DOI: https://doi.org/10.2298/PIM1716107Y

A NEW THEOREM ON ABSOLUTE MATRIX SUMMABILITY OF FOURIER SERIES

Şebnem Yildiz

ABSTRACT. We generalize a main theorem dealing with absolute weighted mean summability of Fourier series to the $|A, p_n|_k$ summability factors of Fourier series under weaker conditions. Also some new and known results are obtained.

1. Introduction

Let $\sum a_n$ be a given infinite series with partial sums (s_n) . By u_n^{α} and t_n^{α} we denote the nth Cesàro means of order α , with $\alpha > -1$, of the sequence (s_n) and (na_n) , respectively, that is (see [6])

$$u_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} s_v \text{ and } t_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{v=0}^n A_{n-v}^{\alpha-1} v a_v$$

where

$$A_{n}^{\alpha} = \frac{(\alpha+1)(\alpha+2)...(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad \text{for} \quad n > 0.$$

The series $\sum a_n$ is said to be summable $|C, \alpha|_k, k \ge 1$, if (see [8, 10])

$$\sum_{n=1}^{\infty} n^{k-1} |u_n^{\alpha} - u_{n-1}^{\alpha}|^k = \sum_{n=1}^{\infty} \frac{1}{n} |t_n^{\alpha}|^k < \infty.$$

If we take $\alpha = 1$, then $|C, \alpha|_k$ summability reduces to $|C, 1|_k$ summability. Let (p_n) be a sequence of positive real numbers such that

$$P_n = \sum_{v=0}^n p_v \to \infty \qquad \text{as} \quad n \to \infty, \quad (P_{-i} = p_{-i} = 0, \quad i \ge 1).$$

107

²⁰¹⁰ Mathematics Subject Classification: 26D15; 42A24; 40F05; 40G99.

Key words and phrases: summability factors, absolute matrix summability, Fourier series, infinite series, Hölder inequality, Minkowski inequality.

Communicated by Gradimir Milovanović.

YILDIZ

The sequence-to-sequence transformation $t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v$ defines the sequence (t_n) of the Riesz mean or simply the (\bar{N}, p_n) mean of the sequence (s_n) generated by the sequence of coefficients (p_n) (see [9]).

The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k, k \ge 1$, if (see [1])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |t_n - t_{n-1}|^k < \infty.$$

In the special case when $p_n = 1$ for all values of n (resp. k = 1), $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ (resp. $|\bar{N}, p_n|$) summability.

2. Known Results

The following theorems are dealing with $|\bar{N}, p_n|_k$ summability factors of infinite series.

THEOREM 2.1. [2] Let (p_n) be a sequence of positive numbers such that

(2.1)
$$P_n = O(np_n) \quad as \quad n \to \infty.$$

Let (X_n) be a positive monotonic nondecreasing sequence. If the sequences (X_n) , (λ_n) and (p_n) satisfy the conditions

(2.2)
$$\lambda_m X_m = O(1) \quad as \ m \to \infty$$

(2.3)
$$\sum_{n=1}^{m} nX_n |\Delta^2 \lambda_n| = O(1) \quad as \ m \to \infty$$

(2.4)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad as \ m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

THEOREM 2.2. [4] Let (X_n) be a positive monotonic nondecreasing sequence. If the sequences (X_n) , (λ_n) , and (p_n) satisfy the conditions (2.1)–(2.3) and

(2.5)
$$\sum_{n=1}^{m} \frac{p_n}{P_n} \frac{|t_n|^k}{X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty,$$

then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

REMARK 2.1. It should be noted that condition (2.5) is reduced to the condition (2.4), when k = 1. When k > 1, condition (2.5) is weaker than condition (2.4) but the converse is not true (see [4] for details).

3. An application of absolute matrix summability to Fourier series

Let $A = (a_{nv})$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping

108

the sequence $s = (s_n)$ to $As = (A_n(s))$, where $A_n(s) = \sum_{v=0}^n a_{nv} s_v$, n = 0, 1, ...The series $\sum a_n$ is said to be summable $|A|_k$, $k \ge 1$, if (see [13])

$$\sum_{n=1}^{\infty} n^{k-1} |\bar{\Delta}A_n(s)|^k < \infty,$$

and it is said to be summable $|A, p_n|_k, k \ge 1$, if (see [12])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |\bar{\Delta}A_n(s)|^k < \infty.$$

where $\overline{\Delta}A_n(s) = A_n(s) - A_{n-1}(s)$.

If we take $p_n = 1$ for all n, then $|A, p_n|_k$ summability is the same as $|A|_k$ summability. Also, if we take $a_{nv} = \frac{p_v}{P_n}$, then $|A, p_n|_k$ summability is the same as $|\bar{N}, p_n|_k$ summability. For any sequence (λ_n) we write $\Delta^2 \lambda_n = \Delta \lambda_n - \Delta \lambda_{n+1}$ and $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$. A sequence (λ_n) is said to be of bounded variation, denoted by $(\lambda_n) \in \mathcal{BV}$, if $\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty$. Let f(t) be a periodic function with period 2π , and Lebesgue integrable over $(-\pi, \pi)$. Write

$$f(x) \sim \frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) = \sum_{n=0}^{\infty} C_n(x)$$

 $\phi(t) = \frac{1}{2}[f(x+t) + f(x-t)], \quad \text{and} \quad \phi_{\alpha}(t) = \frac{\alpha}{t^{\alpha}} \int_{0}^{t} (t-u)^{\alpha-1} \phi(u) \, du \quad (\alpha > 0).$ It is well known that if $\phi(t) \in \mathcal{BV}(0,\pi)$, then $t_n(x) = O(1)$, where $t_n(x)$ is the

(C, 1) mean of the sequence $(nC_n(x))$ (see [7]).

Many works have been done dealing with absolute summability factors of Fourier series (see [3–5, 11]). Among them, in [4], Bor has proved the following theorem dealing with the Fourier series.

THEOREM 3.1. If $\phi_1(t) \in \mathcal{BV}(0,\pi)$, (X_n) is a positive monotonic nondecreasing sequence, the sequences (p_n) , (λ_n) satisfy conditions (2.1)–(2.3) and

$$\sum_{n=1}^{m} \frac{p_n}{P_n} \frac{|t_n(x)|^k}{X_n^{k-1}} = O(X_m) \qquad as \quad m \to \infty,$$

then the series $\sum C_n(x)\lambda_n$ is summable $|\bar{N}, p_n|_k, k \ge 1$.

If we take $p_n = 1$ for all values of n, then we obtain a new result dealing with $|C, 1|_k$ summability factors of Fourier series.

4. Main Results

We generalize Theorem 3.1 for $|A, p_n|_k$ summability factors of Fourier series. Before stating the main theorem, we must first introduce some further notations.

With a normal matrix $A = (a_{nv})$, we associate two lower semimatrices $\bar{A} = (\bar{a}_{nv})$ and $\hat{A} = (\hat{a}_{nv})$ where $\bar{a}_{nv} = \sum_{i=v}^{n} a_{ni}$, $n, v = 0, 1, \ldots$ and $\hat{a}_{00} = \bar{a}_{00} = a_{00}$,

YILDIZ

 $\hat{a}_{nv} = \bar{a}_{nv} - \bar{a}_{n-1,v}, n = 1, 2, \dots$ We note that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. So, we have

(4.1)
$$A_n(s) = \sum_{v=0}^n a_{nv} s_v = \sum_{v=0}^n \bar{a}_{nv} a_v \text{ and } \bar{\Delta} A_n(s) = \sum_{v=0}^n \hat{a}_{nv} a_v$$

THEOREM 4.1. Let $k \ge 1$ and $A = (a_{nv})$ be a positive normal matrix such that

$$\bar{a}_{n0} = 1, \ n = 0, 1, \dots, \ a_{n-1,v} \ge a_{nv}, \ for \ n \ge v+1,$$

 $a_{nn} = O(p_n/P_n), \ \hat{a}_{n,v+1} = O(v|\Delta_v(\hat{a}_{nv}|)).$

If all the conditions of Theorem 3.1 are satisfied, then the series $\sum C_n(x)\lambda_n$ is summable $|A, p_n|_k, k \ge 1$.

If we take $a_{nv} = \frac{p_v}{P_n}$, then we get Theorem 3.1. We need the following lemma for the proof of our theorem.

LEMMA 4.1. [2] Under the conditions of Theorem 2.2 we have

$$nX_n|\Delta\lambda_n| = O(1) \text{ as } n \to \infty, \quad and \quad \sum_{n=1}^{\infty} X_n|\Delta\lambda_n| < \infty.$$

5. Proof of Theorem 4.1

Let $(I_n(x))$ denote the A-transform of the series $\sum_{n=1}^{\infty} C_n(x)\lambda_n$. Then, by (4.1), we have $\bar{\Delta}I_n(x) = \sum_{v=1}^n \hat{a}_{nv}C_v(x)\lambda_v$. Applying Abel's transformation to this sum, we get

$$\begin{split} \bar{\Delta}I_n(x) &= \sum_{v=1}^n \hat{a}_{nv} C_v(x) \lambda_v \frac{v}{v} = \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv} \lambda_v}{v}\right) \sum_{r=1}^v r C_r(x) + \frac{\hat{a}_{nn} \lambda_n}{n} \sum_{r=1}^n r C_r(x) \\ &= \sum_{v=1}^{n-1} \Delta_v \left(\frac{\hat{a}_{nv} \lambda_v}{v}\right) (v+1) t_v(x) + \hat{a}_{nn} \lambda_n \frac{n+1}{n} t_n(x) \\ &= \sum_{v=1}^{n-1} \Delta_v (\hat{a}_{nv}) \lambda_v t_v(x) \frac{v+1}{v} + \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \Delta \lambda_v t_v(x) \frac{v+1}{v} \\ &+ \sum_{v=1}^{n-1} \hat{a}_{n,v+1} \lambda_{v+1} \frac{t_v(x)}{v} + a_{nn} \lambda_n t_n(x) \frac{n+1}{n} \\ &= I_{n,1}(x) + I_{n,2}(x) + I_{n,3}(x) + I_{n,4}(x). \end{split}$$

To complete the proof of Theorem 4.1, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,r}(x)|^k < \infty, \quad \text{for} \quad r = 1, 2, 3, 4.$$

First, by applying Hölder's inequality with indices k and k', where k>1 and $\frac{1}{k}+\frac{1}{k'}=1,$ we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,1}(x)|^k &\leqslant \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left\{\sum_{v=1}^{n-1} |\frac{v+1}{v}| |\Delta_v(\hat{a}_{nv})| |\lambda_v| |t_v(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v|^k |t_v(x)|^k \\ &\times \left\{\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \left\{\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| |\lambda_v|^k |t_v(x)|^k \right\} \\ &= O(1) \sum_{v=1}^{m} |\lambda_v|^{k-1} |\lambda_v| |t_v(x)|^k \sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| \\ &= O(1) \sum_{v=1}^{m} \frac{1}{X_v^{k-1}} |\lambda_v| |t_v(x)|^k \frac{p_v}{P_v} \\ &= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_v| \sum_{r=1}^{v} \frac{p_r}{P_r} \frac{|t_r(x)|^k}{X_r^{k-1}} + O(1) |\lambda_m| \sum_{v=1}^{m} \frac{p_v}{P_v} \frac{|t_v(x)|^k}{X_v^{k-1}} \\ &= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_v| X_v + O(1) |\lambda_m| X_m = O(1) \quad \text{as } m \to \infty, \end{split}$$

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Now, using Hölder's inequality we have

$$\begin{split} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,2}(x)|^k &\leq \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left\{\sum_{v=1}^{n-1} |\frac{v+1}{v}| |\hat{a}_{n,v+1}| |\Delta\lambda_v| |t_v(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \left\{\sum_{v=1}^{n-1} |\hat{a}_{n,v+1}| |\Delta\lambda_v| |t_v(x)| \right\}^k \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} \sum_{v=1}^{n-1} (v |\Delta\lambda_v|)^k |\Delta_v(\hat{a}_{nv})| |t_v(x)|^k \\ &\times \left\{\sum_{v=1}^{n-1} |\Delta_v(\hat{a}_{nv})| \right\}^{k-1} \\ &= O(1) \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^{k-1} \sum_{v=1}^{n-1} (v |\Delta\lambda_v|)^k |\Delta_v(\hat{a}_{nv})| |t_v(x)|^k \\ &= O(1) \sum_{v=1}^{m} (v |\Delta\lambda_v|)^{k-1} (v |\Delta\lambda_v|) |t_v(x)|^k \sum_{n=v+1}^{m+1} |\Delta_v(\hat{a}_{nv})| \end{split}$$

YILDIZ

$$= O(1) \sum_{v=1}^{m} \frac{p_v}{P_v} \frac{1}{X_v^{k-1}} |t_v(x)|^k (v | \Delta \lambda_v |)$$

$$= O(1) \sum_{v=1}^{m-1} \Delta(v | \Delta \lambda_v |) \sum_{r=1}^{v} \frac{p_r}{P_r} \frac{1}{X_r^{k-1}} |t_r(x)|^k$$

$$+ O(1)m | \Delta \lambda_m | \sum_{v=1}^{m} \frac{p_v}{P_v} \frac{1}{X_v^{k-1}} |t_v(x)|^k$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v | \Delta \lambda_v |)| X_v + O(1)m | \Delta \lambda_m | X_m$$

$$= O(1) \sum_{v=1}^{m-1} v X_v | \Delta^2 \lambda_v | + O(1) \sum_{v=1}^{m-1} X_v | \Delta \lambda_v | + O(1)m | \Delta \lambda_m | X_m = O(1)$$

as $m \to \infty,$ by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Again, we have that

112

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Finally, as in ${\cal T}_{n,1},$ we have that

$$\sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} |I_{n,4}(x)|^k = O(1) \sum_{n=1}^{m} \left(\frac{P_n}{p_n}\right)^{k-1} a_{nn}^k |\lambda_n|^k |t_n(x)|^k$$
$$= O(1) \sum_{n=1}^{m} \frac{p_n}{P_n} |\lambda_n|^{k-1} |\lambda_n| |t_n(x)|^k$$
$$= O(1) \sum_{n=1}^{m} \frac{1}{X_n^{k-1}} |\lambda_n| |t_n(x)|^k \frac{p_n}{P_n} = O(1) \quad \text{as} \ m \to \infty$$

by virtue of hypotheses of the Theorem 4.1 and Lemma 4.1. This completes the proof of Theorem 4.1.

If we take $a_{nv} = \frac{p_v}{P_n}$ in Theorem 4.1, then we get Theorem 3.1 and if we take $p_n = 1$ for all values of n in Theorem 4.1, then we get a new result dealing with the $|A|_k$ summability method. Also, if we take $a_{nv} = \frac{p_v}{P_n}$ and $p_n = 1$ for all values of n in Theorem 4.1, then we get a result concerning the $|C, 1|_k$ summability methods.

References

- 1. H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147-149.
- 2. _____, On absolute summability factors, Proc. Am. Math. Soc. **118** (1993), 71–75.
- 3. _____, Some new results on infinite series and Fourier series, Positivity 19 (2015), 467–473.
- _____, On absolute weighted mean summability of infinite series and Fourier series, Filomat 30(10) (2016), 2803–2807.
- H. Bor, D.S. Yu, P. Zhou, On local property of absolute summability of factored Fourier series, Filomat 28(8) (2014), 1675–1686.
- 6. E. Cesàro, Sur la multiplication des sèries, Bull. Sci. Math. 14 (1890), 114-120.
- K. K. Chen, Functions of bounded variation and the Cesaro means of Fourier series, Acad. Sinica Sci. Record 1 (1945), 283–289.
- T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113–141.
- 9. G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, (1949).
- E. Kogbetliantz, Sur lès series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math. 49 (1925), 234–256.
- H. S. Özarslan, Ş. Yıldız, A new study on the absolute summability factors of Fourier series, J. Math. Anal. 7 (2016), 31–36.
- W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34(11) (2003), 1547–1557.
- 13. N. Tanović-Miller, On strong summability, Glas. Mat., III. Ser. 14 (34) (1979), 87–97.

Department of Mathematics Ahi Evran University Kırşehir Turkey sebnemyildiz@ahievran.edu.tr, sebnem.yildiz820gmail.com (Received 16 07 2016)