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CLASSIFICATION OF PRODUCT SHAPED

HYPERSURFACES IN LORENTZ SPACE FORMS

Dan Yang, Le Hao, and Bingren Chen

Abstract. We define the product shaped hypersurfaces in Lorentz space
forms by imposing the shape operator to be product type. Based on the
classification of the isoparametric hypersurfaces, we obtain the whole families
of the product shaped hypersurfaces in Minkowski, de Sitter and anti-de Sitter
spaces.

1. Introduction

Let Rn
k be an n-dimensional real vector space together with an inner product

given by

〈x, x〉 = −
k

∑

i=1

x2
i +

n
∑

j=k+1

x2
j ,

where x = (x1, . . . , xn) is the natural coordinate of Rn
k and Rn

k is called an n-
dimensional semi-Euclidean space. We recall that the semi-Riemannian manifolds
S

n
k (c) and H

n
k (c) are as follows:

S
n
k (c) =

{

(x1, . . . , xn+1) ∈ R
n+1
k

∣

∣

∣

∣

−
k

∑

i=1

x2
i +

n+1
∑

i=k+1

x2
i =

1

c

}

, (c > 0),

H
n
k (c) =

{

(x1, . . . , xn+1) ∈ R
n+1
k+1

∣

∣

∣

∣

−
k+1
∑

i=1

x2
i +

n+1
∑

i=k+2

x2
i =

1

c

}

, (c < 0).

These spaces are complete ones with constant curvature c. Sn
k (c) and Hn

k (c) are
called semi-sphere and semi-hyperbolic space, respectively. In general relativity, the
Lorentz manifolds R

n
1 , Sn

1 (c) and H
n
1 (c) are respectively known as the Minkowski,

de Sitter and anti-de Sitter space, which is called Lorentz space form and is denoted
by Nn

1 (c).
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The notion of golden structure on a manifold was introduced in [2, 3] as a
tensor field of (1,1)-type J on M which satisfies the same equation as the golden
ratio: J2 = J + I, where I is the usual Kronecker tensor field of M . In real
space form, Crasmareanu–Hretcanu–Munteanu [1] gave the definition of the golden
shaped hypersurfaces and product shaped hypersurfaces, and obtained the classi-
fication of this two kinds of hypersurfaces. In Lorentz space form, there are two
kinds of hypersurfaces according to the index of the hypersurfaces, that is, space-
like hypersurfaces and Lorentz hypersurfaces. A hypersurface in a Lorentz space
form N

n+1
1 (c) is said to be spacelike if the induced metric on the hypersurface from

that of the Lorentz space is positive definite. A hypersurface in a Lorentz space
form N

n+1
1 (c) is said to be Lorentz if the induced metric on the hypersurface is

indefinite and the index is one. In the Lorentz space form, the first author and
Fu [6] defined the golden shaped hypersurfaces and gave the whole families of the
golden shaped hypersurfaces. Since, in [2], there is a natural correspondence de-
rived between golden structures and almost product structures, it is necessary to
study the product shaped version in the Lorentz space form.

Let Mn be a hypersurface in the Lorentz space form N
n+1
1 (c) and for a certain

normal vector field N , let A = AN be the associated shape operator. We firstly
give the following definition.

Definition 1.1. A hypersurface Mn in a Lorentz space form N
n+1
1 (c) is called

a product shaped hypersurface if A2 = I.

In this paper, we will give the complete classification of the product shaped
hypersurfaces in Lorentz space forms. Our results state that there are two kinds
of hypersurfaces in the Minkowski space R

n+1
1 , three kinds of hypersurfaces in the

de Sitter space S
n+1
1 (1) and three kinds of hypersurfaces in the anti-de Sitter space

H
n+1
1 (−1), respectively. We find that there are large differences between the golden

shaped hypersurface and the product shaped hypersurface.

2. The classification of product shaped hypersurfaces

In this section, we will give the complete classification of the product shaped
hypersurfaces in the Minkowski space, the de Sitter space and the anti-de Sitter
space, respectively. In order to give the proof of the theorems, we firstly give the
following proposition.

Proposition 2.1. The product shaped hypersurfaces in a Lorentz space form

N
n+1
1 (c) are isoparametric hypersurfaces with two distinct principle curvatures 1

and −1.

Proof. If M is a spacelike hypersurface in N
n+1
1 (c), the normal vector is

timelike and the shape operator A can be diagonalized by choosing the orthogonal
frame field on M . Denote the principal curvatures of the spacelike hypersurface by
λ1, . . . , λn. By A2 = I, the principal curvatures of the spacelike product shaped
hypersurface are 1 or −1 respectively, and hence the hypersurface is isoparametric.
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If M is a Lorentz hypersurface in N
n+1
1 (c), the normal vector is spacelike. By

[4], the shape operator maybe have the following four forms

(1) A =















a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a3 . . . 0
...

...
...

. . .
...

0 0 0 . . . an















(2) A =















a0 0 0 . . . 0
1 a0 0 . . . 0
0 0 a1 . . . 0
...

...
...

. . .
...

0 0 0 . . . an−2















(3) A =



















a0 0 0 0 . . . 0
0 a0 1 0 . . . 0

−1 0 a0 0 . . . 0
0 0 0 a1 . . . 0
...

...
...

. . .
...

0 0 0 0 . . . an−3



















(4) A =















a0 b0 0 . . . 0
−b0 a0 0 . . . 0

0 0 a1 . . . 0
...

...
...

. . .
...

0 0 0 . . . an−2















.

We consider the four forms one by one for the Lorentz product shaped hyper-
surface.

(a) If the shape operator has the form (1), by A2 = I, we get ai = 1 or −1 for
i = 1, 2 . . . , n. So the principal curvatures of the hypersurface are ±1 and
the hypersurface is isoparametric.

(b) If the shape operator has the form (2), by A2 = I, we get a2
0 = 1 and

2a0 = 0, which is impossible.
(c) If the shape operator has the form (3), by A2 = I, we get −1 = 0, which is

impossible.
(d) If the shape operator has the form (4), by A2 = I, we get b0 = 0 and ai = 1

or −1 for i = 0, 1 . . . , n−2. Therefore the principal curvatures of the product
shaped hypersurface are ±1, and the hypersurface is isoparametric. �

Next we will give the proof of the main theorems.

Theorem 2.1. The only product shaped hypersurfaces in the Minkowski space

R
n+1
1 are

(1) Spacelike hypersurface Hn(−1) =
{

x ∈ R
n+1
1

∣

∣ − x2
1 +

∑n+1
i=2 x2

i = −1
}

;

(2) Lorentz hypersurface Sn
1 (1) =

{

x ∈ R
n+1
1

∣

∣ − x2
1 +

∑n+1
i=2 x2

i = 1
}

.

Proof. By [5], the isoparametric hypersurfaces in Minkowski space Rn+1
1 have

the following six cases:

R(1) : Rn =
{

x = (x1, . . . , xn+1) ∈ R
n+1
1

∣

∣ x1 = 0
}

with A = 0;

R(2) : Hn(c) =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=2

x2
i =

1

c

}

(c < 0) with A = ±
√

−c I;

R(3) : Rr × Hn−r =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=2+r

x2
i =

1

c

}

(c < 0)

with A = ±(0r ⊕
√

−c In−r);
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R(4) : Rn
1 =

{

x ∈ R
n+1
1 | xn+1 = 0

}

with A = 0;

R(5) : Sn
1 (c) =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=2

x2
i =

1

c

}

(c > 0) with A = ±
√

c I;

R(6) : Rr × Sn−r
1 =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=r+2

x2
i =

1

c

}

(c > 0)

with A = ±(0r ⊕
√

c In−r).

Here R(1), R(2), R(3) are spacelike hypersurfaces and R(4), R(5), R(6) are
Lorentz hypersurfaces.

It follows from Proposition 2.1 that the product shaped hypersurfaces are
isoparametric hypersurfaces with two distinct principal curvatures 1 and −1, which
are nonzero constant. So the cases R(1),R(3), R(4) and R(6) are impossible.

For the case R(2), since the eigenvalues of the shape operator are ±1, so c = −1
and the spacelike product shaped hypersurface is

Hn(−1) =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=2

x2
i = −1

}

.

This gives case (1) of Theorem 2.1.
For the case R(5), since the eigenvalues of the shape operator are ±1, then

c = 1 and the Lorentz product shaped hypersurface is

Sn
1 (1) =

{

x ∈ R
n+1
1

∣

∣

∣ − x2
1 +

n+1
∑

i=2

x2
i = 1

}

.

This gives case (2) of Theorem 2.1. �

For n = 2, we give the pictures of the product shaped surfaces (1) and (2) in
Theorem 2.1, see Fig. 1.
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Theorem 2.2. The only product shaped hypersurfaces in the de Sitter space

S
n+1
1 (1) are

(1) Spacelike hypersurface Rn =
{

x ∈ S
n+1
1 ⊂ R

n+2
1 | x1 = xn+2+t0

}

(t0 > 0);

(2) Lorentz hypersurface Sn
1 (2) =

{

x ∈ S
n+1
1 ⊂ R

n+2
1 | xn+2 =

√

2
2

}

;

(3) Lorentz hypersurface Sr(2) × Sn−r
1 (2) =

{

x ∈ R
n+1
1 | ∑2+r

i=2 x2
i = 1

2 , −x2
1 +

∑n+2
i=3+r x2

i = 1
2

}

, where r = 1, . . . , n − 1.

Proof. The isoparametric hypersurfaces in the de Sitter space S
n+1
1 (1) have

the following cases [5]:

S(1) : Rn =
{

x ∈ S
n+1
1 ⊂ Rn+2

1 | x1 = xn+2 + t0
}

(t0 > 0) with A = ±I;

S(2) : Sn(c) =
{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣ x1 =
√

1/c − 1
}

(0 <c 6 1) with A = ±
√

1−c I;

S(3) : Hn(c) =
{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣ xn+2 =
√

1 − 1/c
}

(c < 0) with A = ±
√

1 − c I;

S(4) : Sr(c1) × Hn−r(c2) =

{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣

∣

∣

2+r
∑

i=2

x2
i =

1

c1
, −x2

1 +
n+2
∑

i=3+r

x2
i =

1

c2

}

,

with A = ±(
√

1 − c1 Ir ⊕
√

1 − c2 In−r), and 1
c1

+ 1
c2

= 1, c1 > 0, c2 < 0;

S(5) : Sn
1 (c) =

{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣ xn+2 =
√

1 − 1/c
}

(c > 1) with A = ±
√

c − 1 I;

S(6) : Sr(c1) × Sn−r
1 (c2) =

{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣

∣

∣

2+r
∑

i=2

x2
i =

1

c1
, −x2

1 +

n+2
∑

i=3+r

x2
i =

1

c2

}

,

with A = ±
(√

c1 − 1 Ir ⊕ (−
√

c2 − 1 In−r)
)

, and 1
c1

+ 1
c2

= 1, c1 > 0, c! > 0.

Here S(1), S(2), S(3), S(4) are spacelike hypersurfaces and S(5), S(6) are Lorentz hy-
persurfaces. It follows from Proposition 2.1 that the product shaped hypersurfaces
are isoparametric hypersurfaces with two distinct principal curvatures 1 and −1.
So case S(4) cannot occur.

For the case S(1), the eigenvalue of the shape operator is exactly 1 or −1, so

Rn =
{

x ∈ S
n+1
1 ⊂ Rn+2

1 | x1 = xn+2 + t0
}

(t0 > 0)

is the spacelike product shaped hypersurface in the de Sitter space. This gives
case (1) of Theorem 2.2.

For the case S(2), since the eigenvalue of the shape operator is ±1, then c = 0,
which contradicts to 0 < c 6 1. This implies that case S(2) is impossible. Similarly,
case S(3) is impossible as well.

For the case S(5), since the eigenvalue of the shape operator is ±1, then c = 2,
and the Lorentz product shaped hypersurface is

Sn
1 (2) =

{

x ∈ S
n+1
1 ⊂ Rn+2

1

∣

∣ xn+2 =
√

2 /2
}

.

This gives case (2) of Theorem 2.2.
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For the case S(6). If
√

c1 − 1 = 1, −√
c2 − 1 = −1, then c1 = c2 = 2, and the

Lorentz product shaped hypersurface is

Sr(2) × Sn−r
1 (2) =

{

x ∈ R
n+1
1

∣

∣

∣

2+r
∑

i=2

x2
i =

1

2
, −x2

1 +

n+2
∑

i=3+r

x2
i =

1

2

}

,

with A = Ir ⊕(−In−r). This gives case (3) of Theorem 2.2. Similarly, if −√
c1 − 1 =

−1,
√

c2 − 1 = 1, we also get case (3) of Theorem 2.2. �

For n = 1, we give the pictures of the product shaped curves (1) and (2) in
Theorem 2.2

−5

0

5

10

−10

−5

0

5

10
−6

−4

−2

0

2

4

6

x−axisy−axis

z−
ax

is

−5

0

5

−10

−5

0

5

10
−6

−4

−2

0

2

4

6

x−axisy−axis

z−
ax

is

Figure 2.

Theorem 2.3. The only product shaped hypersurfaces in the anti-de Sitter

space H
n+1
1 (−1) are

(1) Spacelike hypersurface Hn(−2) =
{

x ∈ H
n+1
1 (−1) ⊂ R

n+2
2 | x1 =

√

2
2

}

;

(2) Spacelike hypersurface Hr(−2) × Hn−r(−2) =
{

x ∈ H
n+1
1 (−1) ⊂ R

n+2
2 |

−x2
1 +

∑2+r

i=3 x2
i = − 1

2 , −x2
2 +

∑n+2
i=3+r x2

i = − 1
2

}

;

(3) Lorentz hypersurface Rn
1 =

{

x ∈ H
n+1
1 (−1) ⊂ R

n+2
2 | x1 = xn+2+t0

}

(t0 > 0).

Proof. By [5], the isoparametric hypersurfaces in H
n+1
1 (−1) have the follow-

ing cases:

H(1) : Hn(c) =
{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣ x1 =
√

1/c + 1
}

(c 6 −1)

with A = ±
√

−1 − c I;

H(2) : Hr(c1) × Hn−r(c2) =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣

∣ − x2
1 +

2+r
∑

i=3

x2
i =

1

c1
,

− x2
2 +

n+2
∑

i=3+r

x2
i =

1

c2

}

with A =
√

−1 − c1 Ir ⊕
√

−1 − c2 In−r, and
1

c1
+

1

c2
= −1, c1 < 0, c2 < 0;
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H(3) : Rn
1 =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2 | x1 = xn+2 + t0
}

(t0 > 0) with A = ±I;

H(4) : Sn
1 (c) =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣ x1 =
√

1/c+1
}

(c > 0)

with A = ±
√

1+c I;

H(5) : Hn
1 (c) =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣ xn+2 =
√

−1 − 1/c
}

(−1 6 c < 0)

with A = ±
√

1 + c I;

H(6) : Sr
1(c1) × Hn−r(c2) =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣

∣
− x2

1 +
r+2
∑

i=3

x2
i =

1

c1
,

− x2
2 +

n+2
∑

i=3+r

x2
i =

1

c2

}

,

with A = ±(
√

1 + c1Ir ⊕
√

1 + c2In−r), and
1

c1
+

1

c2
= −1, c1 > 0, c2 < 0,

see Fig. 2. Here H(1), H(2) are spacelike hypersurfaces and H(3), H(4), H(5), H(6)

are Lorentz hypersurfaces, respectively.
Since the eigenvalues of the shape operator for the hypersurface in H

n+1
1 (−1)

are 1 and −1, so H(6) cannot occur.
For the case H(1), the eigenvalue of the shape operator is ±1, then c = −2 and

the spacelike product shaped hypersurface is

Hn(−2) =
{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣ x1 =
√

2 /2
}

.

This gives case (1) of Theorem 2.3.
For the case H(2), since the eigenvalues of the shape operator are ±1. If√−1 − c1 = 1, −√−1 − c2 = −1, then c1 = c2 = −2, and the spacelike hyper-

surface is

Hr(−2) × Hn−r(−2)

=

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2

∣

∣

∣ − x2
1 +

2+r
∑

i=3

x2
i = −1

2
, −x2

2 +

n+2
∑

i=3+r

x2
i = −1

2

}

.

with A = Ir ⊕ (−In−r). This gives case (2) of Theorem 2.3.
For the case H(3), since the eigenvalue of the shape operator is just ±1, so

Rn
1 =

{

x ∈ H
n+1
1 (−1) ⊂ Rn+2

2 | x1 = xn+2 + t0
}

(t0 > 0)

is the product shaped hypersurface. This gives case (3) of Theorem 2.3.
For the case H(4), since the eigenvalue of the shape operator is ±1, then c = 0,

which contradicts to c > 0. So case H(4) does not exist. Similarly, case H(5) does
not exist, too. �

Remark 2.1. For n = 1, we can draw the pictures for the product shaped
curve in Theorem 2.3 similar to Theorem 2.2.

Remark 2.2. We conclude that there are only two product shaped hyper-
surfaces in the Minkowski space R

n+1
1 , while there are n such hypersurfaces in
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the de Sitter space S
n+1
1 (1) and [n

2 ] such hypersurfaces in the anti-de Sitter space

H
n+1
1 (−1) since r = 1, . . . , n−1 in Theorem 2.2 and Theorem 2.3, where [x] denotes

the integral part of x.
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