space X , the mapping f : X → Z defined by setting f(x) = 1
for all x ∈ X is continuous, and thus extends to a continuous homomorphism

f̂ : AP (X) → Z. Therefore, the collection of sets Zn(X) = f̂−1({n}) for n ∈ Z

forms a partition of AP (X) into clopen subspaces.
For a T1-space, define

g : (Xd × X) ⊕ (X × Xd) ⊕ ({e} × {e}) → AP2(X) ∩ Z0(X)

by

g(x, y) =





−x + y, if (x, y) ∈ Xd × X ;

x − y, if (x, y) ∈ X × Xd;

e, if x = y.

Let gj = i2 |i−1

2
(AP2(X)∩Zj(X)) for j = −2, . . . , 2, where

i2 : (X ⊕ X−1
d ⊕ {e})2 → AP2(X).

Obviously, i2 =
⊕j=2

j=−2{gj}, and i2 is a closed (resp. quotient) mapping if and

only if each gj is a closed (resp. quotient) mapping, where j = −2, . . . , 2. By
Theorem 3.4, it is easy to see that g−2 and g2 are open and closed. Moreover, since
−X occurs with the discrete topology and X occurs with its original topology in
AP (X), the mappings g−1 and g1 are open and closed. Obviously, g is a closed
(resp. quotient) mapping if and only if g0 is a closed (resp. quotient) mapping.
Therefore, we have the following result:

Lemma 3.1. Let X be a T1-space. Then i2 is a closed (resp. quotient) mapping
if and only if g is a closed (resp. quotient) mapping.

Lemma 3.2. [3] Let X be a space and let ∆1 be the diagonal in the space
Xd × X. Then ∆1 is closed if and only if X is T1. Similarly for the diagonal ∆2

in the space X × Xd.

Suppose that U∗ is the finest quasi-uniformity of a space X . We say that
P = {Ui}i∈N is a sequence of U∗ if each Ui ∈ U∗. Put

ω
U

∗ = {P : P is a sequence of U∗}.

For each n ∈ N and P = {Ui}i∈N ∈ ωU∗, let Qn(N) = {A ⊂ N : |A| = n},

Wn(P ) = {−x1 + y1 − · · · − xn + yn : (xj , yj) ∈ Uij

for j = 1, 2, . . . , n, {i1, i2, . . . , in} ∈ Qn(N)}, and Wn = {Wn(P ) : P ∈ ωU∗}.

Remark 3.1. In the above definition, for P = {Ui}i∈N ∈ ωU∗, there may exist
i 6= j such that Ui = Uj . In particular, for every U ∈ U∗, we have {Ui = U}i∈N is
also in ωU∗. Moreover, the reader should note that the representation of elements
of Wn(P ) need not be a reduced representation.
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Theorem 3.5. [7] For each n ∈ N, the family Wn is a neighborhood base of e
in AP2n(X).

The proof of the following Theorem is a modification of [3, Theorem 3.10].

Theorem 3.6. Let X be a T1-space. Then the mapping

i2 : (X ⊕ X−1
d ⊕ {e})2 → AP2(X)

is a quotient mapping if and only if every neighborhood U of the diagonal ∆1 in
Xd × X is a member of the finest quasi-uniformity U∗ on X.

Proof. Put Z = (Xd × X) ⊕ (X × Xd) ⊕ ({e} × {e}).
Necessity. Suppose that i2 is a quotient mapping. It follows from Lemma 3.1

that g : Z → AP2(X) ∩ Z0(X) is a quotient mapping. Let U be a neighborhood
of ∆1 in Xd × X . Obviously, U ∪ (−U) is a neighborhood of ∆1 ∪ ∆2 in Z. Let
P = {Un}n∈N, where Un = U for each n ∈ N. Let W1(P ) = {−x + y : (x, y) ∈ U}.
Then g−1(W1(P )) = U ∪(−U)∪{(e, e)} that is a neighborhood of ∆1 ∪∆2 ∪{(e, e)}
in Z, then W1(P ) is a neighborhood of e in AP2(X)∩Z0(X), and hence in AP2(X).
By Theorem 3.5, there exists Q ∈ ωU∗ such that W1(Q) ⊂ W1(P ), where Q =
{Vn}n∈N. Then V1 ⊂ U , hence U ∈ U∗.

Sufficiency. Suppose that every neighborhood U of the diagonal ∆1 in Xd ×
X is a member of the finest quasi-uniformity U∗ on X . To show that i2 is a
quotient mapping, it follows from Lemma 3.1 that it suffices to show that the
mapping g : Z → AP2(X) ∩ Z0(X) is a quotient mapping. Take a subset A ⊂
AP2(X) ∩ Z0(X) such that g−1(A) is open in Z. Put U = g−1(A) ∩ (Xd × X) and
V = g−1(A) ∩ (X × Xd). Firstly, we show the following claim:

Claim: If e 6∈ A, then A is open in AP2(X) ∩ Z0(X). Indeed, since e 6∈ A,
U ∩ ∆1 = ∅ and V ∩ ∆2 = ∅. By Lemma 3.2, ∆1 and ∆2 are closed in Xd × X and
X × Xd, respectively, and Xd × X r∆1 and X × Xd r∆2 are open in Xd × X and
X × Xd, respectively. Hence U ∪ V is open in the space i−1

2 (AP2(X) r AP1(X)),
and by Theorem 3.4, g(U ∪ V ) = A is open in AP2(X) ∩ Z0(X).

Next we shall show that A is open in AP2(X) ∩ Z0(X). Take arbitrary a ∈ A.
Then it suffices to show that A is an open neighborhood of a.

Case 1: a = e. Obviously, U and V are open neighborhoods of ∆1 and
∆2 in Xd × X and X × Xd, respectively. Therefore, S = U ∩ (V −1) is an open
neighborhood of ∆1 in Xd×X , and thus S ∈ U∗. Let W1(R) = {−x+y : (x, y) ∈ S},
where R = {Sn}n∈N and Sn = S for each n ∈ N. By Theorem 3.5, W1(R) is a
neighborhood of e in AP2(X). Since S = U ∩ (V −1) and the definition of g, it is
easy to see that W1(R) ⊂ A. Therefore, A is a neighborhood of e in AP2(X), hence
in AP2(X) ∩ Z0(X).

Case 2: a 6= e. Let W be an open neighborhood of a in AP2(X) ∩ Z0(X) such
that e 6∈ W . Then the set g−1(A ∩ W ) is open in Z, and it follows from the claim
that A ∩ W is an open neighborhood of a in AP2(X) ∩ Z0(X). Hence A is open in
AP2(X) ∩ Z0(X). �

The following theorem is the main result in [3], and some related concepts can
be seen in [5]. Next, we shall improve this result in Theorem 3.9.
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Theorem 3.7. [3] Let X be a T1-space. Then the following statements are
equivalent:

(1) The mapping i2 : (X ⊕ X−1
d ⊕ {e})2 → FP2(X) is a quotient mapping;

(2) Every neighborhood U of the diagonal ∆1 in Xd × X is a member of the
finest quasi-uniformity U∗ on X;

(3) Every neighbornet of X is normal;
(4) The finest quasi-uniformity U∗ on X consists of all neighborhoods of the

diagonal ∆1 in Xd × X;
(5) If Nx is a neighborhood of x for all x ∈ X, then there exists a neighborhood

Mx of x such that
⋃

y∈Mx
My ⊂ Nx for all x ∈ X;

(6) If Nx is a neighborhood of x for all x ∈ X, then there exists a quasi-
pseudometric d on X such that dx is upper semi-continuous and Bd(x, 1) ⊂
Nx for all x ∈ X.

Let X be a set. Define j2, k2 : X × X → Fa(X) by j2(x, y) = x−1y and
k2(x, y) = yx−1.

Theorem 3.8. [3] Let X be a topological space. Then the collection B of sets
j2(U) ∪ k2(U) for U ∈ U∗ is a base of neighborhoods at the identity e in FP2(X).

Now we can prove the main theorem in this paper.

Theorem 3.9. Let X be a T1-space. Then the following statements are equiv-
alent:

(1) The mapping i2 : (X ⊕ X−1
d ⊕ {e})2 → FP2(X) is a quotient mapping;

(2) The mapping i2 : (X ⊕ X−1
d ⊕ {e})2 → AP2(X) is a quotient mapping;

(3) The mapping i2 : (X ⊕ X−1
d ⊕ {e})2 → FP2(X) is a closed mapping;

(4) The mapping i2 : (X ⊕ X−1
d ⊕ {e})2 → AP2(X) is a closed mapping.

Proof. Obviously, we have (3) ⇒ (1) and (4) ⇒ (2). Moreover, it follows from
Theorems 3.6 and 3.7 that we have (2) ⇒ (1). It suffices to show that (1) ⇒ (3)
and (2) ⇒ (4).

(1) ⇒ (3). Clearly, both FP2(X) r FP1(X) and FP1(X) r {e} are open in
FP2(X). Let E be a closed subset in (X ⊕ X−1

d ⊕ {e})2. To show that i2(E) is

closed in FP2(X) take w ∈ i2(E).

Case a1: w ∈ FP1(X)r{e}. Suppose w /∈ i2(E), then (w, e) /∈ E and (e, w) /∈
E. Since E is closed, there is an open neighborhood U (open in X ∪ X−1

d ) of
w such that (U × {e}) ∩ E = ∅ and ({e} × U) ∩ E = ∅. Obviously, we have
(U ×{e})∪({e}×U) = i−1

2 (U). Then U is open in FP2(X) since (U ×{e})∪({e}×U)

is open in (X ⊕ X−1
d ⊕ {e})2 and i2 is a quotient map. Hence U ∩ i2(E) = ∅, which

contradicts w ∈ i2(E).

Case a2: w ∈ FP2(X) r FP1(X). Let w = wǫ1

1 wǫ2

2 , where wi ∈ X and ǫi = 1
or -1 (i = 1, 2). Suppose that w 6∈ i2(E). Then (wǫ1

1 , wǫ2

2 ) 6∈ E.

Subcase a21: ǫ1 = ǫ2 = 1. Since (w1, w2) 6∈ E and E is closed in (X ⊕ X−1
d ⊕

{e})2, there exist neighborhoods U and V of w1 and w2 in X , respectively, such
that (U × V ) ∩ E = ∅. Therefore, it is easy to see that UV ∩ i2(E) = ∅. From
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Theorem 3.2 it follows that UV is a neighborhood of w, hence w 6∈ i2(E), which is
a contradiction.

Subcase a22: ǫ1 = ǫ2 = −1. From Theorem 3.2 it follows that {w−1
1 w−1

2 } is a

neighborhood of w, then w 6∈ i2(E), which is a contradiction.

Subcase a23: ǫ1 6= ǫ2. Without loss of generality, we may assume that ǫ1 = 1
and ǫ2 = −1. Then since (w1, w−1

2 ) 6∈ E and E is closed in (X ⊕X−1
d ⊕{e})2, there

exists a neighborhood U of w1 in X such that (U × {w−1
2 }) ∩ E = ∅ and w2 6∈ U .

(This is possible since X is T1.) Obviously, Uw−1
2 ⊂ FP2(X)rFP1(X). Therefore,

it is easy to see that Uw−1
2 ∩ i2(E) = ∅. From Theorem 3.2 it follows that Uw−1

2 is

a neighborhood of w, hence w 6∈ i2(E), which is a contradiction.
Therefore, we have w ∈ i2(E).

Case a3: w = e. Suppose that e 6∈ i2(E). Then E ∩ (∆1 ∪ ∆2 ∪ {(e, e)}) = ∅.
For any x ∈ X , since E does not contain points (x−1, x) and (x, x−1), there exists
an open neighborhood U(x) of x in X such that ({x−1} × U(x)) ∩ E = ∅ and
(U(x) × {x−1}) ∩ E = ∅. Let U =

⋃
x∈X({x−1} × U(x)) and V =

⋃
x∈X(U(x) ×

{x−1}). Then U ∩ E = ∅ and V ∩ E = ∅. Let W = U ∪ V ∪ {e} × {e}. Then W is
open in (X ⊕ X−1

d ⊕ {e})2 by (2) of Theorem 3.7. Obviously, we have W ∩ E = ∅.

It is easy to see that i−1
2 (i2(W )) = W , then i2(W ) is open since i2 is a quotient

map. Hence i2(W ) ∩ i2(E) = ∅, this is a contradiction.

(2) ⇒ (4). (Note: The proof is almost similar to (1) ⇒ (3). However, we give
out the proof for the convenience of readers.) Clearly, both AP2(X)rAP1(X) and
AP1(X)r {e} are open in AP2(X). Let E be a closed subset in (X ⊕ −Xd ⊕ {e})2.

To show that i2(E) is closed in AP2(X) take w ∈ i2(E).

Case b1: w ∈ AP1(X)r{e}. Suppose w /∈ i2(E), then (w, e) /∈ E and (e, w) /∈
E. Since E is closed, there is an open neighborhood U (open in X ∪ −Xd) of
w such that (U × {e}) ∩ E = ∅ and ({e} × U) ∩ E = ∅. Obviously, we have
(U ×{e})∪({e}×U) = i−1

2 (U). Then U is open in AP2(X) since (U ×{e})∪({e}×U)
is open in (X ⊕ −Xd ⊕ {e})2 and i2 is a quotient map by Theorems 3.6 and 3.7.

Then U ∩ i2(E) = ∅, that contradicts w ∈ i2(E).

Case b2: w ∈ AP2(X) r AP1(X). Let w = ǫ1w1 + ǫ2w2, where wi ∈ X and
ǫi = 1 or -1 (i = 1, 2). Suppose that w 6∈ i2(E). Then (ǫ1w1, ǫ2w2) 6∈ E and
(ǫ2w2, ǫ1w1) 6∈ E.

Subcase b21: ǫ1 = ǫ2 = 1. Since {(w1, w2), (w2, w1)} 6∈ E and E is closed
in (X ⊕ −Xd ⊕ {e})2, there exist neighborhoods U and V of w1 and w2 in X ,
respectively, such that (U × V ∪ V × U) ∩ E = ∅. Therefore, it is easy to see that
(U + V ) ∩ i2(E) = ∅. From Theorem 3.3 it follows that U + V is a neighborhood

of w, hence w 6∈ i2(E), which is a contradiction.

Subcase b22: ǫ1 = ǫ2 = −1. From Theorem 3.2 it follows that {−w1 − w2} is

a neighborhood of w, then w 6∈ i2(E), which is a contradiction.

Subcase b23: ǫ1 6= ǫ2. Without loss of generality, we may assume that ǫ1 = 1
and ǫ2 = −1. Then since {(w1, −w2), (−w2, w1)} 6∈ E and E is closed in (X ⊕
−Xd ⊕ {e})2, there exists a neighborhood U of w1 in X such that (U × {w−1

2 } ∪
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{w−1
2 } × U) ∩ E = ∅ and w2 6∈ U . (This is possible since X is T1.) Obviously,

U −w2 ⊂ AP2(X)rAP1(X). Therefore, it is easy to see that (U −w2)∩ i2(E) = ∅.

From Theorem 3.3 it follows that U − w2 is a neighborhood of w, hence w 6∈ i2(E),
which is a contradiction.

Therefore, we have w ∈ i2(E).

Case b3: w = e. Suppose that e 6∈ i2(E). Then E ∩ (∆1 ∪ ∆2 ∪ {(e, e)}) = ∅.
For any x ∈ X , since E does not contain points (−x, x) and (x, −x), there exists
an open neighborhood U(x) of x in X such that ({−x} × U(x)) ∩ E = ∅ and
(U(x)×{−x})∩E = ∅. Let U =

⋃
x∈X({−x}×U(x)) and V =

⋃
x∈X(U(x)×{−x}).

Then U ∩ E = ∅ and V ∩ E = ∅. Let W = U ∪ V ∪ {e} × {e}. Then W is open in
(X ⊕ −Xd ⊕ {e})2 by Theorem 3.7. Obviously, we have W ∩ E = ∅. It is easy to
see that i−1

2 (i2(W )) = W , then i2(W ) is open in AP2(X) since i2 is a quotient map
by Theorems 3.6 and 3.7. Hence i2(W ) ∩ i2(E) = ∅, which is a contradiction. �

Proposition 3.1. Let X be a T1-space. Then, for some n > 3,

in : (X ⊕ X−1
d ⊕ {e})n → FPn(X)

is a closed map if and only if X is discrete.

Proof. If X is discrete, then FP (X) is discrete, so it is easy to see that each
in is a closed map.

Let in be a closed map for some n > 3. Since X is T1, then X−1 is discrete.
Suppose that X is not discrete, then there exists x ∈ X such that x ∈ X r {x}.
Let

A = {(xα, xα, x−1
α , e, . . . , e) ∈ (X ⊕ X−1

d ⊕ {e})n : xα ∈ X r {x}}.

Then A is a closed discrete subset of (X ⊕ X−1
d ⊕ {e})n, and therefore, in(A) =

Xr{x} is a closed discrete subset, which is a contradiction. Hence X is discrete. �

Note. Therefore, we can improve all results in [3, Sections 4 and 5] from
quotient mappings to closed mappings. For example, we have the following propo-
sition.

Proposition 3.2. The mapping i2 is a closed mapping for any countable T1-
space. In particular, the mapping i2 is a closed mapping for any countable subspace
of the real line R.

Corollary 3.1. FP2(Q) and AP2(Q) are Fréchet, where Q is the rational
number of real line R.

Proof. By Proposition 3.2, i2 is a closed mapping. Then FP2(Q) and AP2(Q)
are Fréchet since (X ⊕ X−1

d ⊕ {e})2 is Fréchet and closed mappings preserve the
property of Fréchet. �

By [5, Proposition 6.26], we also have the following proposition.

Proposition 3.3. For an arbitrary compact first-countable Hausdorff space X,
the mapping i2 is closed if and only if X is countable.
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1. A. V. Arhangel’skǐı, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press
and World Sci., Paris, 2008.

2. A. S. Elfard, P. Nickolas, On the topology of free paratopological groups, Bull. Lond. Math.
Soc. 44(6) (2012), 1103–1115.

3. , On the topology of free paratopological groups. II, Topology Appl. 160 (2013),
220–229.

4. R. Engelking, General Topology, (revised and completed edition), Heldermann, Berlin, 1989.
5. P. Fletcher, W. F. Lindgren, Quasi-uniform spaces, Marcel Dekker, New York, 1982.
6. G. Gruenhage, Generalized metric spaces; in; K. Kunen, J. E. Vaughan (eds.), Handbook of

Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 423–501.
7. F. Lin, A note on free paratopological groups, Topology Appl. 159 (2012), 3596–3604.
8. , Topological monomorphism between free paratopological groups, Bull. Belg. Math.

Soc. – Simon Stevin 19 (2012), 507–521.
9. A. A. Markov, On free topological groups, Dokl. Akad. Nauk. SSSR 31 (1941), 299–301.

10. N. M. Pyrch, A. V. Ravsky, On free paratopological groups, Mat. Stud. 25 (2006), 115–125.
11. N. M. Pyrch, Free paratopological groups and free products of paratopological groups, J. Math.

Sci., New York 174(2) (2011), 190–195.
12. S. Romaguera, M. Sanchis, M. G. Tkachenko, Free paratopological groups, Topol. Proc. 27

(2002), 1–28.

School of Mathematics and Statistics (Received 24 04 2014)
Minnan Normal University (Revised 14 10 2014)
Zhangzhou
P. R. China
linfucai2008@aliyun.com

Department of Mathematics
Ohio University Zanesville Campus
Zanesville
USA
liuc1@ohio.edu


	1. Introduction
	2. Preliminaries
	3. Main results
	References

