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𝑓-KENMOTSU MANIFOLDS WITH THE
SCHOUTEN–VAN KAMPEN CONNECTION

Ahmet Yıldız

Abstract. We study 3-dimensional 𝑓 -Kenmotsu manifolds with the Schouten–
van Kampen connection. With the help of such a connection, we study
projectively flat, conharmonically flat, Ricci semisymmetric and semisymmet-
ric 3-dimensional 𝑓 -Kenmotsu manifolds. Finally, we give an example of 3-
dimensional 𝑓 -Kenmotsu manifolds with the Schouten–van Kampen connec-
tion.

1. Introduction

The Schouten–van Kampen connection is one of the most natural connections
adapted to a pair of complementary distributions on a differentiable manifold en-
dowed with an affine connection [2,4,11]. Solov’ev investigated hyperdistributions
in Riemannian manifolds using the Schouten–van Kampen connection [12–15].
Then Olszak studied the Schouten–van Kampen connection to an almost contact
metric structure [8]. He characterized some classes of almost contact metric mani-
folds with the Schouten–van Kampen connection and found certain curvature prop-
erties of this connection on these manifolds.

On the other hand, let 𝑀 be an almost contact manifold, i.e., 𝑀 is a connected
(2𝑛+1)-dimensional differentiable manifold endowed with an almost contact metric
structure (𝜑, 𝜉, 𝜂, 𝑔) [1]. Denote by Φ the fundamental 2-form of 𝑀 , Φ(𝑋, 𝑌 ) =
𝑔(𝑋, 𝜑𝑌 ), 𝑋, 𝑌 ∈ 𝜒(𝑀), 𝜒(𝑀) being the Lie algebra of differentiable vector fields
on 𝑀 .

For further use, we recall the following definitions [1, 3, 10]. The manifold 𝑀
and its structure (𝜑, 𝜉, 𝜂, 𝑔) is said to be:

i) normal, if the almost complex structure defined on the product manifold
𝑀 × R is integrable (equivalently [𝜑, 𝜑] + 2𝑑𝜂 ⊗ 𝜉 = 0),

ii) almost cosymplectic, if 𝑑𝜂 = 0 and 𝑑Φ = 0,
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iii) cosymplectic, if it is normal and almost cosymplectic (equivalently, ∇𝜑 = 0,
∇ being covariant differentiation with respect to the Levi-Civita connec-
tion).

The manifold 𝑀 is called locally conformal, cosymplectic (respectively almost
cosymplectic), if 𝑀 has an open covering {𝑈𝑡} endowed with differentiable functions
𝜎𝑡 : 𝑈𝑖 → R such that over each 𝑈𝑡 the almost contact metric structure (𝜑𝑡, 𝜉𝑡, 𝜂𝑡, 𝑔𝑡)
defined by

𝜑𝑡 = 𝜑, 𝜉𝑡 = 𝑒𝜎𝑡𝜉, 𝜂𝑡 = 𝑒−𝜎𝑡𝜂, 𝑔𝑡 = 𝑒−2𝜎𝑡𝑔

is cosymplectic (respectively almost cosymplectic).
Also, Olszak and Rosca [9] studied normal locally conformal almost cosym-

plectic manifolds. They given a geometric interpretation of 𝑓 -Kenmotsu manifolds
and studied some curvature properties. Among others they proved that a Ricci
symmetric 𝑓 -Kenmotsu manifold is an Einstein manifold.

By an 𝑓 -Kenmotsu manifold, we mean an almost contact metric manifold which
is normal and locally conformal almost cosymplectic manifold.

In the present paper we study some curvature properties of 3-dimensional 𝑓 -
Kenmotsu manifolds with the Schouten–van Kampen connection. The paper is
organized as follows: after introduction, we give the Schouten–van Kampen con-
nection and 𝑓 -Kenmotsu manifolds. Then we adapt the Schouten–van Kampen
connection on 3-dimensional 𝑓 -Kenmotsu manifolds. In section 5, we study pro-
jectively flat 3-dimensional 𝑓 -Kenmotsu manifolds with the Schouten–van Kam-
pen connection. In section 6, we consider conharmonically flat 3-dimensional 𝑓 -
Kenmotsu manifolds with the Schouten–van Kampen connection. Section 7 is
devoted to study Ricci semisymmetric 3-dimensional 𝑓 -Kenmotsu manifolds with
the Schouten–van Kampen connection and we prove that if a 3-dimensional 𝑓 -
Kenmotsu manifold is Ricci semisymmetric, then it is an 𝜂-Einstein manifold. In
section 8, we study semisymmetric 3-dimensional 𝑓 -Kenmotsu manifolds with the
Schouten–van Kampen connection. Finally, we give an example of a 3-dimensional
𝑓 -Kenmotsu manifold with the Schouten–van Kampen connection which verifies
Theorem 5.1 and Theorem 6.1.

2. The Schouten–van Kampen connection

Let 𝑀 be a connected pseudo-Riemannian manifold of an arbitrary signature
(𝑝, 𝑛 − 𝑝), 0 6 𝑝 6 𝑛, 𝑛 = dim 𝑀 > 2. By 𝑔 and ∇ we denote the pseudo-
Riemannian metric and Levi-Civita connection induced from the metric 𝑔 on 𝑀
respectively. Assume that 𝐻 and 𝑉 are two complementary, orthogonal distribu-
tions on 𝑀 such that dim 𝐻 = 𝑛−1, dim 𝑉 = 1, and the distribution 𝑉 is non-null.
Thus 𝑇𝑀 = 𝐻 ⊕ 𝑉 , 𝐻 ∩ 𝑉 = {0} and 𝐻 ⊥ 𝑉 . Assume that 𝜉 is a unit vector field
and 𝜂 is a linear form such that 𝜂(𝜉) = 1, 𝑔(𝜉, 𝜉) = 𝜀 = ±1 and

𝐻 = ker 𝜂, 𝑉 = span{𝜉}.

We can always choose such 𝜉 and 𝜂 at least locally (in a certain neighborhood of an
arbitrarily chosen point of 𝑀). We also have 𝜂(𝑋) = 𝜀𝑔(𝑋, 𝜉). Moreover, it holds
that ∇𝑋𝜉 ∈ 𝐻.
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For any 𝑋 ∈ 𝑇𝑀 , by 𝑋ℎ and 𝑋𝑣 we denote the projections of 𝑋 onto 𝐻 and
𝑉 , respectively. Thus, we have 𝑋 = 𝑋ℎ + 𝑋𝑣 with
(2.1) 𝑋ℎ = 𝑋 − 𝜂(𝑋)𝜉, 𝑋𝑣 = 𝜂(𝑋)𝜉.

The Schouten–van Kampen connection ∇̃ associated to the Levi-Civita connection
∇ and adapted to the pair of the distributions (𝐻, 𝑉 ) is defined by [2]
(2.2) ∇̃𝑋𝑌 = (∇𝑋𝑌 ℎ)ℎ + (∇𝑋𝑌 𝑣)𝑣,

and the corresponding second fundamental form 𝐵 is defined by 𝐵 = ∇ − ∇̃.
Note that condition (2.2) implies the parallelism of the distributions 𝐻 and 𝑉 with
respect to the Schouten–van Kampen connection ∇̃.

From (2.1), one can compute
(∇𝑋𝑌 ℎ)ℎ = ∇𝑋𝑌 − 𝜂(∇𝑋𝑌 )𝜉 − 𝜂(𝑌 )∇𝑋𝜉,

(∇𝑋𝑌 𝑣)𝑣 = (∇𝑋𝜂)(𝑌 )𝜉 + 𝜂(∇𝑋𝑌 )𝜉,

which enables us to express the Schouten–van Kampen connection with help of the
Levi-Civita connection in the following way [12]
(2.3) ∇̃𝑋𝑌 = ∇𝑋𝑌 − 𝜂(𝑌 )∇𝑋𝜉 + (∇𝑋𝜂)(𝑌 )𝜉.

Thus, the second fundamental form 𝐵 and the torsion 𝑇 of ∇̃ are [12,13]
𝐵(𝑋, 𝑌 ) = 𝜂(𝑌 )∇𝑋𝜉 − (∇𝑋𝜂)(𝑌 )𝜉,

𝑇 (𝑋, 𝑌 ) = 𝜂(𝑋)∇𝑌 𝜉 − 𝜂(𝑌 )∇𝑋𝜉 + 2𝑑𝜂(𝑋, 𝑌 )𝜉.

With the help of the Schouten–van Kampen connection (2.3), many properties of
some geometric objects connected with the distributions 𝐻, 𝑉 can be characterized
[12–14]. Probably, the most spectacular is the following statement: 𝑔, 𝜉 and 𝜂 are
parallel with respect to ∇̃, that is, ∇̃𝜉 = 0, ∇̃𝑔 = 0, ∇̃𝜂 = 0.

3. 𝑓-Kenmotsu manifolds

Let 𝑀 be a real (2𝑛 + 1)-dimensional differentiable manifold endowed with an
almost contact structure (𝜑, 𝜉, 𝜂, 𝑔) satisfying

(3.1)
𝜑2 = −𝐼 + 𝜂 ⊗ 𝜉, 𝜂(𝜉) = 1,

𝜑𝜉 = 0, 𝜂 ∘ 𝜑 = 0, 𝜂(𝑋) = 𝑔(𝑋, 𝜉),
𝑔(𝜑𝑋, 𝜑𝑌 ) = 𝑔(𝑋, 𝑌 ) − 𝜂(𝑋) 𝜂(𝑌 ),

for any vector fields 𝑋, 𝑌 ∈ 𝜒(𝑀), where 𝐼 is the identity of the tangent bundle
𝑇𝑀 , 𝜑 is a tensor field of (1, 1)-type, 𝜂 is a 1-form, 𝜉 is a vector field and 𝑔 is
a metric tensor field. We say that (𝑀, 𝜑, 𝜉, 𝜂, 𝑔) is a 𝑓 -Kenmotsu manifold if the
Levi-Civita connection of 𝑔 satisfy [7]

(∇𝑋𝜑)(𝑌 ) = 𝑓{𝑔(𝜑𝑋, 𝑌 )𝜉 − 𝜂(𝑌 )𝜑𝑋},

where 𝑓 ∈ 𝐶∞(𝑀) such that 𝑑𝑓 ∧𝜂 = 0. If 𝑓 = 𝛼 = constant ̸= 0, then the manifold
is an 𝛼-Kenmotsu manifold [5]. 1-Kenmotsu manifold is a Kenmotsu manifold [6].
If 𝑓 = 0, then the manifold is cosymplectic [5]. An 𝑓 -Kenmotsu manifold is said
to be regular if 𝑓2 + 𝑓 ′ ̸= 0, where 𝑓 ′ = 𝜉(𝑓).
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For an 𝑓 -Kenmotsu manifold from (3.1) it follows that
(3.2) ∇𝑋𝜉 = 𝑓{𝑋 − 𝜂(𝑋)𝜉}.

Then using (3.2), we have
(3.3) (∇𝑋𝜂)(𝑌 ) = 𝑓{𝑔(𝑋, 𝑌 ) − 𝜂(𝑋) 𝜂(𝑌 )}.

The condition 𝑑𝑓 ∧ 𝜂 = 0 holds if dim 𝑀 > 5. This does not hold in general if
dim 𝑀 = 3 [9].

As is well known, in a 3-dimensional Riemannian manifold, we always have
𝑅(𝑋, 𝑌 )𝑍 = 𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌 + 𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌

−𝜏

2 {𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 }.

In a 3-dimensional 𝑓 -Kenmotsu manifold 𝑀 , we have [9]

𝑅(𝑋, 𝑌 )𝑍 =
(︁𝜏

2 + 2𝑓2 + 2𝑓 ′
)︁

{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 }(3.4)

−
(︁𝜏

2 + 3𝑓2 + 3𝑓 ′
)︁{︀

𝑔(𝑌, 𝑍) 𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )𝜉

+ 𝜂(𝑌 ) 𝜂(𝑍)𝑋 − 𝜂(𝑋) 𝜂(𝑍)𝑌
}︀

,

𝑆(𝑋, 𝑌 ) =
(︁𝜏

2 + 𝑓2 + 𝑓 ′
)︁

𝑔(𝑋, 𝑌 ) −
(︁𝜏

2 + 3𝑓2 + 3𝑓 ′
)︁

𝜂(𝑋) 𝜂(𝑌 ),(3.5)

𝑄𝑋 =
(︁𝜏

2 + 𝑓2 + 𝑓 ′
)︁

𝑋 −
(︁𝜏

2 + 3𝑓2 + 3𝑓 ′
)︁

𝜂(𝑋)𝜉,

where 𝑅 denotes the curvature tensor, 𝑆 is the Ricci tensor, 𝑄 is the Ricci operator
and 𝜏 is the scalar curvature of 𝑀 .

From (3.4) and (3.5), we obtain
𝑅(𝑋, 𝑌 )𝜉 = −(𝑓2 + 𝑓 ′){𝜂(𝑌 )𝑋 − 𝜂(𝑋)𝑌 },(3.6)

𝑆(𝑋, 𝜉) = −2(𝑓2 + 𝑓 ′) 𝜂(𝑋).(3.7)

4. 3-dimensional 𝑓-Kenmotsu manifolds
with the Schouten–van Kampen connection

Let 𝑀 be a 3-dimensional 𝑓 -Kenmotsu manifold with the Schouten–van Kam-
pen connection. Then using (3.2) and (3.3) in (2.3), we get
(4.1) ∇̃𝑋𝑌 = ∇𝑋𝑌 + 𝑓(𝑔(𝑋, 𝑌 )𝜉 − 𝜂(𝑌 )𝑋).
Let 𝑅 and �̃� be the curvature tensors of the Levi-Civita connection ∇ and the
Schouten–van Kampen connection ∇̃,

𝑅(𝑋, 𝑌 ) = [∇𝑋 , ∇𝑌 ] − ∇[𝑋,𝑌 ], �̃�(𝑋, 𝑌 ) = [∇̃𝑋 , ∇̃𝑌 ] − ∇̃[𝑋,𝑌 ].

Using (4.1), by direct calculations, we obtain the following formula connecting 𝑅
and �̃� on a 3-dimensional 𝑓 -Kenmotsu manifold 𝑀 ,

�̃�(𝑋, 𝑌 )𝑍 = 𝑅(𝑋, 𝑌 )𝑍 + 𝑓2{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌 }(4.2)
+ 𝑓 ′{︀𝑔(𝑌, 𝑍) 𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )𝜉

+ 𝜂(𝑌 ) 𝜂(𝑍)𝑋 − 𝜂(𝑋) 𝜂(𝑍)𝑌
}︀

.
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We will also consider the Riemann curvature (0, 4)-tensors �̃�, 𝑅, the Ricci tensors
𝑆, 𝑆, the Ricci operators �̃�, 𝑄 and the scalar curvatures 𝜏 , 𝜏 of the connections ∇̃
and ∇ are given by

�̃�(𝑋, 𝑌, 𝑍, 𝑊 ) = 𝑅(𝑋, 𝑌, 𝑍, 𝑊 ) + 𝑓2{︀
𝑔(𝑌, 𝑍) 𝑔(𝑋, 𝑊 ) − 𝑔(𝑋, 𝑍) 𝑔(𝑌, 𝑊 )

}︀(4.3)

+ 𝑓 ′{︀𝑔(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 ) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 )
+ 𝑔(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍) − 𝑔(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)

}︀
,

𝑆(𝑌, 𝑍) = 𝑆(𝑌, 𝑍) + (2𝑓2 + 𝑓 ′) 𝑔(𝑌, 𝑍) + 𝑓 ′𝜂(𝑌 ) 𝜂(𝑍)),(4.4)
�̃�𝑋 = 𝑄𝑋 + (2𝑓2 + 𝑓 ′)𝑋 + 𝑓 ′𝜂(𝑋)𝜉,(4.5)

𝜏 = 𝜏 + 6𝑓2 + 4𝑓 ′,

respectively, where

�̃�(𝑋, 𝑌, 𝑍, 𝑊 ) = 𝑔(�̃�(𝑋, 𝑌 )𝑍, 𝑊 ) and 𝑅(𝑋, 𝑌, 𝑍, 𝑊 ) = 𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑊 ).

5. Projectively flat 3-dimensional 𝑓-Kenmotsu manifolds
with the Schouten–van Kampen connection

In this section, we study projectively flat 3-dimensional 𝑓 -Kenmotsu mani-
folds with respect to the Schouten–van Kampen connection. In a 3-dimensional 𝑓 -
Kenmotsu manifold, the projective curvature tensor with respect to the Schouten–
van Kampen connection is given by

(5.1) 𝑃 (𝑋, 𝑌 )𝑍 = �̃�(𝑋, 𝑌 )𝑍 − 1
2
{︀

𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌
}︀

.

If 𝑃 = 0, then the manifold 𝑀 is called projectively flat manifold with respect to
the Schouten–van Kampen connection.

Let 𝑀 be a projectively flat manifold with respect to the Schouten–van Kampen
connection. From (5.1), we have

(5.2) �̃�(𝑋, 𝑌 )𝑍 = 1
2
{︀

𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌
}︀

.

Using (4.3) and (4.4) in (5.2), we get

𝑔(𝑅(𝑋, 𝑌 )𝑍, 𝑊 ) + 𝑓2{︀
𝑔(𝑌, 𝑍) 𝑔(𝑋, 𝑊 ) − 𝑔(𝑋, 𝑍) 𝑔(𝑌, 𝑊 )

}︀
(5.3)

+ 𝑓 ′{︀𝑔(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 ) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 )
+ 𝑔(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍) − 𝑔(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)

}︀
= 1

2
{︀

𝑆(𝑌, 𝑍) 𝑔(𝑋, 𝑊 ) − 𝑆(𝑋, 𝑍) 𝑔(𝑌, 𝑊 )
+ [2𝑓2 + 𝑓 ′][𝑔(𝑌, 𝑍) 𝑔(𝑋, 𝑊 ) − 𝑔(𝑋, 𝑍) 𝑔(𝑌, 𝑊 )]
+ 𝑓 ′[𝜂(𝑌 ) 𝜂(𝑍) 𝑔(𝑋, 𝑊 ) − 𝜂(𝑋) 𝜂(𝑍) 𝑔(𝑌, 𝑊 )]

}︀
.

Now putting 𝑊 = 𝜉 in (5.3), we obtain

(𝑓2 + 𝑓 ′)
{︀

𝑔(𝑋, 𝑍) 𝜂(𝑌 ) − 𝑔(𝑌, 𝑍) 𝜂(𝑋)
}︀

+ (𝑓2+𝑓 ′)
{︀

𝑔(𝑌, 𝑍) 𝜂(𝑋) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )
}︀

= 1
2
{︀

𝑆(𝑌, 𝑍) 𝜂(𝑋) − 𝑆(𝑋, 𝑍) 𝜂(𝑌 ) + (2𝑓2+𝑓 ′)[𝑔(𝑌, 𝑍) 𝜂(𝑋) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )]
}︀

,
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which gives
(5.4) 𝑆(𝑌, 𝑍) 𝜂(𝑋)−𝑆(𝑋, 𝑍) 𝜂(𝑌 )+(2𝑓2 +𝑓 ′)

[︀
𝑔(𝑌, 𝑍) 𝜂(𝑋)−𝑔(𝑋, 𝑍) 𝜂(𝑌 )

]︀
= 0.

Again putting 𝑋 = 𝜉 in (5.4), we get
(5.5) 𝑆(𝑌, 𝑍) = −(2𝑓2 + 𝑓 ′) 𝑔(𝑌, 𝑍) − 𝑓 ′𝜂(𝑌 ) 𝜂(𝑍).
Thus 𝑀 is an 𝜂-Einstein manifold with respect to the Levi-Civita connection.

Also, using (5.5) in (4.4), we obtain 𝑆(𝑌, 𝑍) = 0. Hence the manifold 𝑀 is a
Ricci-flat manifold with respect to the Schouten–van Kampen connection. Then
from (5.2) the manifold 𝑀 is a flat manifold with respect to the Schouten–van
Kampen connection.

Conversely, let 𝑀 be a flat manifold with respect to the Schouten–van Kampen
connection. Then we say that the manifold 𝑀 is a Ricci-flat manifold with respect
to the Schouten–van Kampen connection. Hence from (5.1), we get 𝑃 (𝑋, 𝑌 )𝑍 = 0,
that is, the manifold 𝑀 is a projectively flat manifold with respect to the Schouten–
van Kampen connection. Thus we have the following:

Theorem 5.1. Let 𝑀 be a 3-dimensional 𝑓 -Kenmotsu manifold with the
Schouten–van Kampen connection. Then the following statements are equivalent:

i) 𝑀 is projectively flat with respect to the Schouten–van Kampen connection,
ii) 𝑀 is Ricci flat with respect to the Schouten–van Kampen connection,
iii) 𝑀 is flat with respect to the Schouten–van Kampen connection.

6. Conharmonically flat 3-dimensional 𝑓-Kenmotsu manifolds
with the Schouten–van Kampen connection

In this section, we study conharmonically flat 3-dimensional 𝑓 -Kenmotsu man-
ifolds with respect to the Schouten–van Kampen connection. In a 3-dimensional 𝑓 -
Kenmotsu manifold the conharmonic curvature tensor with respect to the Schouten–
van Kampen connection is given by

�̃�(𝑋, 𝑌 )𝑍 = �̃�(𝑋, 𝑌 )𝑍(6.1)
−

{︀
𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)�̃�𝑋 − 𝑔(𝑋, 𝑍)�̃�𝑌

}︀
.

If �̃� = 0, then the manifold 𝑀 is called conharmonically flat manifold with respect
to the Schouten–van Kampen connection.

Let 𝑀 be a conharmonically flat manifold with respect to the Schouten–van
Kampen connection. From (6.1), we have

(6.2) �̃�(𝑋, 𝑌 )𝑍 = 𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)�̃�𝑋 − 𝑔(𝑋, 𝑍)�̃�𝑌.

Using (4.3), (4.4) and (4.5) in (6.2), we get
𝑅(𝑋, 𝑌 )𝑍 + 𝑓2{︀

𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌
}︀

(6.3)
+ 𝑓 ′{︀𝑔(𝑌, 𝑍) 𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )𝜉 + 𝜂(𝑌 ) 𝜂(𝑍)𝑋 − 𝜂(𝑋) 𝜂(𝑍)𝑌

}︀
= 𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌

+
(︁

4𝑓2 + 2𝑓 ′ + 𝜏

2 + 𝑓2 + 𝑓 ′
)︁{︀

𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌
}︀
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+ 𝑓 ′{︀𝜂(𝑌 ) 𝜂(𝑍)𝑋 − 𝜂(𝑋) 𝜂(𝑍)𝑌
}︀

+
(︁

𝑓 ′ − 𝜏

2 − 3𝑓2 − 3𝑓 ′
)︁{︀

𝑔(𝑌, 𝑍) 𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )𝜉
}︀

.

Now putting 𝑋 = 𝜉 in (6.3), we obtain

𝑅(𝜉, 𝑌 )𝑍 + (𝑓2 + 𝑓 ′){𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌 }(6.4)
= 𝑆(𝑌, 𝑍)𝜉 − 𝑆(𝜉, 𝑍)𝑌

+
(︁

4𝑓2 + 2𝑓 ′ + 𝜏

2 + 𝑓2 + 𝑓 ′
)︁

{𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌 }

+ 𝑓 ′{𝜂(𝑌 ) 𝜂(𝑍)𝜉 − 𝜂(𝑍)𝑌 }

+
(︁

𝑓 ′ − 𝜏

2 − 3𝑓2 − 3𝑓 ′
)︁

{𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍) 𝜂(𝑌 )𝜉}.

Using (3.4) and (3.7) in (6.4), we get

𝑆(𝑌, 𝑍)𝜉 − 𝑆(𝜉, 𝑍)𝑌 +
(︁

4𝑓2 + 2𝑓 ′ + 𝜏

2 + 𝑓2 + 𝑓 ′
)︁{︀

𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌
}︀

(6.5)

+ 𝑓 ′{︀𝜂(𝑌 ) 𝜂(𝑍)𝜉 − 𝜂(𝑍)𝑌
}︀

+
(︁

𝑓 ′ − 𝜏

2 − 3𝑓2 − 3𝑓 ′
)︁{︀

𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍) 𝜂(𝑌 )𝜉
}︀

= 0.

Taking the inner product with 𝜉 in (6.5), we have

𝑆(𝑌, 𝑍) + 2(𝑓2 + 𝑓 ′) 𝜂(𝑌 ) 𝜂(𝑍) + (2𝑓2 + 𝑓 ′)
{︀

𝑔(𝑌, 𝑍) − 𝜂(𝑌 ) 𝜂(𝑍)
}︀

= 0,

which gives

(6.6) 𝑆(𝑌, 𝑍) = −(2𝑓2 + 𝑓 ′) 𝑔(𝑌, 𝑍) − 𝑓 ′𝜂(𝑌 ) 𝜂(𝑍).

Thus 𝑀 is an 𝜂-Einstein manifold with respect to the Levi-Civita connection.
Using (6.6) in (4.4), we obtain 𝑆(𝑌, 𝑍) = 0. Hence the manifold 𝑀 is a Ricci-

flat manifold with respect to the Schouten–van Kampen connection. Then from
(6.2) the manifold 𝑀 is a flat manifold with respect to the Schouten–van Kampen
connection.

Conversely, let 𝑀 be a flat manifold with respect to the Schouten–van Kampen
connection. Then we say that the manifold 𝑀 is a Ricci-flat manifold with respect
to the Schouten–van Kampen connection. Hence from (6.1), we get �̃�(𝑋, 𝑌 )𝑍 =
0. i.e., the manifold 𝑀 is a conharmonically flat manifold with respect to the
Schouten–van Kampen connection. Thus we have the following:

Theorem 6.1. Let 𝑀 be a 3-dimensional 𝑓 -Kenmotsu manifold with the
Schouten–van Kampen connection. Then the following statements are equivalent:
i) 𝑀 is conharmonically flat with respect to the Schouten–van Kampen connection,
ii) 𝑀 is Ricci flat with respect to the Schouten–van Kampen connection,
iii) 𝑀 is flat with respect to the Schouten–van Kampen connection.
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7. Ricci semisymmetric 3-dimensional 𝑓-Kenmotsu manifolds
with the Schouten–van Kampen connection

A 𝑓 -Kenmotsu manifold with the Schouten–van Kampen connection is called
Ricci semisymmetric if �̃�(𝑋, 𝑌 ) · 𝑆 = 0, where �̃�(𝑋, 𝑌 ) is treated as a derivation
of the tensor algebra for any tangent vectors 𝑋, 𝑌 . Then

(7.1) 𝑆(�̃�(𝑋, 𝑌 )𝑍, 𝑊 ) + 𝑆(𝑍, �̃�(𝑋, 𝑌 )𝑊 ) = 0.

Using (4.3) and (4.4) in (7.1), we get

𝑆(𝑅(𝑋, 𝑌 )𝑍, 𝑊 ) + 𝑆(𝑍, 𝑅(𝑋, 𝑌 )𝑊 ) + 𝑓 ′{︀𝜂(𝑅(𝑋, 𝑌 )𝑍) 𝜂(𝑊 )
+ 𝑓 ′𝜂(𝑅(𝑋, 𝑌 )𝑊 ) 𝜂(𝑍)

}︀
+ 𝑓2{︀

𝑆(𝑋, 𝑊 ) 𝑔(𝑌, 𝑍) − 𝑆(𝑌, 𝑊 ) 𝑔(𝑋, 𝑍)
+ 𝑆(𝑋, 𝑍) 𝑔(𝑌, 𝑊 ) − 𝑆(𝑌, 𝑍) 𝑔(𝑋, 𝑊 )

}︀
− 𝑓 ′(𝑓2 + 𝑓 ′)

{︀
𝑔(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 ) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 ) + 𝑔(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)

− 𝑔(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍)
}︀

+ 𝑓 ′{︀𝑆(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍) − 𝑆(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)
+ 𝑆(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 ) − 𝑆(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 )

}︀
= 0.

Let 𝑀 be Ricci semisymmetric with respect to the Levi-Civita connection. Then
we have

𝑓 ′{𝜂(𝑅(𝑋, 𝑌 )𝑍) 𝜂(𝑊 ) + 𝑓 ′𝜂(𝑅(𝑋, 𝑌 )𝑊 ) 𝜂(𝑍)} + 𝑓2{︀
𝑆(𝑋, 𝑊 ) 𝑔(𝑌, 𝑍)

(7.2)

− 𝑆(𝑌, 𝑊 ) 𝑔(𝑋, 𝑍) + 𝑆(𝑋, 𝑍) 𝑔(𝑌, 𝑊 ) − 𝑆(𝑌, 𝑍) 𝑔(𝑋, 𝑊 )
}︀

− 𝑓 ′(𝑓2 + 𝑓 ′)
{︀

𝑔(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 ) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 ) + 𝑔(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)
− 𝑔(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍)

}︀
+ 𝑓 ′{︀𝑆(𝑋, 𝑊 ) 𝜂(𝑌 ) 𝜂(𝑍) − 𝑆(𝑌, 𝑊 ) 𝜂(𝑋) 𝜂(𝑍)

+ 𝑆(𝑋, 𝑍) 𝜂(𝑌 ) 𝜂(𝑊 ) − 𝑆(𝑌, 𝑍) 𝜂(𝑋) 𝜂(𝑊 )
}︀

= 0.

Putting 𝑊 = 𝜉 in (7.2), we obtain

𝑓 ′𝜂(𝑅(𝑋, 𝑌 )𝑍) + 𝑓2{︀
𝑆(𝑋, 𝜉) 𝑔(𝑌, 𝑍) − 𝑆(𝑌, 𝜉) 𝑔(𝑋, 𝑍)

+ 𝑆(𝑋, 𝑍) 𝜂(𝑌 ) − 𝑆(𝑌, 𝑍) 𝜂(𝑋)
}︀

− 𝑓 ′(𝑓2 + 𝑓 ′)
{︀

𝑔(𝑌, 𝑍) 𝜂(𝑋) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )
}︀

+ 𝑓 ′{︀𝑆(𝑋, 𝜉) 𝜂(𝑌 ) 𝜂(𝑍)
− 𝑆(𝑌, 𝜉) 𝜂(𝑋) 𝜂(𝑍) + 𝑆(𝑋, 𝑍) 𝜂(𝑌 ) − 𝑆(𝑌, 𝑍) 𝜂(𝑋)

}︀
= 0.

After some calculations, we get

2(𝑓2 + 𝑓 ′)2{︀
𝑔(𝑌, 𝑍) 𝜂(𝑋) − 𝑔(𝑋, 𝑍) 𝜂(𝑌 )

}︀
(7.3)

− (𝑓2 + 𝑓 ′)
{︀

𝑆(𝑌, 𝑍) 𝜂(𝑋) − 𝑆(𝑋, 𝑍) 𝜂(𝑌 )
}︀

= 0.

Again putting 𝑋 = 𝜉 in (7.3), we have

2(𝑓2 + 𝑓 ′)2{︀
𝑔(𝑌, 𝑍) − 𝜂(𝑌 ) 𝜂(𝑍)

}︀
− (𝑓2 + 𝑓 ′)

{︀
𝑆(𝑌, 𝑍) + 2(𝑓2 + 𝑓 ′) 𝜂(𝑌 ) 𝜂(𝑍)

}︀
= 0,

which gives

(7.4) (𝑓2 + 𝑓 ′)
{︀

𝑆(𝑌, 𝑍) + 4(𝑓2 + 𝑓 ′) 𝜂(𝑌 ) 𝜂(𝑍) − 2(𝑓2 + 𝑓 ′) 𝑔(𝑌, 𝑍)
}︀

= 0.



𝑓-KENMOTSU MANIFOLDS WITH THE SCHOUTEN–VAN KAMPEN CONNECTION 101

Let 𝑓2 + 𝑓 ′ ̸= 0, then from (7.4), we get
(7.5) 𝑆(𝑌, 𝑍) = 2(𝑓2 + 𝑓 ′) 𝑔(𝑌, 𝑍) − 4(𝑓2 + 𝑓 ′) 𝜂(𝑌 ) 𝜂(𝑍).
Hence the manifold is an 𝜂-Einstein manifold with respect to the Levi-Civita con-
nection.

Using (7.5) in (4.4), we obtain
𝑆(𝑌, 𝑍) = (4𝑓2 + 3𝑓 ′) 𝑔(𝑌, 𝑍) − (4𝑓2 + 3𝑓 ′) 𝜂(𝑌 ) 𝜂(𝑍).

Thus we have the following:

Theorem 7.1. Let 𝑀 be a Ricci semisymmetric 3-dimensional regular 𝑓 -
Kenmotsu manifold with the Schouten–van Kampen connection. If 𝑀 is a Ricci
semisymmetric 3-dimensional 𝑓 -Kenmotsu manifold with respect to the Levi-Civita
connection, then 𝑀 is an 𝜂-Einstein manifold with respect to the Schouten–van
Kampen connection.

8. Semisymmetric 3-dimensional 𝑓-Kenmotsu manifolds
with the Schouten–van Kampen connection

In this section, we study a semisymmetric regular 3-dimensional 𝑓 -Kenmotsu
manifold with the Schouten–van Kampen connection. If a 3-dimensional 𝑓 -Ken-
motsu manifold with the Schouten–van Kampen connection is semisymmetric then
we can write

(�̃�(𝑋, 𝑌 ) · �̃�)(𝑍, 𝑈)𝑊 = 0,

which gives
�̃�(𝑋, 𝑌 )�̃�(𝑍, 𝑈)𝑊 − �̃�(�̃�(𝑋, 𝑌 )𝑍, 𝑈)𝑊(8.1)

− �̃�(𝑍, �̃�(𝑋, 𝑌 )𝑈)𝑊 − �̃�(𝑍, 𝑈)�̃�(𝑋, 𝑌 )𝑊 = 0.

Using (4.2) in (8.1), we have
�̃�(𝑋, 𝑌 )𝑅(𝑍, 𝑈)𝑊 − 𝑅(�̃�(𝑋, 𝑌 )𝑍, 𝑈)𝑊

− 𝑅(𝑍, �̃�(𝑋, 𝑌 )𝑈)𝑊 − 𝑅(𝑍, 𝑈)�̃�(𝑋, 𝑌 )𝑊 = 0,

which gives
(8.2) (�̃�(𝑋, 𝑌 ) · 𝑅)(𝑍, 𝑈)𝑊 = 0.

Again using (4.2) in (8.2), we obtain

𝑅(𝑋, 𝑌 )𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑅(𝑋, 𝑌 )𝑍, 𝑈)𝑊 − 𝑅(𝑍, 𝑅(𝑋, 𝑌 )𝑈)𝑊
(8.3)

− 𝑅(𝑍, 𝑈)𝑅(𝑋, 𝑌 )𝑊 + 𝑓2{︀
𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 )𝑋 − 𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑋)𝑌

− 𝑔(𝑌, 𝑍)𝑅(𝑋, 𝑈)𝑊 + 𝑔(𝑋, 𝑍)𝑅(𝑌, 𝑈)𝑊 − 𝑔(𝑌, 𝑈)𝑅(𝑍, 𝑋)𝑊
+ 𝑔(𝑋, 𝑈)𝑅(𝑍, 𝑌 )𝑊 − 𝑔(𝑌, 𝑊 )𝑅(𝑍, 𝑈)𝑋 + 𝑔(𝑋, 𝑊 )𝑅(𝑍, 𝑈)𝑌

}︀
+ 𝑓 ′{︀𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 ) 𝜂(𝑋)𝜉−𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑋) 𝜂(𝑌 )𝜉 + 𝜂(𝑅(𝑍, 𝑈)𝑊 ) 𝜂(𝑌 )𝑋
− 𝜂(𝑅(𝑍, 𝑈)𝑊 ) 𝜂(𝑋)𝑌 − 𝑔(𝑌, 𝑍) 𝜂(𝑅(𝑋, 𝑈)𝑊 )𝜉 + 𝑔(𝑋, 𝑍) 𝜂(𝑅(𝑌, 𝑈)𝑊 )𝜉
− 𝜂(𝑌 ) 𝜂(𝑍)𝑅(𝑋, 𝑈)𝑊 + 𝜂(𝑋) 𝜂(𝑍)𝑅(𝑌, 𝑈)𝑊 − 𝑔(𝑌, 𝑈) 𝜂(𝑅(𝑍, 𝑋)𝑊 )𝜉
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+ 𝑔(𝑋, 𝑈) 𝜂(𝑅(𝑍, 𝑌 )𝑊 )𝜉 − 𝜂(𝑌 ) 𝜂(𝑈)𝑅(𝑍, 𝑋)𝑊 + 𝜂(𝑋) 𝜂(𝑈)𝑅(𝑍, 𝑌 )𝑊
− 𝑔(𝑌, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑋)𝜉 + 𝑔(𝑋, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑌 )𝜉

− 𝜂(𝑌 ) 𝜂(𝑊 )𝑅(𝑍, 𝑈)𝑋 + 𝜂(𝑋) 𝜂(𝑊 )𝑅(𝑍, 𝑈)𝑌
}︀

= 0.

Now from (8.3), we can say:
If 0 ̸= 𝑓 = constant (say 𝑓 = 𝛼), then 𝑓 ′ = 0. Hence we get 𝑅·𝑅 = −𝛼2𝑄(𝑔, 𝑅).

Therefore the manifold 𝑀 is a pseudosymmetric 𝛼-Kenmotsu manifold.
If 𝑓 is not constant, then using 𝑋 = 𝜉 in (8.3), we get

𝑅(𝜉, 𝑌 )𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑅(𝜉, 𝑌 )𝑍, 𝑈)𝑊 − 𝑅(𝑍, 𝑅(𝜉, 𝑌 )𝑈)𝑊(8.4)
− 𝑅(𝑍, 𝑈)𝑅(𝜉, 𝑌 )𝑊 + 𝑓2{𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 )𝜉 − 𝑔(𝑅(𝑍, 𝑈)𝑊, 𝜉)𝑌
− 𝑔(𝑌, 𝑍)𝑅(𝜉, 𝑈)𝑊 + 𝑔(𝜉, 𝑍)𝑅(𝑌, 𝑈)𝑊 − 𝑔(𝑌, 𝑈)𝑅(𝑍, 𝜉)𝑊
+ 𝑔(𝜉, 𝑈)𝑅(𝑍, 𝑌 )𝑊 − 𝑔(𝑌, 𝑊 )𝑅(𝑍, 𝑈)𝜉 + 𝑔(𝜉, 𝑊 )𝑅(𝑍, 𝑈)𝑌 }
+ 𝑓 ′{𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 )𝜉 − 𝑔(𝑅(𝑍, 𝑈)𝑊, 𝜉) 𝜂(𝑌 )𝜉 + 𝜂(𝑅(𝑍, 𝑈)𝑊 ) 𝜂(𝑌 )𝜉
− 𝜂(𝑅(𝑍, 𝑈)𝑊 )𝑌 − 𝑔(𝑌, 𝑍) 𝜂(𝑅(𝜉, 𝑈)𝑊 )𝜉 + 𝑔(𝜉, 𝑍) 𝜂(𝑅(𝑌, 𝑈)𝑊 )𝜉
− 𝜂(𝑌 ) 𝜂(𝑍)𝑅(𝜉, 𝑈)𝑊 + 𝜂(𝑍)𝑅(𝑌, 𝑈)𝑊 − 𝑔(𝑌, 𝑈) 𝜂(𝑅(𝑍, 𝜉)𝑊 )𝜉
+ 𝑔(𝜉, 𝑈) 𝜂(𝑅(𝑍, 𝑌 )𝑊 )𝜉 − 𝜂(𝑌 ) 𝜂(𝑈)𝑅(𝑍, 𝜉)𝑊 + 𝜂(𝑈)𝑅(𝑍, 𝑌 )𝑊
− 𝑔(𝑌, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝜉)𝜉 + 𝑔(𝜉, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑌 )𝜉

− 𝜂(𝑌 ) 𝜂(𝑊 )𝑅(𝑍, 𝑈)𝜉 + 𝜂(𝑊 )𝑅(𝑍, 𝑈)𝑌 } = 0.

Taking the inner product with 𝜉 in (8.4), we obtain

𝜂(𝑅(𝜉, 𝑌 )𝑅(𝑍, 𝑈)𝑊 ) − 𝜂(𝑅(𝑅(𝜉, 𝑌 )𝑍, 𝑈)𝑊 ) − 𝜂(𝑅(𝑍, 𝑅(𝜉, 𝑌 )𝑈)𝑊 )(8.5)
− 𝜂(𝑅(𝑍, 𝑈)𝑅(𝜉, 𝑌 )𝑊 ) + 𝑓2{︀

𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 ) − 𝑔(𝑅(𝑍, 𝑈)𝑊, 𝜉) 𝜂(𝑌 )
− 𝑔(𝑌, 𝑍) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝑔(𝜉, 𝑍) 𝜂(𝑅(𝑌, 𝑈)𝑊 ) − 𝑔(𝑌, 𝑈) 𝜂(𝑅(𝑍, 𝜉)𝑊 )
+ 𝑔(𝜉, 𝑈) 𝜂(𝑅(𝑍, 𝑌 )𝑊 ) − 𝑔(𝑌, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝜉) + 𝑔(𝜉, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑌 )

}︀
+ 𝑓 ′{︀𝑔(𝑅(𝑍, 𝑈)𝑊, 𝑌 ) − 𝑔(𝑅(𝑍, 𝑈)𝑊, 𝜉) 𝜂(𝑌 ) + 𝜂(𝑅(𝑍, 𝑈)𝑊 ) 𝜂(𝑌 )
− 𝜂(𝑅(𝑍, 𝑈)𝑊 ) 𝜂(𝑌 ) − 𝑔(𝑌, 𝑍) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝑔(𝜉, 𝑍) 𝜂(𝑅(𝑌, 𝑈)𝑊 )
− 𝜂(𝑌 ) 𝜂(𝑍) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝜂(𝑍) 𝜂(𝑅(𝑌, 𝑈)𝑊 ) − 𝑔(𝑌, 𝑈) 𝜂(𝑅(𝑍, 𝜉)𝑊 )
+ 𝑔(𝜉, 𝑈) 𝜂(𝑅(𝑍, 𝑌 )𝑊 ) − 𝜂(𝑌 ) 𝜂(𝑈) 𝜂(𝑅(𝑍, 𝜉)𝑊 ) + 𝜂(𝑈) 𝜂(𝑅(𝑍, 𝑌 )𝑊 )
− 𝑔(𝑌, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝜉) + 𝑔(𝜉, 𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑌 )
− 𝜂(𝑌 ) 𝜂(𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝜉) + 𝜂(𝑊 ) 𝜂(𝑅(𝑍, 𝑈)𝑌 )

}︀
= 0.

Let {𝑒𝑖} (1 6 𝑖 6 3) be an orthonormal basis of the tangent space at any point of
𝑀 . Then the sum for 1 6 𝑖 6 3 of the relation (8.5) for 𝑌 = 𝑍 = 𝑒𝑖 gives

𝜂(𝑅(𝜉, 𝑒𝑖)𝑅(𝑒𝑖, 𝑈)𝑊 ) − 𝜂(𝑅(𝑅(𝜉, 𝑒𝑖)𝑒𝑖, 𝑈)𝑊 ) − 𝜂(𝑅(𝑒𝑖, 𝑅(𝜉, 𝑒𝑖)𝑈)𝑊 )
− 𝜂(𝑅(𝑒𝑖, 𝑈)𝑅(𝜉, 𝑒𝑖)𝑊 ) + 𝑓2{︀

𝑔(𝑅(𝑒𝑖, 𝑈)𝑊, 𝑒𝑖) − 𝑔(𝑅(𝑒𝑖, 𝑈)𝑊, 𝜉) 𝜂(𝑒𝑖)
− 𝑔(𝑒𝑖, 𝑒𝑖) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝑔(𝜉, 𝑒𝑖) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑊 ) − 𝑔(𝑒𝑖, 𝑈) 𝜂(𝑅(𝑒𝑖, 𝜉)𝑊 )
+ 𝑔(𝜉, 𝑈) 𝜂(𝑅(𝑒𝑖, 𝑒𝑖)𝑊 ) − 𝑔(𝑒𝑖, 𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝜉) + 𝑔(𝜉, 𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑒𝑖)

}︀
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+ 𝑓 ′{︀𝑔(𝑅(𝑒𝑖, 𝑈)𝑊, 𝑒𝑖) − 𝑔(𝑅(𝑒𝑖, 𝑈)𝑊, 𝜉) 𝜂(𝑒𝑖) + 𝜂(𝑅(𝑒𝑖, 𝑈)𝑊 ) 𝜂(𝑒𝑖)
− 𝜂(𝑅(𝑒𝑖, 𝑈)𝑊 ) 𝜂(𝑒𝑖) − 𝑔(𝑒𝑖, 𝑒𝑖) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝑔(𝜉, 𝑒𝑖) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑊 )
− 𝜂(𝑒𝑖) 𝜂(𝑒𝑖) 𝜂(𝑅(𝜉, 𝑈)𝑊 ) + 𝜂(𝑒𝑖) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑊 ) − 𝑔(𝑒𝑖, 𝑈) 𝜂(𝑅(𝑒𝑖, 𝜉)𝑊 )
+ 𝑔(𝜉, 𝑈) 𝜂(𝑅(𝑒𝑖, 𝑒𝑖)𝑊 ) − 𝜂(𝑒𝑖) 𝜂(𝑈) 𝜂(𝑅(𝑒𝑖, 𝜉)𝑊 ) + 𝜂(𝑈) 𝜂(𝑅(𝑒𝑖, 𝑒𝑖)𝑊 )
− 𝑔(𝑒𝑖, 𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝜉) + 𝑔(𝜉, 𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑒𝑖)
− 𝜂(𝑒𝑖) 𝜂(𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝜉) + 𝜂(𝑊 ) 𝜂(𝑅(𝑒𝑖, 𝑈)𝑒𝑖)

}︀
= 0.

After some calculations, we obtain

2(𝑓2 + 𝑓 ′){𝑆(𝑈, 𝑊 ) − 2𝑔(𝑅(𝜉, 𝑊 )𝑈, 𝜉)}
− 𝑓2{𝑆(𝑈, 𝑊 ) − 2𝑔(𝑅(𝜉, 𝑊 )𝑈, 𝜉) − 2(𝑓2 + 𝑓 ′) 𝜂(𝑈) 𝜂(𝑊 )}
− 𝑓 ′{𝑆(𝑈, 𝑊 ) − 2𝑔(𝑅(𝜉, 𝑊 )𝑈, 𝜉) − 2(𝑓2 + 𝑓 ′) 𝜂(𝑈) 𝜂(𝑊 )} = 0,

which gives

(8.6) (𝑓2 + 𝑓 ′){𝑆(𝑈, 𝑊 ) − 2𝑔(𝑅(𝜉, 𝑊 )𝑈, 𝜉) + 2(𝑓2 + 𝑓 ′) 𝜂(𝑈) 𝜂(𝑊 )} = 0.

Let 𝑓2 + 𝑓 ′ ̸= 0. Then from (8.6), we get

(8.7) 𝑆(𝑈, 𝑊 ) − 2𝑔(𝑅(𝜉, 𝑊 )𝑈, 𝜉) + 2(𝑓2 + 𝑓 ′) 𝜂(𝑈) 𝜂(𝑊 ) = 0.

Using (3.6) in (8.7), we obtain 𝑆(𝑈, 𝑊 ) = −2(𝑓2 + 𝑓 ′) 𝑔(𝑈, 𝑊 ).
Thus we have the following:

Theorem 8.1. Let 𝑀 be a 3-dimensional regular 𝑓 -Kenmotsu manifold with
the Schouten–van Kampen connection. If 𝑀 is semisymmetric with respect to the
Schouten–van Kampen connection, then:

i) If 0 ̸= 𝑓 = 𝛼 = constant, then the manifold 𝑀 is a pseudosymmetric
𝛼-Kenmotsu manifold, or,

ii) If 𝑓 is not constant, then the manifold 𝑀 is an Einstein manifold.

9. An example of a 3-dimensional 𝑓-Kenmotsu manifold
with the Schouten–van Kampen connection

We consider the 3-dimensional manifold 𝑀 = {(𝑥, 𝑦, 𝑧) ∈ R3, 𝑧 ̸= 0}, where
(𝑥, 𝑦, 𝑧) are the standard coordinates in R3. The vector fields

𝑒1 = 𝑧2 𝜕

𝜕𝑥
, 𝑒2 = 𝑧2 𝜕

𝜕𝑦
, 𝑒3 = 𝜕

𝜕𝑧

are linearly independent at each point of 𝑀 . Let 𝑔 be the Riemannian metric
defined by

𝑔(𝑒1, 𝑒3) = 𝑔(𝑒2, 𝑒3) = 𝑔(𝑒1, 𝑒2) = 0, 𝑔(𝑒1, 𝑒1) = 𝑔(𝑒2, 𝑒2) = 𝑔(𝑒3, 𝑒3) = 1.

Let 𝜂 be the 1-form defined by 𝜂(𝑍) = 𝑔(𝑍, 𝑒3) for any 𝑍 ∈ 𝜒(𝑀). Let 𝜑 be the
(1, 1) tensor field defined by 𝜑(𝑒1) = −𝑒2, 𝜑(𝑒2) = 𝑒1, 𝜑(𝑒3) = 0. Then using
linearity of 𝜑 and 𝑔 we have

𝜂(𝑒3) = 1, 𝜑2𝑍 = −𝑍 + 𝜂(𝑍)𝑒3, 𝑔(𝜑𝑍, 𝜑𝑊 ) = 𝑔(𝑍, 𝑊 ) − 𝜂(𝑍) 𝜂(𝑊 ),
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for any 𝑍, 𝑊 ∈ 𝜒(𝑀). Now, by direct computations we obtain

[𝑒1, 𝑒2] = 0, [𝑒2, 𝑒3] = −2
𝑧

𝑒2, [𝑒1, 𝑒3] = −2
𝑧

𝑒1.

The Riemannian connection ∇ of the metric tensor 𝑔 is given by Koszul’s formula
which is

2𝑔(∇𝑋𝑌, 𝑍) = 𝑋𝑔(𝑌, 𝑍) + 𝑌 𝑔(𝑍, 𝑋) − 𝑍𝑔(𝑋, 𝑌 )(9.1)
− 𝑔(𝑋, [𝑌, 𝑍]) − 𝑔(𝑌, [𝑋, 𝑍]) + 𝑔(𝑍, [𝑋, 𝑌 ]).

Using (9.1), we have

2𝑔(∇𝑒1𝑒3, 𝑒1) = 2𝑔
(︁

− 2
𝑧

𝑒1, 𝑒1

)︁
, 2𝑔(∇𝑒1𝑒3, 𝑒2) = 0 and 2𝑔(∇𝑒1𝑒3, 𝑒3) = 0.

Hence ∇𝑒1𝑒3 = − 2
𝑧 𝑒1. Similarly, ∇𝑒2𝑒3 = − 2

𝑧 𝑒2 and ∇𝑒3𝑒3 = 0. (9.1) further yields

(9.2)
∇𝑒1𝑒2 = 0, ∇𝑒2𝑒2 = 2

𝑧
𝑒3, ∇𝑒3𝑒2 = 0,

∇𝑒1𝑒1 = 2
𝑧

𝑒3, ∇𝑒2𝑒1 = 0, ∇𝑒3𝑒1 = 0.

From (9.2), we see that the manifold satisfies ∇𝑋𝜉 = 𝑓{𝑋 − 𝜂(𝑋)𝜉} for 𝜉 = 𝑒3,
where 𝑓 = − 2

𝑧 . Hence we conclude that 𝑀 is an 𝑓 -Kenmotsu manifold. Also
𝑓2 + 𝑓 ′ ̸= 0. Hence 𝑀 is a regular 𝑓 -Kenmotsu manifold [16].

It is known that
(9.3) 𝑅(𝑋, 𝑌 )𝑍 = ∇𝑋∇𝑌 𝑍 − ∇𝑌 ∇𝑋𝑍 − ∇[𝑋,𝑌 ]𝑍.

With the help of the above formula and using (9.3), it can be easily verified that

(9.4)

𝑅(𝑒1, 𝑒2)𝑒3 = 0, 𝑅(𝑒2, 𝑒3)𝑒3 = − 6
𝑧2 𝑒2,

𝑅(𝑒1, 𝑒3)𝑒3 = − 6
𝑧2 𝑒1, 𝑅(𝑒1, 𝑒2)𝑒2 = − 4

𝑧2 𝑒1,

𝑅(𝑒3, 𝑒2)𝑒2 = − 6
𝑧2 𝑒3, 𝑅(𝑒1, 𝑒3)𝑒2 = 0,

𝑅(𝑒1, 𝑒2)𝑒1 = 4
𝑧2 𝑒2, 𝑅(𝑒2, 𝑒3)𝑒1 = 0,

𝑅(𝑒1, 𝑒3)𝑒1 = 6
𝑧2 𝑒3.

Now the Schouten–van Kampen connection on 𝑀 is given by

(9.5)

∇̃𝑒1𝑒3 =
(︁

− 2
𝑧

− 𝑓
)︁

𝑒1, ∇̃𝑒2𝑒3 =
(︁

− 2
𝑧

− 𝑓
)︁

𝑒2,

∇̃𝑒3𝑒3 = −𝑓(𝑒3 − 𝜉), ∇̃𝑒1𝑒2 = 0,

∇̃𝑒2𝑒2 = 2
𝑧

(𝑒3 − 𝜉), ∇̃𝑒3𝑒2 = 0,

∇̃𝑒1𝑒1 = 2
𝑧

(𝑒3 − 𝜉), ∇̃𝑒2𝑒1 = 0

∇̃𝑒3𝑒1 = 0.
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From (9.5), we can see that ∇̃𝑒𝑖
𝑒𝑗 = 0 (1 6 𝑖, 𝑗 6 3) for 𝜉 = 𝑒3 and 𝑓 = − 2

𝑧 .
Hence 𝑀 is a 3-dimensional 𝑓 -Kenmotsu manifold with respect to the Schouten–van
Kampen connection. Also using (9.4), it can be seen that �̃� = 0. Thus the manifold
𝑀 is a flat manifold with respect to the Schouten–van Kampen connection. Since
a flat manifold is a Ricci-flat manifold with respect to the Schouten–van Kampen
connection, the manifold 𝑀 is both a projectively flat and a conharmonically flat
3-dimensional 𝑓 -Kenmotsu manifold with respect to the Schouten–van Kampen
connection. So, from Theorems 5.1 and 6.1, 𝑀 is an 𝜂-Einstein manifold with
respect to the Levi-Civita connection.
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