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MAPPING i ON THE FREE
PARATOPOLOGICAL GROUPS

Fucai Lin and Chuan Liu

ABSTRACT. Let F'P(X) be the free paratopological group over a topological
space X. For each nonnegative integer n € N, denote by F Py, (X) the subset
of FP(X) consisting of all words of reduced length at most n, and i, by the
natural mapping from (X @ X1 @ {e})" to FP,(X). We prove that the
natural mapping iz : (X @ X;l @ {e})? — FPx(X) is a closed mapping if and
only if every neighborhood U of the diagonal Aj in X4 X X is a member of
the finest quasi-uniformity on X, where X is a Tj-space and X, denotes X
when equipped with the discrete topology in place of its given topology.

1. Introduction

In 1941, free topological groups were introduced by Markov in [9] with the clear
idea of extending the well-known construction of a free group from group theory
to topological groups. Now, free topological groups have become a powerful tool of
study in the theory of topological groups and serve as a source of various examples
and as an instrument for proving new theorems, see [1J.

As in free topological groups, Romaguera, Sanchis and Tkachenko in [12] de-
fined free paratopological groups and proved the existence of the free paratopo-
logical group FP(X) for every topological space X. Recently, Elfard, Lin, Nick-
olas, and Pyrch have investigated some properties of free paratopological groups,
see [21/3][7][8[10,11].

For each nonnegative integer n € N, denote by F'P,(X) the subset of FP(X)
consisting of all words of reduced length at most n, and i,, by the natural mapping
from (X ® X 1@ {e})" to FP,(X). Here we mainly improve some results of Elfard
and Nickolas. The main result is that the natural mapping io: (X ® X, '@ {e})? —
FP5(X) is a closed mapping if and only if every neighborhood U of the diagonal Ay
in Xg X X is a member of the finest quasi-uniformity on X, where X is a T}-space
and Xy denotes X when equipped with the discrete topology in place of its given
topology.
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2. Preliminaries

All mappings are continuous. We denote by N and Z the sets of all natural
numbers and the integers, respectively. The letter e denotes the neutral element of
a group. Readers may consult [1[4H6] for notations and terminology not explicitly
given here.

Recall that a topological group G is a group G with a (Hausdorff) topology such
that the product mapping of G x G into G is jointly continuous and the inverse
mapping of G onto itself associating 2~! with an arbitrary x € G is continuous.
A paratopological group G is a group G with a topology such that the product
mapping of G x G into G is jointly continuous.

DEFINITION 2.1. [12] Let X be a subspace of a paratopological group G.
Assume that

(1) The set X generates G algebraically, that is < (X) = G;
(2) Each continuous mapping f: X — H to a paratopological group H ex-
tends to a continuous homomorphism f: G — H.

Then G is called the Markov free paratopological group on X and is denoted by
FP(X).

Again, if all the groups in the above definitions are Abelian, then we get the
definition of the Markov free Abelian paratopological group on X which will be
denoted by AP(X).

By [12], FPX and AP(X) exist for every space X and the underlying ab-
stract groups of FPX and AP(X) are the free groups on the underlying set of the
topological space X respectively. We denote these abstract groups by F P, (X) and
AP, (X) respectively.

Since X generates the free group FP,(X), each element g € F'P,(X) has the
form g = z§' ... 25", where z1,...,2, € X and €1,...,&, = £1. This word for ¢
is called reduced if it contains no pair of consecutive symbols of the form zz~! or
x~ 'z, It follows that if the word g is reduced and nonempty, then it is different
from the neutral element of FP,(X). For every nonnegative integer n, denote by
FP,(X) and AP, (X) the subspace of paratopological groups FP(X) and AP(X)
that consists of all words of reduced length < n with respect to the free basis X,
respectively.

Let X be a Ti-space. For each n € N, denote by ¢,, the multiplication map-
ping from (X @ X;'e {e})n to Bn(X), in(y1,..-,Yn) = Y1 - yn for every point
(y1,.--syn) € (X @ X;'e {e})n, where X! denotes the set X! equipped with
the discrete topology and B, (X) denotes FP,(X) or AP, (X).

By a quasi-uniform space (X,U) we mean the natural analog of a uniform space
obtained by dropping the symmetry axiom. For each quasi-uniformity U the filter
U~! consisting of the inverse relations U~ = {(y,z) : (z,y) € U} where U € U is
called the conjugate quasi-uniformity of U.

Let X be a topological space. Then X; denotes X when equipped with the
discrete topology in place of its given topology. We denote the diagonals of Xj x X
and X x X4 by Ay and A,, respectively. In [10], the authors proved that X ! is
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discrete in free paratopological group FP(X) and AP(X) over X if X is a Ty-space.
We denote the sets {(z71,y) : (z,y) € X x X} and {(z,y™1) : (z,y) € X x X} by
A7 and A3, respectively.

3. Main results
First, we recall some results in the free paratopological groups.
THEOREM 3.1. [3] If X is a Ty-space, then the mapping
i2|i;1(FP2(X)\FP1(X)): iy {(FPy(X) N FP (X)) = FPy(X)~ FP(X)

is a homeomorphism.

€1 €2

THEOREM 3.2. [2] Let X be a Ty-space and let w = x5 x5? ... x5 be a reduced
word in FP,(X), where z; € X ande; = %1, foralli =1,2,...,n, and if v; = x4
for somei=1,2,...,n—1, then €¢; = €;+1. Then the collection B of all sets of the
form UrUs? .. .Ut where, for all i = 1,2,...,n, the set U; is a neighborhood of

x; in X when ¢, =1 and U; = {x;} when ¢, = —1 is a base for the neighborhood
system at w in FP,(X).

THEOREM 3.3. [2] Let X be a Ty-space and let w = €121 + €axa + - - - + €,
be a reduced word in AP,(X), where x; € X and ¢; = +1, for alli =1,2,...,n,

and if x; = x; for somei,5=1,2,...,n, then ¢, = €;. Then the collection B of all
sets of the form eUy 4+ e2Us + -+ - + €,Uy,, where, for all i =1,2,...,n, the set U;
is a neighborhood of x; in X when ¢; = 1 and U; = {x;} when ¢, = —1 is a base

for the neighborhood system at w in AP, (X).

THEOREM 3.4. If X is a T} -space, then the mapping

=iz |i;1(AP2(X)\AP1(X)): iy (AP (X) N AP(X) = APy (X) N APy (X)
is a 2 to 1, open and perfect mapping.

PRrROOF. Obviously, f is a 2 to 1 mapping. Next, we shall prove that f is open
and closed. Let Cx(X) = APy(X)\ AP (X) and C3(X) = iy ' (AP (X) N AP (X)).
Obviously, we have

C3(X)=(X x X)X ' x X;Ho (X' x X)NAT® (X x X1\ Aj.

(1) The mapping f is open. Let (', 25?) € C5(X), where x1,29 € X and
x1 # xqif €1 # ea. Let U be a neighborhood of (7', 25?) in C5 (X). By Theorem[3.3]
f(U) is a neighborhood of z{'z5? in C2(X). (Indeed, the argument is similar to the
proof of [3] Theorem 3.4].) Therefore, f is open.

(2) The mapping f is closed. Let E be a closed subset of C5(X). To show
that io(F) is closed in Cy(X) take w € is(E). Next, we shall show that w € iy(E).
Indeed, it is obvious that w has a reduced form w = €121 + €272, where ¢; = 1 or
-1 (’L = 1,2), r1,22 € X and xq 7é xo if €1 7é €9.

Suppose that w = © +y ¢ i2(FE), where x = e127 and y = esxs. Then
{(z,y),(y,z)} N E = . Since E is closed, we can pick open neighborhoods V(z)
of zin X UX;", V(y) of y in X UX;" such that (V(z) x V(y)) N E = 0 and
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(V) xV(z))NE=0. Let U = (V(z) x V(y)) U (V(y) x V(x)). Then U is open.
Since f is an open map, we have f(U) is a neighborhood of w and f(U)Ni2(E) = 0.
This contradicts with w € i2(E). O

For an arbitrary space X, the mapping f: X — Z defined by setting f(z) =1
for all x € X is continuous, and thus extends to a continuous homomorphism
f: AP(X) — Z. Therefore, the collection of sets Z,(X) = f’l({n}) forn € Z
forms a partition of AP(X) into clopen subspaces.

For a T1-space, define

g9: (Xax X) @ (X x Xq) @ ({e} x {e}) = AR(X) N Zo(X)

by
—z+y, if(r,y) e XgxX;
glz,y) =qz—y, if(z,y) € X x Xg;
e, ifx=y.
Let g; =2 |i;1(AP2(X)ij(X)) for j = —2,...,2, where

in: (X ® X, @ {e})? — AP (X).

Obviously, is = @;f_Q{gj}, and 49 is a closed (resp. quotient) mapping if and
only if each g; is a closed (resp. quotient) mapping, where j = —2,...,2. By
Theorem [3.4] it is easy to see that g_s and g are open and closed. Moreover, since
—X occurs with the discrete topology and X occurs with its original topology in
AP(X), the mappings g_; and g1 are open and closed. Obviously, g is a closed
(resp. quotient) mapping if and only if go is a closed (resp. quotient) mapping.
Therefore, we have the following result:

LEMMA 3.1. Let X be a Ti-space. Then iz is a closed (resp. quotient) mapping
if and only if g is a closed (resp. quotient) mapping.

LEMMA 3.2. [3] Let X be a space and let Ay be the diagonal in the space
Xgx X. Then Ay is closed if and only if X is Ty. Similarly for the diagonal Ao
in the space X X Xg .

Suppose that U* is the finest quasi-uniformity of a space X. We say that
P = {U,}ien is a sequence of U* if each U; € U*. Put

“U* = {P: P is a sequence of U"}.
For each n € N and P = {U;};eny € “U*, let Q,(N) = {A CN:|A4| =n},
Wo(P)={-21+y1— —2n+yn: (z5,y;) € Uy
for j=1,2,...,n,{i1,d2,...,in} € Q,(N)}, and W,, = {W,,(P) : P € “U*}.

REMARK 3.1. In the above definition, for P = {U; };eny € “U*, there may exist
i # j such that U; = U;. In particular, for every U € U*, we have {U; = U}ien is
also in “U*. Moreover, the reader should note that the representation of elements
of W,,(P) need not be a reduced representation.



THE MAPPING i ON THE FREE PARATOPOLOGICAL GROUPS 217

THEOREM 3.5. [T] For each n € N, the family W,, is a neighborhood base of e
in APy (X).

The proof of the following Theorem is a modification of [3, Theorem 3.10].
THEOREM 3.6. Let X be a Ti-space. Then the mapping
in: (X ® X' @ {e})® = APy(X)

is a quotient mapping if and only if every neighborhood U of the diagonal Ay in
Xg x X is a member of the finest quasi-uniformity U* on X.

PROOF. Put Z = (Xg x X) ® (X x X4) ® ({e} x {e}).

NECESSITY. Suppose that is is a quotient mapping. It follows from Lemma 311
that g: Z — AP2(X) N Zyp(X) is a quotient mapping. Let U be a neighborhood
of Ay in X4 x X. Obviously, U U (=U) is a neighborhood of A; U Ay in Z. Let
P = {U,}nen, where U, = U for each n € N. Let W1 (P) ={-z+vy: (z,y) € U}.
Then g~ (W1 (P)) = UU(—=U)U{(e, e)} that is a neighborhood of A; UA;U{(e,e)}
in Z, then Wy (P) is a neighborhood of e in AP,(X)NZy(X), and hence in AP,(X).
By Theorem BH there exists @ € “U* such that W1(Q) C Wi (P), where Q =
{Va}nen. Then Vi C U, hence U € U*.

SUFFICIENCY. Suppose that every neighborhood U of the diagonal A; in X x
X is a member of the finest quasi-uniformity U* on X. To show that is is a
quotient mapping, it follows from Lemma Bl that it suffices to show that the
mapping g: Z — AP2(X) N Zyp(X) is a quotient mapping. Take a subset A C
AP>(X) N Zo(X) such that g=1(A) is open in Z. Put U = g7 1(A4) N (X4 x X) and
V =g71(A) N (X x Xg). Firstly, we show the following claim:

Cram: If e € A, then A is open in AP2(X) N Zp(X). Indeed, since e & A,
UNA; =0 and VNAy =0. By Lemma 3.2, A; and As are closed in Xy x X and
X x X4, respectively, and Xz x X ~ A7 and X x Xy~ Ay are open in Xy x X and
X x X, respectively. Hence U UV is open in the space iy (AP (X) ~ AP (X)),
and by Theorem B4 ¢g(U UV) = A is open in AP,(X) N Zy(X).

Next we shall show that A is open in AP»(X) N Zy(X). Take arbitrary a € A.
Then it suffices to show that A is an open neighborhood of a.

CASE 1: a = e. Obviously, U and V are open neighborhoods of A; and
As in X4 x X and X x Xy, respectively. Therefore, S = U N (V1) is an open
neighborhood of Ay in Xgx X, and thus S € U*. Let W1 (R) = {—z+vy : (z,y) € S},
where R = {S, }neny and S, = S for each n € N. By Theorem B5 Wi (R) is a
neighborhood of e in AP»(X). Since S = U N (V1) and the definition of g, it is
easy to see that W7 (R) C A. Therefore, A is a neighborhood of e in AP»(X), hence
in APQ(X) n Zo(X)

CASE 2: a # e. Let W be an open neighborhood of a in AP»(X) N Zy(X) such
that e ¢ W. Then the set g=1(AN W) is open in Z, and it follows from the claim
that AN W is an open neighborhood of a in AP,(X) N Zy(X). Hence A is open in
APy (X) N Zo(X). 0

The following theorem is the main result in [3], and some related concepts can
be seen in [5]. Next, we shall improve this result in Theorem
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THEOREM 3.7. [3] Let X be a Ti-space. Then the following statements are
equivalent:

(1) The mapping i2: (X ® X; ' @ {e})? = FPy(X) is a quotient mapping;

(2) Every neighborhood U of the diagonal Ay in X4 x X is a member of the
finest quasi-uniformity U* on X;

(3) Ewery neighbornet of X is normal;

(4) The finest quasi-uniformity U* on X consists of all neighborhoods of the
diagonal Ay in Xg X X;

(5) If N, is a neighborhood of x for all x € X, then there exists a neighborhood
M, of x such that UyeMm My C Ny for allz e X;

(6) If N, is a neighborhood of x for all x € X, then there exists a quasi-
pseudometric d on X such that d, is upper semi-continuous and Bg(xz,1) C
N, forallxz € X.

Let X be a set. Define jo,ko: X x X — Fu(X) by ja(x,y) = 271y and
ka(z,y) =y~

THEOREM 3.8. [3] Let X be a topological space. Then the collection B of sets
J2(U) U ka(U) for U € U* is a base of neighborhoods at the identity e in FPy(X).

Now we can prove the main theorem in this paper.

THEOREM 3.9. Let X be a Ti-space. Then the following statements are equiv-
alent:

(1) The mapping iz: (X ® X;' @ {e})? — FPy(X) is a quotient mapping;
(2) The mapping iz: (X @ X Yo {e})? = APy(X) is a quotient mapping;
(3) The mapping iz: (X @ X Y@ {e})? = FPy(X) is a closed mapping;
(4) The mapping iz: (X ® X Y@ {e})? = APy(X) is a closed mapping.

) a

PROOF. Obviously, we have (3) = (1) and (4) = (2). Moreover, it follows from
Theorems and B.7 that we have (2) = (1). It suffices to show that (1) = (3)
and (2) = (4).

(1) = (3). Clearly, both FP2(X) ~ FP;(X) and FP;(X) ~\ {e} are open in
FPy(X). Let E be a closed subset in (X @ X;' @ {e})%. To show that i»(F) is
closed in FPy(X) take w € i5(E).

Cast al: w € FP(X)~{e}. Suppose w ¢ i3(F), then (w,e) ¢ F and (e, w) ¢
E. Since E is closed, there is an open neighborhood U (open in X U Xd_l) of
w such that (U x {e}) N E = 0 and ({e} x U)N E = §. Obviously, we have
(Ux{e})U({e}xU) =iz *(U). Then U is open in FPy(X) since (U x{e})U({e}xU)
is open in (X @ X' @ {e})? and i is a quotient map. Hence U Nis(E) = @, which
contradicts w € iz(F).

CASE a2: w € FPy(X) ~\ FP(X). Let w = w{! w2 , where w; € X and ¢; = 1
or -1 (i = 1,2). Suppose that w & i2(E). Then (wi',ws?) ¢ E.

SUBCASE a2l: €; = €3 = 1. Since (w1, w2) ¢ F and E is closed in (X ® X;' @
{e})?, there exist neighborhoods U and V of w; and ws in X, respectively, such
that (U x V)N E = (. Therefore, it is easy to see that UV Niz(E) = (. From
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Theorem [B2 it follows that UV is a neighborhood of w, hence w ¢ i3(E), which is
a contradiction.

SUBCASE a22: €; = €3 = —1. From Theorem B2 it follows that {w] w5 '} is a

neighborhood of w, then w ¢ i3(F), which is a contradiction.

SUBCASE a23: €1 # 3. Without loss of generality, we may assume that ¢; =1
and €2 = —1. Then since (w1, w; ') ¢ E and E is closed in (X & X; '@ {e})?, there
exists a neighborhood U of w; in X such that (U x {wy;*})NE =0 and wy ¢ U.
(This is possible since X is T1.) Obviously, Uw, ' C FPy(X )~ FP;(X). Therefore,
it is easy to see that Uwy ' Niz(E) = (). From Theorem B2 it follows that Uwy ! is
a neighborhood of w, hence w ¢ i2(E), which is a contradiction.

Therefore, we have w € iz(E).

CASE a3: w = e. Suppose that e € i2(F). Then EN (A UAsU{(e,e)}) = 0.
For any z € X, since E does not contain points (z=1,z) and (z,x~!), there exists
an open neighborhood U(z) of z in X such that ({z7!} x U(z)) N E = () and
(U(z) x{a™'})NE=0. Let U =U,ex({z™'} xU(x)) and V = U, e (U(z) x
{z71}). Then UNE=0and VNE =0. Let W =U UV U {e} x {e}. Then W is
open in (X & X;' @ {e})? by (2) of Theorem 571 Obviously, we have W N E = 0.
It is easy to see that iy ' (iz(W)) = W, then iy(W) is open since i is a quotient
map. Hence io(W) Niz(E) = 0, this is a contradiction.

(2) = (4). (Note: The proof is almost similar to (1) = (3). However, we give
out the proof for the convenience of readers.) Clearly, both AP>(X )~ AP;(X) and
APy (X)~ {e} are open in AP;(X). Let E be a closed subset in (X & —X,® {e})%
To show that i2(F) is closed in AP»(X) take w € is(E).

CASE bl: w € AP;(X)~{e}. Suppose w ¢ iz(E), then (w,e) ¢ E and (e, w) ¢
E. Since FE is closed, there is an open neighborhood U (open in X U —Xy) of
w such that (U x {e}) N E = 0 and ({e} x U)N E = §. Obviously, we have
(Ux{e})U({e}xU) =iy (U). Then U is open in AP, (X) since (U x {e})U({e}xU)
is open in (X ® — X4 @ {e})? and iy is a quotient map by Theorems and B.7
Then U Niy(E) = 0, that contradicts w € i5(E).

CASE b2: w € AP2(X) ~ AP (X). Let w = e;wy + eaws, where w; € X and
e, = 1 or-1 (i = 1,2). Suppose that w & ia(F). Then (eqwi,eaws) ¢ FE and
(62’[1)2,611[)1) g E

SUBCASE b21: €; = €3 = 1. Since {(wi,wz), (w2, w1)} ¢ E and E is closed
in (X & —X, @ {e})?, there exist neighborhoods U and V of w; and wy in X,
respectively, such that (U x VUV x U) N E = (). Therefore, it is easy to see that
(U4 V)Niz(E) = 0. From Theorem it follows that U + V is a neighborhood
of w, hence w ¢ i2(F), which is a contradiction.

SUBCASE b22: € = ¢2 = —1. From Theorem B2] it follows that {—w; — wa} is

a neighborhood of w, then w ¢ i2(E), which is a contradiction.

SUBCASE b23: €1 # e3. Without loss of generality, we may assume that ¢; = 1
and e3 = —1. Then since {(w1,—ws), (—we2,w1)} ¢ E and E is closed in (X &
—X4 @ {e})?, there exists a neighborhood U of w; in X such that (U x {wy '} U
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{w;'} x U)NE = and wy ¢ U. (This is possible since X is T3.) Obviously,
U—wy C APy (X) N\ AP, (X). Therefore, it is easy to see that (U —ws)Niz(E) = 0.
From Theorem B3 it follows that U — ws is a neighborhood of w, hence w ¢ i2(E),
which is a contradiction.

Therefore, we have w € iz(E).

CASE b3: w = e. Suppose that e € i2(E). Then £ N (A1 UAsU{(e,e)}) = 0.
For any z € X, since E does not contain points (—z,z) and (z, —x), there exists
an open neighborhood U(z) of x in X such that ({—z} x U(z)) N E = () and
(Ux)x{—2z)NE =0. Let U = J,c x{—2}xU(x)) and V = U, x (U(x) x {—2}).
Then UNE=0and VNE =(. Let W =UUV U{e} x {e}. Then W is open in
(X & —X,4 4 {e})? by Theorem 371 Obviously, we have W N E = (). It is easy to
see that iy ' (io(W)) = W, then i5(W) is open in AP, (X) since i3 is a quotient map
by Theorems B.6l and B71 Hence i2(W) Nig(E) = ), which is a contradiction. [

PROPOSITION 3.1. Let X be a Ty-space. Then, for some n > 3,
in: (X @ X @ {e})" = FP,(X)
s a closed map if and only if X is discrete.

Proor. If X is discrete, then FP(X) is discrete, so it is easy to see that each
ip, is a closed map.

Let i, be a closed map for some n > 3. Since X is T3, then X ! is discrete.
Suppose that X is not discrete, then there exists © € X such that z € X \ {z}.
Let

A={(Ta,Ta 23 e, e) € (X DX @ {e])" 20 € X N {2}}.

Then A is a closed discrete subset of (X @ X;' @ {e})", and therefore, i,(A4) =
X ~A{x} is a closed discrete subset, which is a contradiction. Hence X is discrete. [

NoTE. Therefore, we can improve all results in [3| Sections 4 and 5] from
quotient mappings to closed mappings. For example, we have the following propo-
sition.

PROPOSITION 3.2. The mapping is is a closed mapping for any countable T} -
space. In particular, the mapping is is a closed mapping for any countable subspace
of the real line R.

COROLLARY 3.1. FP(Q) and AP>(Q) are Fréchet, where Q is the rational
number of real line R.

PRrROOF. By PropositionB.2] is is a closed mapping. Then FP>(Q) and AP>(Q)
are Fréchet since (X @ X' @ {e})? is Fréchet and closed mappings preserve the
property of Fréchet. (I

By [5] Proposition 6.26], we also have the following proposition.

PROPOSITION 3.3. For an arbitrary compact first-countable Hausdorff space X,
the mapping io is closed if and only if X is countable.
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