A NEW THEOREM ON ABSOLUTE MATRIX SUMMABILITY OF FOURIER SERIES

Şebnem Yildiz

Abstract

We generalize a main theorem dealing with absolute weighted mean summability of Fourier series to the $\left|A, p_{n}\right|_{k}$ summability factors of Fourier series under weaker conditions. Also some new and known results are obtained.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. By u_{n}^{α} and t_{n}^{α} we denote the nth Cesàro means of order α, with $\alpha>-1$, of the sequence $\left(s_{n}\right)$ and $\left(n a_{n}\right)$, respectively, that is (see [6])

$$
u_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} s_{v} \quad \text { and } \quad t_{n}^{\alpha}=\frac{1}{A_{n}^{\alpha}} \sum_{v=0}^{n} A_{n-v}^{\alpha-1} v a_{v},
$$

where

$$
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!}=O\left(n^{\alpha}\right), \quad A_{-n}^{\alpha}=0 \quad \text { for } \quad n>0
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha|_{k}, k \geqslant 1$, if (see $\mathbf{8}, \mathbf{1 0}$)

$$
\sum_{n=1}^{\infty} n^{k-1}\left|u_{n}^{\alpha}-u_{n-1}^{\alpha}\right|^{k}=\sum_{n=1}^{\infty} \frac{1}{n}\left|t_{n}^{\alpha}\right|^{k}<\infty
$$

If we take $\alpha=1$, then $|C, \alpha|_{k}$ summability reduces to $|C, 1|_{k}$ summability.
Let $\left(p_{n}\right)$ be a sequence of positive real numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geqslant 1\right)
$$

2010 Mathematics Subject Classification: 26D15; 42A24; 40F05; 40G99.
Key words and phrases: summability factors, absolute matrix summability, Fourier series, infinite series, Hölder inequality, Minkowski inequality.

Communicated by Gradimir Milovanović.

The sequence-to-sequence transformation $t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}$ defines the sequence $\left(t_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see $[\mathbf{9}]$).

The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$, if (see $\mathbf{1}$)

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}$ (resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability.

2. Known Results

The following theorems are dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability factors of infinite series.

Theorem 2.1. [2] Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty . \tag{2.1}
\end{equation*}
$$

Let $\left(X_{n}\right)$ be a positive monotonic nondecreasing sequence. If the sequences $\left(X_{n}\right)$, $\left(\lambda_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions

$$
\begin{array}{r}
\lambda_{m} X_{m}=O(1) \quad \text { as } m \rightarrow \infty \\
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1) \quad \text { as } m \rightarrow \infty \\
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|t_{n}\right|^{k}=O\left(X_{m}\right) \quad \text { as } m \rightarrow \infty, \tag{2.4}
\end{array}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.
Theorem 2.2. [4] Let $\left(X_{n}\right)$ be a positive monotonic nondecreasing sequence. If the sequences $\left(X_{n}\right),\left(\lambda_{n}\right)$, and $\left(p_{n}\right)$ satisfy the conditions (2.1)-(2.3) and

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.
Remark 2.1. It should be noted that condition 2.5 is reduced to the condition (2.4), when $k=1$. When $k>1$, condition (2.5) is weaker than condition 2.4) but the converse is not true (see 4 for details).

3. An application of absolute matrix summability to Fourier series

Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping
the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where $A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, n=0,1, \ldots$ The series $\sum a_{n}$ is said to be summable $|A|_{k}, k \geqslant 1$, if (see [13])

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty
$$

and it is said to be summable $\left|A, p_{n}\right|_{k}, k \geqslant 1$, if (see $\mathbf{1 2}$)

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\bar{\Delta} A_{n}(s)\right|^{k}<\infty
$$

where $\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)$.
If we take $p_{n}=1$ for all n, then $\left|A, p_{n}\right|_{k}$ summability is the same as $|A|_{k}$ summability. Also, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n}\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability. For any sequence $\left(\lambda_{n}\right)$ we write $\Delta^{2} \lambda_{n}=\Delta \lambda_{n}-\Delta \lambda_{n+1}$ and $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}$. A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$. Let $f(t)$ be a periodic function with period 2π, and Lebesgue integrable over $(-\pi, \pi)$. Write

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} C_{n}(x)
$$

$\phi(t)=\frac{1}{2}[f(x+t)+f(x-t)], \quad$ and $\quad \phi_{\alpha}(t)=\frac{\alpha}{t^{\alpha}} \int_{0}^{t}(t-u)^{\alpha-1} \phi(u) d u \quad(\alpha>0)$.
It is well known that if $\phi(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the $(C, 1)$ mean of the sequence $\left(n C_{n}(x)\right)$ (see 7$]$).

Many works have been done dealing with absolute summability factors of Fourier series (see $\mathbf{3}[5,11]$). Among them, in [4] , Bor has proved the following theorem dealing with the Fourier series.

Theorem 3.1. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi),\left(X_{n}\right)$ is a positive monotonic nondecreasing sequence, the sequences $\left(p_{n}\right),\left(\lambda_{n}\right)$ satisfy conditions 2.1-2.3 and

$$
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}(x)\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
$$

then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.
If we take $p_{n}=1$ for all values of n, then we obtain a new result dealing with $|C, 1|_{k}$ summability factors of Fourier series.

4. Main Results

We generalize Theorem 3.1 for $\left|A, p_{n}\right|_{k}$ summability factors of Fourier series. Before stating the main theorem, we must first introduce some further notations.

With a normal matrix $A=\left(a_{n v}\right)$, we associate two lower semimatrices $\bar{A}=$ $\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ where $\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, n, v=0,1, \ldots$ and $\hat{a}_{00}=\bar{a}_{00}=a_{00}$,
$\hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, n=1,2, \ldots$ We note that \bar{A} and \hat{A} are the well-known matrices of series-to-sequence and series-to-series transformations, respectively. So, we have

$$
\begin{equation*}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \quad \text { and } \quad \bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{4.1}
\end{equation*}
$$

Theorem 4.1. Let $k \geqslant 1$ and $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gathered}
\bar{a}_{n 0}=1, n=0,1, \ldots, \quad a_{n-1, v} \geqslant a_{n v}, \text { for } n \geqslant v+1, \\
a_{n n}=O\left(p_{n} / P_{n}\right), \quad \hat{a}_{n, v+1}=O\left(v \mid \Delta_{v}\left(\hat{a}_{n v} \mid\right) .\right.
\end{gathered}
$$

If all the conditions of Theorem 3.1 are satisfied, then the series $\sum C_{n}(x) \lambda_{n}$ is summable $\left|A, p_{n}\right|_{k}, k \geqslant 1$.

If we take $a_{n v}=\frac{p_{v}}{P_{n}}$, then we get Theorem 3.1. We need the following lemma for the proof of our theorem.

Lemma 4.1. [2] Under the conditions of Theorem 2.2 we have

$$
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \text { as } n \rightarrow \infty, \quad \text { and } \quad \sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty
$$

5. Proof of Theorem 4.1

Let $\left(I_{n}(x)\right)$ denote the A-transform of the series $\sum_{n=1}^{\infty} C_{n}(x) \lambda_{n}$. Then, by 4.1), we have $\bar{\Delta} I_{n}(x)=\sum_{v=1}^{n} \hat{a}_{n v} C_{v}(x) \lambda_{v}$. Applying Abel's transformation to this sum, we get

$$
\begin{aligned}
\bar{\Delta} I_{n}(x)= & \sum_{v=1}^{n} \hat{a}_{n v} C_{v}(x) \lambda_{v} \frac{v}{v}=\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r C_{r}(x)+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r C_{r}(x) \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right)(v+1) t_{v}(x)+\hat{a}_{n n} \lambda_{n} \frac{n+1}{n} t_{n}(x) \\
= & \sum_{v=1}^{n-1} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}(x) \frac{v+1}{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v}(x) \frac{v+1}{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}(x)}{v}+a_{n n} \lambda_{n} t_{n}(x) \frac{n+1}{n} \\
= & I_{n, 1}(x)+I_{n, 2}(x)+I_{n, 3}(x)+I_{n, 4}(x) .
\end{aligned}
$$

To complete the proof of Theorem 4.1. by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, r}(x)\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 1}(x)\right|^{k} \leqslant \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\right|\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v} \| t_{v}(x)\right|\right\}^{k} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}(x)\right|^{k} \\
& \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right\}^{k-1} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}(x)\right|^{k}\right\} \\
&= O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k-1}\left|\lambda_{v}\right|\left|t_{v}(x)\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&= O(1) \sum_{v=1}^{m} \frac{1}{X_{v}^{k-1}\left|\lambda_{v}\right|\left|t_{v}(x)\right|^{k} \frac{p_{v}}{P_{v}}} \\
&=O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} \frac{p_{r}}{P_{r}} \frac{\left|t_{r}(x)\right|^{k}}{X_{r}^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m} \frac{p_{v}}{P_{v}} \frac{\left|t_{v}(x)\right|^{k}}{X_{v}^{k-1}} \\
&= O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Now, using Hölder's inequality we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 2}(x)\right|^{k} \leqslant \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\frac{v+1}{v}\right|\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}(x)\right|\right\}^{k} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\Delta \lambda_{v}\right|\left|t_{v}(x)\right|\right\}^{k} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} \sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|t_{v}(x)\right|^{k} \\
& \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right\}^{k-1} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|t_{v}(x)\right|^{k} \\
&= O(1) \sum_{v=1}^{m}\left(v\left|\Delta \lambda_{v}\right|\right)^{k-1}\left(v\left|\Delta \lambda_{v}\right|\right)\left|t_{v}(x)\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|
\end{aligned}
$$

$$
\begin{aligned}
= & O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}} \frac{1}{X_{v}^{k-1}}\left|t_{v}(x)\right|^{k}\left(v\left|\Delta \lambda_{v}\right|\right) \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} \frac{p_{r}}{P_{r}} \frac{1}{X_{r}^{k-1}}\left|t_{r}(x)\right|^{k} \\
& +O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} \frac{p_{v}}{P_{v}} \frac{1}{X_{v}^{k-1}}\left|t_{v}(x)\right|^{k} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|\Delta \lambda_{v}\right|\right)\right| X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v X_{v}\left|\Delta^{2} \lambda_{v}\right|+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m}=O(1)
\end{aligned}
$$

as $m \rightarrow \infty$, by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1. Again, we have that

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 3}(x)\right|^{k}=\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}(x)}{v}\right|^{k} \\
& \leqslant \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\hat{a}_{n, v+1}\right|\left|\lambda_{v+1}\right| \frac{\left|t_{v}(x)\right|}{v}\right\}^{k} \\
&=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|\left|t_{v}(x)\right|\right\}^{k} \\
&=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}(x)\right|^{k} \\
& \quad \times\left\{\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|^{k-1}\right. \\
&=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}(x)\right|^{k} \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k}\left|t_{v}(x)\right|^{k} \sum_{n=v+1}^{m+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&=O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left|t_{v}(x)\right|^{k}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right| \\
&=O(1) \sum_{v=1}^{m} \frac{1}{X_{v}^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}(x)\right|^{k} \frac{p_{v}}{P_{v}}=O(1) \quad \text { as } m \rightarrow \infty}
\end{aligned}
$$

by virtue of the hypotheses of Theorem 4.1 and Lemma 4.1 Finally, as in $T_{n, 1}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|I_{n, 4}(x)\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{k-1} a_{n n}^{k}\left|\lambda_{n}\right|^{k}\left|t_{n}(x)\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}(x)\right|^{k} \\
& =O(1) \sum_{n=1}^{m} \frac{1}{X_{n}^{k-1}}\left|\lambda_{n}\right|\left|t_{n}(x)\right|^{k} \frac{p_{n}}{P_{n}}=O(1) \quad \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of hypotheses of the Theorem 4.1 and Lemma 4.1. This completes the proof of Theorem 4.1.

If we take $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 4.1 then we get Theorem 3.1 and if we take $p_{n}=1$ for all values of n in Theorem 4.1 then we get a new result dealing with the $|A|_{k}$ summability method. Also, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n in Theorem 4.1 then we get a result concerning the $|C, 1|_{k}$ summability methods.

References

1. H. Bor, On two summability methods, Math. Proc. Camb. Philos. Soc. 97 (1985), 147-149.

2 . \qquad , On absolute summability factors, Proc. Am. Math. Soc. 118 (1993), 71-75.
3. \qquad , Some new results on infinite series and Fourier series, Positivity 19 (2015), 467-473.
4._, On absolute weighted mean summability of infinite series and Fourier series, Filomat 30(10) (2016), 2803-2807.
5. H. Bor, D.S. Yu, P. Zhou, On local property of absolute summability of factored Fourier series, Filomat 28(8) (2014), 1675-1686.
6. E. Cesàro, Sur la multiplication des sèries, Bull. Sci. Math. 14 (1890), 114-120.
7. K. K. Chen, Functions of bounded variation and the Cesaro means of Fourier series, Acad. Sinica Sci. Record 1 (1945), 283-289.
8. T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957), 113-141.
9. G. H. Hardy, Divergent Series, Oxford Univ. Press, Oxford, (1949).
10. E. Kogbetliantz, Sur lès series absolument sommables par la methode des moyennes arithmetiques, Bull. Sci. Math. 49 (1925), 234-256.
11. H. S. Özarslan, Ş. Yıldız, A new study on the absolute summability factors of Fourier series, J. Math. Anal. 7 (2016), 31-36.
12. W. T. Sulaiman, Inclusion theorems for absolute matrix summability methods of an infinite series. IV, Indian J. Pure Appl. Math. 34(11) (2003), 1547-1557.
13. N. Tanović-Miller, On strong summability, Glas. Mat., III. Ser. 14 (34) (1979), 87-97.

Department of Mathematics
(Received 1607 2016)
Ahi Evran University
Kırşehir
Turkey
sebnemyildiz@ahievran.edu.tr,
sebnem.yildiz82@gmail.com

