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RINGS IN WHICH THE POWER
OF EVERY ELEMENT IS THE SUM
OF AN IDEMPOTENT AND A UNIT

Huanyin Chen and Marjan Sheibani

Abstract. A ring 𝑅 is uniquely 𝜋-clean if the power of every element can be
uniquely written as the sum of an idempotent and a unit. We prove that a
ring 𝑅 is uniquely 𝜋-clean if and only if for any 𝑎 ∈ 𝑅, there exists an integer
𝑚 and a central idempotent 𝑒 ∈ 𝑅 such that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅), if and only if
𝑅 is Abelian; idempotents lift modulo 𝐽(𝑅); and 𝑅/𝑃 is torsion for all prime
ideals 𝑃 ⊇ 𝐽(𝑅). Finally, we completely determine when a uniquely 𝜋-clean
ring has nil Jacobson radical.

1. Introduction

An attractive problem in ring theory is to determine when a ring is generated
additively by idempotents and units. An element of a ring is uniquely clean if it can
be uniquely written as the sum of an idempotent and a unit. A ring 𝑅 is uniquely
clean if every element in 𝑅 is uniquely clean. Many results on such rings can be
found in [3, 5, 6]. Following Zhou [6], a ring 𝑅 is uniquely 𝜋-clean if some power
of every element in 𝑅 is uniquely clean. This is a natural generalization of uniquely
clean rings. The motivation of this paper is to develop explicit characterizations of
such rings.

In Section 2, we explore the structures of uniquely 𝜋-clean rings, and prove
that a ring 𝑅 is uniquely 𝜋-clean if and only if for any 𝑎 ∈ 𝑅, there exists an 𝑚 ∈ N
and a central idempotent 𝑒 ∈ 𝑅 such that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅), if and only if for any
𝑎 ∈ 𝑅, there exists an 𝑚 ∈ N and a unique 𝑒 ∈ 𝑅 such that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅), and
𝐽(𝑅) = {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) f or all 𝑚 ∈ N}. This extends Lee and Zhou’s
theorem as well.

In Section 3, we characterize uniquely 𝜋-cleanness by means of certain prime
ideals. It is shown that a ring 𝑅 is uniquely 𝜋-clean if and only if 𝑅 is Abelian; every
idempotent lifts modulo 𝐽(𝑅); and 𝑅/𝑃 is torsion for all prime ideals 𝑃 containing
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the Jacobson radical 𝐽(𝑅). Furthermore, we consider a type of radical-like ideal
𝐽*(𝑅), and characterize uniquely 𝜋-clean ring 𝑅 by using such a special one.

Finally, we completely determine when a uniquely 𝜋-clean ring has nil Jacobson
radical. Recall that an element 𝑎 ∈ 𝑅 is uniquely nil-clean provided that there
exists a unique idempotent 𝑒 ∈ 𝑅 such that 𝑎 − 𝑒 ∈ 𝑁(𝑅) [3]. We say that 𝑎 ∈ 𝑅 is
uniquely 𝜋-nil-clean provided that 𝑎𝑛 ∈ 𝑅 is uniquely nil-clean for some 𝑛 ∈ N. A
ring 𝑅 is uniquely 𝜋-nil-clean if every element in 𝑅 is uniquely 𝜋-nil-clean. A ring
𝑅 is periodic if for any 𝑎 ∈ 𝑅 there exist distinct 𝑚, 𝑛 ∈ N such that 𝑎𝑚 = 𝑎𝑛. In
the last section, we characterize uniquely 𝜋-nil-clean rings. We prove that a ring 𝑅
is uniquely 𝜋-nil-clean if and only if 𝑅 is uniquely 𝜋-clean and 𝐽(𝑅) is nil, if and
only if 𝑅 is an Abelian periodic ring, if and only if for any 𝑎 ∈ 𝑅 there exists some
𝑚 ∈ N such that 𝑎𝑚 ∈ 𝑅 is uniquely nil clean, if and only if for any 𝑎 ∈ 𝑅, there
exists some 𝑚 ∈ N and a unique idempotent 𝑒 ∈ 𝑅 such that 𝑎𝑚 −𝑒 ∈ 𝑃 (𝑅), where
𝑃 (𝑅) is the prime radical of 𝑅. Here, an element 𝑎 ∈ 𝑅 is uniquely nil clean if
there exists a unique idempotent 𝑒 ∈ 𝑅 such that 𝑎 − 𝑒 ∈ 𝑅 is nilpotent [3, 5].

Throughout the paper, all rings are associative with an identity. We use 𝐽(𝑅)
and 𝑃 (𝑅) to denote the Jacobson radical and prime radical of a ring 𝑅. 𝑁(𝑅)
stands for the set of all nilpotent elements in 𝑅.

2. Structure Theorems

The aim of this is to explore the structures of uniquely 𝜋-clean rings. Recall
that a ring 𝑅 is an exchange ring if for any 𝑎 ∈ 𝑅 there exists an idempotent
𝑒 ∈ 𝑎𝑅 such that 1 − 𝑒 ∈ (1 − 𝑎)𝑅. A ring 𝑅 is an exchange ring if and only if,
for every right 𝑅-module 𝐴 and any two decompositions 𝐴 = 𝑀 ⊕ 𝑁 =

⨁︀
𝑖∈𝐼 𝐴𝑖,

where 𝑀𝑅
∼= 𝑅 and the index set 𝐼 is finite, there exist submodules 𝐴′

𝑖 ⊆ 𝐴𝑖 such
that 𝐴 = 𝑀 ⊕

(︀ ⨁︀
𝑖∈𝐼 𝐴′

𝑖

)︀
. The class of exchange rings is very large. For instances,

regular rings, 𝜋-regular rings, strongly 𝜋-regular rings, semiperfect rings, left or
right continuous rings, clean rings and unit 𝐶*-algebras of real rank zero, etc. We
begin with

Lemma 2.1. Every uniquely 𝜋-clean ring is an Abelian exchange ring.

Proof. Let 𝑅 be uniquely 𝜋-clean, let 𝑒 ∈ 𝑅 be an idempotent, and let 𝑟 ∈ 𝑅.
Then 𝑥 := 1 −

(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
∈ 𝑅 is an idempotent. By hypothesis, 𝑥 ∈ 𝑅 is

uniquely clean. One easily checks that

𝑥 = 𝑒 +
(︀
1 − 2𝑒 − 𝑒𝑟(1 − 𝑒)

)︀
=

(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
+

(︀
1 − 2(𝑒 + 𝑒𝑟(1 − 𝑒))

)︀
.

Further,

𝑒 = 𝑒2 ∈ 𝑅,
(︀
1 − 2𝑒 − 𝑒𝑟(1 − 𝑒)

)︀−1 =
(︀
1 − 𝑒𝑟(1 − 𝑒)

)︀
(1 − 2𝑒),(︀

𝑒 + 𝑒𝑟(1 − 𝑒)
)︀

=
(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀2
,

(︀
1 − 2(𝑒 + 𝑒𝑟(1 − 𝑒))

)︀2 = 1.

By the uniqueness, we get 𝑒 = 𝑒+𝑒𝑟(1−𝑒), and then 𝑒𝑟 = 𝑒𝑟𝑒. Likewise, 𝑟𝑒 = 𝑒𝑟𝑒.
Thus, 𝑒𝑟 = 𝑟𝑒, and therefore 𝑅 is Abelian.

For any 𝑎 ∈ 𝑅, then we can find some 𝑚 ∈ N such that 𝑎𝑚 ∈ 𝑅 is clean. Write
𝑎𝑚 = 𝑓 + 𝑣, where 𝑓 = 𝑓2, 𝑣 ∈ 𝑈(𝑅). Then 𝑎𝑚 − 𝑓𝑚 = 𝑣, and so 𝑎 − 𝑓 ∈ 𝑈(𝑅).
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This implies that 𝑅 is strongly clean. In view of [9, Theorem 30.2], every clean
ring is an exchange ring. Therefore 𝑅 is an exchange ring, as asserted. �

A ring 𝑅 is strongly clean if for any 𝑎 ∈ 𝑅 there exists an idempotent 𝑒 ∈ 𝑅
such that 𝑎 − 𝑒 ∈ 𝑈(𝑅) and 𝑒𝑎 = 𝑎𝑒. As a consequence of Lemma 2.1, every
uniquely 𝜋-clean ring is strongly clean. A ring 𝑅 is uniquely clean provided that
every element in 𝑅 can be uniquely written as the sum of an idempotent and a
unit. It is easy to verify that Z/3Z is not uniquely clean as 2 = 0 + 2 = 1 + 1,
while Z/3Z is uniquely 𝜋-clean. Let 𝑅 =

⨁︀
𝑝 is prime Z/(𝑝+1)Z. Then 𝑅 is strongly

clean. For any 1 6 𝑚 6
[︀
log2𝑝

]︀
, 2𝑚 ∈ Z/(𝑝 + 1)Z is not uniquely clean. Thus,

𝑅 is not uniquely 𝜋-clean. Therefore, we conclude that {uniquely clean rings} (
{uniquely 𝜋-clean rings} ( {strongly clean rings}.

Theorem 2.1. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if

(1) 𝑅 is Abelian;
(2) Every idempotent lifts modulo 𝐽(𝑅);
(3) 𝑅/𝐽(𝑅) is uniquely 𝜋-clean.

Proof. Suppose 𝑅 is uniquely 𝜋-clean. In view of Lemma 2.1, 𝑅 is an Abelian
exchange ring. This proves (1) and (2), in terms of [9, Theorem 30.2]. For any
�̄� ∈ 𝑅/𝐽(𝑅), then 𝑎 ∈ 𝑅 is uniquely 𝜋-clean. Thus, we have some 𝑛 ∈ N such that
𝑎𝑛 ∈ 𝑅 is uniquely clean. This implies that 𝑎𝑛 = 𝑒 + 𝑢, 𝑒 = 𝑒2 ∈ 𝑅, 𝑢 ∈ 𝑈(𝑅).
Hence, �̄�𝑛 = 𝑒 + 𝑢. Write �̄�𝑛 = 𝑓 + 𝑣, 𝑓 = 𝑓

2 ∈ 𝑅/𝐽(𝑅), 𝑣 ∈ 𝑈
(︀
𝑅/𝐽(𝑅)

)︀
. Clearly,

every unit lifts modulo 𝐽(𝑅). So we may assume that 𝑓 = 𝑓2 ∈ 𝑅, 𝑣 ∈ 𝑈(𝑅). As
a result, there exists some 𝑟 ∈ 𝐽(𝑅) such that 𝑎𝑛 = 𝑒 + 𝑢 = 𝑓 + (𝑣 + 𝑟). By the
uniqueness, we get 𝑒 = 𝑓 . Therefore 𝑅/𝐽(𝑅) is uniquely 𝜋-clean.

Conversely, assume that (1)–(3) hold. For any 𝑎 ∈ 𝑅, we have �̄� ∈ 𝑅/𝐽(𝑅),
and so there exists some 𝑛 ∈ N such that �̄�𝑛 ∈ 𝑅 is uniquely clean. By hypothesis,
idempotents lift modulo 𝐽(𝑅). In addition, units lift modulo 𝐽(𝑅). Thus, 𝑎𝑛 =
𝑒 + 𝑢, 𝑒 = 𝑒2 ∈ 𝑅, 𝑢 ∈ 𝑈(𝑅). Write 𝑎𝑛 = 𝑓 + 𝑣, 𝑓 = 𝑓2, 𝑣 ∈ 𝑈(𝑅). Then
�̄�𝑛 = 𝑓 + 𝑣. By the uniqueness, we get 𝑒 = 𝑓 , i.e., 𝑒 − 𝑓 ∈ 𝐽(𝑅). This infers that
𝑓(1 − 𝑒) = (𝑒 − 𝑓)(𝑒 − 1) ∈ 𝐽(𝑅). As every idempotent in 𝑅 is central, 𝑓(1 − 𝑒) ∈ 𝑅
is an idempotent, thus, 𝑓(1 − 𝑒) = 0. It follows that 𝑓 = 𝑓𝑒. Likewise, 𝑒 = 𝑒𝑓 .
Consequently, 𝑒 = 𝑓 , and therefore 𝑅 is uniquely 𝜋-clean. �

Corollary 2.1. Every corner of a uniquely 𝜋-clean ring is uniquely 𝜋-clean.

Proof. Let 𝑅 be uniquely 𝜋-clean, and let 𝑒 = 𝑒2 ∈ 𝑅. In light of Theorem 2.1,
𝑒 ∈ 𝑅 is central. For any 𝑒𝑎𝑒 ∈ 𝑒𝑅𝑒, then 𝑒𝑎𝑒 + 1 − 𝑒 ∈ 𝑅 is uniquely 𝜋-clean.
So we have some 𝑛 ∈ N such that (𝑒𝑎𝑒 + 1 − 𝑒)𝑛 ∈ 𝑅 is uniquely clean. Thus,
(𝑒𝑎𝑒 + 1 − 𝑒)𝑛 = 𝑓 + 𝑢, 𝑓 = 𝑓2 ∈ 𝑅, 𝑢 ∈ 𝑈(𝑅), and so (𝑒𝑎𝑒)𝑛 = 𝑒𝑓𝑒 + 𝑒𝑢𝑒 is clean
in 𝑒𝑅𝑒. Write (𝑒𝑎𝑒)𝑛 = 𝑔 + 𝑣, 𝑔 = 𝑔2 ∈ 𝑒𝑅𝑒, 𝑣 ∈ 𝑈(𝑒𝑅𝑒). Then (𝑒𝑎𝑒 + 1 − 𝑒)𝑛 =
(𝑒𝑎𝑒)𝑛 + 1 − 𝑒 = 𝑔 + (𝑣 + 1 − 𝑒), where 𝑔 = 𝑔2 ∈ 𝑅. Write 𝑣𝑤 = 𝑤𝑣 = 𝑒. Then
(𝑣 + 1 − 𝑒)−1 = 𝑤 + 1 − 𝑒, and so 𝑣 + 1 − 𝑒 ∈ 𝑈(𝑅). Thus, 𝑔 = 𝑓 = 𝑒𝑔𝑒 = 𝑒𝑓𝑒, as
required. �
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Lemma 2.1 shows that every uniquely 𝜋-clean ring is an Abelian exchange ring.
We now exhibit an exchange-like property of such rings.

Theorem 2.2. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) 𝑅 is Abelian;
(2) For any 𝑎 ∈ 𝑅, there exists an 𝑛 ∈ N and a unique idempotent 𝑒 ∈ 𝑎𝑛𝑅

such that 1 − 𝑒 ∈ (1 − 𝑎𝑛)𝑅.

Proof. Suppose that 𝑅 is uniquely 𝜋-clean. In view of Lemma 2.1, every
idempotent in 𝑅 is central. For any 𝑎 ∈ 𝑅, there exists some 𝑛 ∈ N such that
𝑎𝑛 ∈ 𝑅 is uniquely clean. Write 𝑎𝑛 = 𝑓 + 𝑣, where 𝑓 = 𝑓2, 𝑣 ∈ 𝑈(𝑅). Set
𝑔 = 1 − 𝑓 . Then 𝑔 = 𝑔2 ∈ 𝑅. Obviously, we get

(𝑎𝑛 − 𝑔)𝑣 =
(︀
𝑓 + 𝑣 − 𝑣(1 − 𝑓)𝑣−1)︀

𝑣 = 𝑣2 + 𝑓𝑣 − 𝑣 + 𝑣𝑓 = 𝑎2𝑛 − 𝑎𝑛.

Thus 𝑔 − 𝑎𝑛 ∈ (𝑎𝑛 − 𝑎2𝑛)𝑅, and so 𝑔 ∈ 𝑎𝑛𝑅 and 1 − 𝑔 ∈ (1 − 𝑎𝑛)𝑅.
If there exists an idempotent ℎ ∈ 𝑎𝑛𝑅 such that 1 − ℎ ∈ (1 − 𝑎𝑛)𝑅. Write

ℎ = 𝑎𝑛𝑥, 𝑥ℎ = 𝑥. Then 𝑥𝑎𝑛𝑥 = 𝑥. It is easy to verify that 𝑥𝑎𝑛 = 𝑥(𝑎𝑛𝑥)𝑎𝑛 =
𝑎𝑛𝑥(𝑥𝑎𝑛) = 𝑎𝑛(𝑥𝑎𝑛)𝑥 = 𝑎𝑛𝑥. Write 1 − ℎ = (1 − 𝑎𝑛)𝑦, 𝑦(1 − ℎ) = 𝑦. Likewise,
𝑦(1 − 𝑎𝑛) = (1 − 𝑎𝑛)𝑦. One directly checks that

(︀
𝑎𝑛 − (1 − ℎ)

)︀−1 = 𝑥 − 𝑦, i.e.,
𝑎𝑛 − (1 − ℎ) ∈ 𝑈(𝑅), By the uniqueness, we get 1 − ℎ = 𝑓 . Hence, 𝑔 = 1 − 𝑓 = ℎ,
as desired.

Conversely, assume that (1) and (2) hold. For any 𝑎 ∈ 𝑅, there exists an 𝑛 ∈ N
and a unique idempotent 𝑒 ∈ 𝑎𝑛𝑅 such that 1 − 𝑒 ∈ (1 − 𝑎𝑛)𝑅. As in the preceding
discussion, we get 𝑎𝑛 − (1 − 𝑒) ∈ 𝑈(𝑅). Write 𝑎𝑛 = 𝑓 + 𝑣, where 𝑓 = 𝑓2, 𝑣 ∈ 𝑈(𝑅).
Set 𝑔 = 1 − 𝑓 . Then 𝑔 = 𝑔2 ∈ 𝑅. Further, we have 𝑔 ∈ 𝑎𝑛𝑅 and 1 − 𝑔 ∈ (1 − 𝑎𝑛)𝑅.
By the uniqueness, we obtain 𝑔 = 𝑒. Thus, 𝑓 = 1 − 𝑒, hence the result. �

Corollary 2.2. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) Every idempotent in 𝑅 is central.
(2) For any 𝑎 ∈ 𝑅, there exists an 𝑛 ∈ N and a unique idempotent 𝑒 ∈ 𝑅𝑎𝑛

such that 1 − 𝑒 ∈ 𝑅(1 − 𝑎𝑛).

Proof. Obviously, a ring 𝑅 is uniquely 𝜋-clean if and only if so is the opposite
ring 𝑅op. Applying Theorem 2.2 to 𝑅op, we complete the proof. �

A ring 𝑅 is local if it has only one maximal right ideal. A ring 𝑅 is potent if
for any 𝑎 ∈ 𝑅 there exists some 𝑛 ∈ N such that 𝑎𝑛 = 𝑎. We note that every potent
ring is commutative.

Lemma 2.2. Let 𝑅 be a local ring. If 𝑅 is uniquely 𝜋-clean, then 𝑅/𝐽(𝑅) is
potent.

Proof. Suppose that there exists some 𝑎 ∈ 𝑅 such that 𝑎𝑛 − 𝑎 ̸∈ 𝐽(𝑅) for all
𝑛 > 2. Then 𝑎(𝑎𝑛−1 − 1) ∈ 𝑈(𝑅) as 𝑅 is a local ring. This implies that 𝑎 ∈ 𝑈(𝑅)
and 𝑎𝑛−1 − 1 ∈ 𝑈(𝑅) for all 𝑛 > 2. Since 𝑅 is uniquely 𝜋-clean, we have an
𝑚 ∈ N such that 𝑎𝑚 ∈ 𝑅 is uniquely clean. But 𝑎𝑚 = 0 + 𝑎𝑚 = 1 + (𝑎𝑚 − 1), a
contradiction. Therefore, for any 𝑎 ∈ 𝑅, there exists some integer 𝑛 > 2 such that
𝑎𝑛 − 𝑎 ∈ 𝐽(𝑅). That is, 𝑅/𝐽(𝑅) is potent. �
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Lemma 2.3. [6, Theorem 3.1] Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if
and only if

(1) 𝑅 is Abelian;
(2) Every idempotent lifts modulo 𝐽(𝑅);
(3) 𝑅/𝐽(𝑅) is potent.

We have accumlated all the information necessary to prove the following.

Theorem 2.3. Let 𝑅 be a ring. Then the following statements are equivalent:
(1) 𝑅 is uniquely 𝜋-clean.
(2) For any 𝑎 ∈ 𝑅, there exist an 𝑚 ∈ N and a central idempotent 𝑒 ∈ 𝑅 such

that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅).

Proof. (1) ⇒ (2) In view of Lemma 2.3, 𝑅/𝐽(𝑅) is potent. For any 𝑎 ∈ 𝑅,
�̄� ∈ 𝑅/𝐽(𝑅) is potent, and so �̄�𝑚 ∈ 𝑅/𝐽(𝑅) is an idempotent for some 𝑚 ∈ N. By
using Lemma 2.3 again, we can find a central idempotent 𝑒 ∈ 𝑅 such that �̄�𝑚 = 𝑒,
and so 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅).

(2) ⇒ (1) If 𝑒 ∈ 𝑅 is an idempotent, then we have a central idempotent 𝑓 ∈ 𝑅
such that 𝑒 − 𝑓 ∈ 𝐽(𝑅). As (𝑒 − 𝑓)3 = 𝑒 − 𝑓 , we deduce that 𝑒 = 𝑓 ; hence, every
idempotent in 𝑅 is central. If 𝑒 − 𝑒2 ∈ 𝐽(𝑅), then we can find a central idempotent
𝑓 ∈ 𝑅 such that 𝑒𝑚 −𝑓 ∈ 𝐽(𝑅) for some 𝑚 ∈ N. As 𝑒−𝑒2 ∈ 𝐽(𝑅), if 𝑚 > 3, we see
that 𝑒 − 𝑒𝑚 = (𝑒 − 𝑒2) + (𝑒 − 𝑒2)𝑒 + · · · + (𝑒 − 𝑒2)𝑒𝑚−2 ∈ 𝐽(𝑅). Thus 𝑒 − 𝑓 ∈ 𝐽(𝑅),
and then idempotents lift modulo 𝐽(𝑅).

For any 𝑎 ∈ 𝑅, there exists 𝑚 ∈ N such that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅) for a central
idempotent. Hence, �̄�𝑚 = 𝑒 in 𝑅/𝐽(𝑅). Thus, 𝑆 := 𝑅/𝐽(𝑅) is periodic. Thus, 𝑆
is an Abelian exchange ring. If 𝑥2 = 0 and 𝑥 ̸= 0 in 𝑆, then 𝑥 ̸∈ 𝐽(𝑆). For any
𝑟 ∈ 𝑆, there exists some idempotent 𝑔 ∈ 𝑆𝑟𝑥 such that 1 − 𝑔 ∈ 𝑆(1 − 𝑟𝑥). Write
𝑔 = 𝑐𝑟𝑥 for a 𝑐 ∈ 𝑆. Then 𝑔 = 𝑔2 = (𝑐𝑟𝑥)𝑔 = (𝑐𝑟)𝑔𝑥 = (𝑐𝑟)(𝑐𝑟𝑥)𝑥 = (𝑐𝑟)2𝑥2 = 0,
as 𝑆 is Abelian. Thus, 1 − 𝑟𝑥 ∈ 𝑆 is left invertible. Since 𝑆 is Abelian, it is easy
to check that 1 − 𝑟𝑥 ∈ 𝑈(𝑆). This shows that 𝑥 ∈ 𝐽(𝑆); hence, 𝑥 = 0. This gives
a contradiction. Therefore 𝑆 is reduced.

Let 𝑎 ∈ 𝑅; there exist 𝑚, 𝑛 (𝑚 > 𝑛) such that �̄�𝑚 = �̄�𝑛 in 𝑆. Choose 𝑘 =
𝑛(𝑚 − 𝑛). It is easy to verify that 𝑝 = �̄�𝑘+1 is potent and 𝑤 = �̄� − �̄�𝑘+1 ∈ 𝑁(𝑆).
Further, �̄� = 𝑝 + 𝑤 = 𝑝 is potent, and so 𝑆 is potent. Applying Lemma 2.3, we
complete the proof. �

Corollary 2.3. Let 𝑅 be a ring. Then 𝑅 is uniquely clean if and only if
(1) 𝑅 is uniquely 𝜋-clean;
(2) 𝐽(𝑅) = {𝑥 ∈ 𝑅 | 𝑥 − 1 ∈ 𝑈(𝑅)}.

Proof. Obviously, 𝐽(𝑅) ⊆ {𝑥 ∈ 𝑅 | 1 − 𝑥 ∈ 𝑈(𝑅)}. Suppose that 1 − 𝑥 ∈
𝑈(𝑅). Then we have an idempotent 𝑒 ∈ 𝑅 and an element 𝑢 ∈ 𝐽(𝑅) such that
𝑥 = 𝑒 + 𝑢 and 𝑒𝑥 = 𝑥𝑒 by [10, Theorem 20]. Thus, 1 − 𝑒 = (1 − 𝑥) + 𝑢 ∈ 𝑈(𝑅),
and so 1 − 𝑒 = 1. This implies that 𝑒 = 0, whence 𝑥 = 𝑢 ∈ 𝐽(𝑅). Therefore
𝐽(𝑅) = {𝑥 ∈ 𝑅 | 1 − 𝑥 ∈ 𝑈(𝑅)}.

Conversely, assume that (1) and (2) hold. In view of Lemma 2.3, 𝑅/𝐽(𝑅) is
potent. It follows from 𝐽(𝑅) = {𝑥 ∈ 𝑅 | 𝑥 − 1 ∈ 𝑈(𝑅)} that 𝑈

(︀
𝑅/𝐽(𝑅)

)︀
= {1̄}.
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Write 𝑝 = 𝑝𝑛(𝑛 > 2) in 𝑅/𝐽(𝑅). Then
(︀
1 − 𝑝𝑛−1 + 𝑝

)︀−1 = 1 − 𝑝𝑛−1 + 𝑝𝑛−2. Hence,
𝑝 = 𝑝𝑛−1, and so 𝑝2 = 𝑝𝑛 = 𝑝. This implies that 𝑅/𝐽(𝑅) is Boolean. Therefore we
complete the proof by Lemma 2.1 and [10, Theorem 20]. �

Theorem 2.4. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) For any 𝑎 ∈ 𝑅, there exists an 𝑚 ∈ N and a unique 𝑒 ∈ 𝑅 such that

𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅).
(2) 𝐽(𝑅) = {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}.

Proof. Suppose that 𝑅 is uniquely 𝜋-clean. Let 𝑎 ∈ 𝑅. In view of The-
orem 2.3, there exist an 𝑚 ∈ N and a central idempotent 𝑔 ∈ 𝑅 such that
𝑎𝑚 − 𝑔 ∈ 𝐽(𝑅). If there exists an idempotent 𝑓 ∈ 𝑅 such that 𝑎𝑚 − 𝑓 ∈ 𝐽(𝑅),
then 𝑔 − 𝑓 = (𝑎𝑚 − 𝑓) − (𝑎𝑚 − 𝑔) ∈ 𝐽(𝑅). Clearly, (𝑔 − 𝑓)3 = 𝑔 − 𝑓 , and so
(𝑔 − 𝑓)

(︀
1 − (𝑔 − 𝑓)2)︀

= 0. Thus, 𝑔 = 𝑓 , i.e., the uniqueness is verified.
Clearly, 𝐽(𝑅) ⊆ {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}. If 𝑥 ̸∈ 𝐽(𝑅), then

0 ̸= 𝑥𝑅 * 𝐽(𝑅). In view of Lemma 2.1, 𝑅 is an exchange ring, and so there exists
an idempotent 0 ̸= 𝑒 ∈ 𝑥𝑅. Write 𝑒 = 𝑥𝑟 for an 𝑟 ∈ 𝑅. Choose 𝑎 = 𝑒𝑥𝑒 + 1 − 𝑒.
Then we can find some 𝑚 ∈ N such that 𝑎𝑚 ∈ 𝑅 is uniquely clean. In addition, 𝑅 is
Abelian by Lemma 2.1. Obviously, 𝑎𝑚 = 0+

(︀
𝑒𝑥𝑚𝑒+1−𝑒

)︀
= 𝑒+

(︀
𝑒(𝑥𝑚−1)𝑒+1−𝑒

)︀
.

If 𝑥𝑚 − 1 ∈ 𝑈(𝑅), then 0 = 𝑒, a contradiction. This implies that 𝑥𝑚 − 1 ̸∈ 𝑈(𝑅).
That is, 𝑥 ̸∈ {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}. Therefore {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈
𝑈(𝑅) for all 𝑚 ∈ N} ⊆ 𝐽(𝑅), as required.

Conversely, assume that (1) and (2) hold. Let 𝑥 ∈ 𝑁(𝑅). Then 𝑥𝑚 − 1 ∈ 𝑈(𝑅)
for all 𝑚 ∈ N. By hypothesis, we get 𝑥 ∈ 𝐽(𝑅). Therefore, every nilpotent element
in 𝑅 is contained in 𝐽(𝑅). Let 𝑒 ∈ 𝑅 be an idempotent, and let 𝑟 ∈ 𝑅. Then
𝑒 + 𝑒𝑟(1 − 𝑒) ∈ 𝑅 is an idempotent. Hence, there exists a unique 𝑓 ∈ 𝑅 such that(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
− 𝑓 ∈ 𝐽(𝑅). By the preceding discussion,

(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
− 𝑒 =

𝑒𝑟(1 − 𝑒) ∈ 𝐽(𝑅). The uniqueness forces 𝑒 = 𝑓 . But
(︀
𝑒+𝑒𝑟(1−𝑒)

)︀
−

(︀
𝑒+𝑒𝑟(1−𝑒)

)︀
∈

𝐽(𝑅), and so 𝑒 + 𝑒𝑟(1 − 𝑒) = 𝑓 = 𝑒. This shows that 𝑒𝑟 = 𝑒𝑟𝑒. Likewise, 𝑟𝑒 = 𝑒𝑟𝑒.
That is, 𝑒𝑟 = 𝑟𝑒, and then 𝑅 is Abelian. For any 𝑎 ∈ 𝑅, there exist an 𝑚 ∈ N and a
unique 𝑒 ∈ 𝑅 such that 𝑤 := 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅). Then 𝑎𝑚 = (1 − 𝑒) + (2𝑒 − 1 + 𝑤). As
(2𝑒 − 1)2 = 1, we see that 2𝑒 − 1 + 𝑤 ∈ 𝑈(𝑅). If there exists an idempotent 𝑓 ∈ 𝑅
such that 𝑎𝑚 − 𝑓 ∈ 𝑈(𝑅), then 𝑒 − 𝑓 = (𝑎𝑚 − 𝑓) − (𝑎𝑚 − 𝑒) ∈ 𝑈(𝑅). One easily
checks that (𝑒 + 𝑓 − 1)(𝑒 − 𝑓)2 = 0, and therefore 𝑒 + 𝑓 − 1 = 0. Thus, 𝑓 = 1 − 𝑒,
hence the result. �

Corollary 2.4. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) For any 𝑎 ∈ 𝑅, there exist an 𝑚 ∈ N and a unique 𝑒 ∈ 𝑅 such that

𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅).
(2) 𝑁(𝑅) ⊆ 𝐽(𝑅).

Proof. Suppose that 𝑅 is uniquely 𝜋-clean. (1) is obvious by Theorem 2.4.
Let 𝑎 ∈ 𝑁(𝑅). Then 1 − 𝑎𝑚 ∈ 𝑈(𝑅) for all 𝑚 ∈ N. It follows by Theorem 2.4 that
𝑎 ∈ 𝐽(𝑅). Therefore 𝑁(𝑅) ⊆ 𝐽(𝑅).

Conversely, assume that (1) and (2) hold. Let 𝑒 ∈ 𝑅, and let 𝑥 ∈ 𝑅. Then
𝑒𝑥(1 − 𝑒) ∈ 𝐽(𝑅). By hypothesis, we have some 𝑚 ∈ N such that the expressions
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𝑒 + 𝑒𝑥(1 − 𝑒)

)︀𝑚 =
(︀
𝑒 + 𝑒𝑥(1 − 𝑒)

)︀
+ 0 = 𝑒 + 𝑒𝑥(1 − 𝑒) are unique. This implies

that 𝑒𝑥(1 − 𝑒) = 0, and so 𝑒𝑥 = 𝑒𝑥𝑒. Likewise, 𝑥𝑒 = 𝑒𝑥𝑒. Therefore 𝑅 is Abelian.
This yields the result by Theorem 2.3. �

Corollary 2.5. Let 𝑅 be a local ring. Then the following statements are
equivalent:

(1) 𝑅 is uniquely 𝜋-clean.
(2) 𝑈(𝑅) = {𝑥 ∈ 𝑅 | There is an 𝑚 ∈ N such that 𝑥𝑚 − 1 ∈ 𝐽(𝑅)}.
(3) 𝐽(𝑅) = {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}.

Proof. (1) ⇒ (3) is clear from Theorem 2.4.
(3) ⇒ (2) Obviously, {𝑥 ∈ 𝑅 | there is an 𝑚 ∈ N such that 𝑥𝑚 − 1 ∈ 𝐽(𝑅)} ⊆

𝑈(𝑅). For any 𝑥 ∈ 𝑈(𝑅), 𝑥 ̸∈ 𝐽(𝑅). By hypothesis, there exists some 𝑚 ∈ N
such that 𝑥𝑚 − 1 ̸∈ 𝑈(𝑅). As 𝑅 is local, 𝑥𝑚 − 1 ∈ 𝐽(𝑅). This implies that
𝑈(𝑅) ⊆ {𝑥 ∈ 𝑅 | there is an 𝑚 ∈ N such that 𝑥𝑚 − 1 ∈ 𝐽(𝑅)}, as required.

(2) ⇒ (1) For any 𝑥 ∈ 𝑅, we see that either 𝑥 ∈ 𝐽(𝑅) or 𝑥 ∈ 𝑈(𝑅). This
implies that �̄� = 0̄ or �̄�𝑚 = 1̄ in 𝑅/𝐽(𝑅). Thus 𝑅/𝐽(𝑅) is potent. In light of
Lemma 2.3, 𝑅 is uniquely 𝜋-clean. �

3. Factors of Prime Ideals

The aim of this section is to characterize uniquely 𝜋-clean rings by means of
prime ideals containing the Jacobson radicals. We use 𝐽- spec(𝑅) to denote the
set {𝑃 ∈ Spec(𝑅) | 𝐽(𝑅) ⊆ 𝑃}. Obviously, every maximal ideal is contained in
𝐽- spec(𝑅). Set

𝐽*(𝑅) =
⋂︁

{𝑃 | 𝑃 is a maximal ideal of 𝑅}.

We will see that 𝐽(𝑅) ⊆ 𝐽*(𝑅). In general, they are not the same. For instance,
𝐽(𝑅) = 0 and 𝐽*(𝑅) = {𝑥 ∈ 𝑅 | dim𝐹 (𝑥𝑉 ) < ∞}, where 𝑅 = End𝐹 (𝑉 ) and 𝑉 is
an infinite-dimensional vector space over a field 𝐹 . Furthermore, we characterize
a uniquely 𝜋-clean ring 𝑅 by means of the radical-like ideal 𝐽*(𝑅). A ring 𝑅 is
strongly 𝜋-regular if, for any 𝑎 ∈ 𝑅 there exists 𝑛 ∈ N such that 𝑎𝑛 ∈ 𝑎𝑛+1𝑅. We
have

Lemma 3.1. [7, Corollary 2.8] Let 𝑅 be a commutative ring. Then the following
statements are equivalent:

(1) 𝑅 is strongly 𝜋-regular.
(2) 𝑅 is an exchange ring in which every prime ideal of 𝑅 is maximal.

Lemma 3.2. Let 𝑅 be an Abelian exchange ring, and let 𝑥 ∈ 𝑅. Then 𝑅𝑥𝑅 = 𝑅
if and only if 𝑥 ∈ 𝑈(𝑅).

Proof. If 𝑥 ∈ 𝑈(𝑅), then 𝑅𝑥𝑅 = 𝑅. Conversely, assume that 𝑅𝑥𝑅 = 𝑅. As
in the proof of [4, Proposition 17.1.9], there exists an idempotent 𝑒 ∈ 𝑅 such that
𝑒 ∈ 𝑥𝑅 such that 𝑅𝑒𝑅 = 𝑅. This implies that 𝑒 = 1. Write 𝑥𝑦 = 1. Then 𝑦𝑥 =
𝑦(𝑥𝑦)𝑥 = (𝑦𝑥)2. Hence, 𝑦𝑥 = 𝑦(𝑦𝑥)𝑥. Therefore 1 = 𝑥(𝑦𝑥)𝑦 = 𝑥𝑦(𝑦𝑥)𝑥𝑦 = 𝑦𝑥,
and so 𝑥 ∈ 𝑈(𝑅). This completes the proof. �
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Herstein’s theorem says that a ring 𝑅 is periodic if and only if for any 𝑎 ∈ 𝑅,
there exists 𝑛 ∈ N such that 𝑎𝑛 = 𝑎𝑛+1𝑓(𝑎) for some 𝑓(𝑡) ∈ Z[𝑡]. We recall that
a ring 𝑅 is torsion, provided that for any nonzero 𝑎 ∈ 𝑅 there exists 𝑚 ∈ N such
that 𝑎𝑚 = 1. With this information we now derive

Theorem 3.1. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) 𝑅 is Abelian;
(2) Every idempotent lifts modulo 𝐽(𝑅);
(3) 𝑅/𝑃 is torsion for all 𝑃 ∈ 𝐽- spec(𝑅).

Proof. Suppose 𝑅 is uniquely 𝜋-clean. In view of Lemmas 2.1 and 2.3, 𝑅
is an Abelian exchange ring, and 𝑅/𝐽(𝑅) is potent. Let 𝑃 ∈ 𝐽- spec(𝑅). Then
𝑅/𝐽(𝑅)/𝑃/𝐽(𝑅) ∼= 𝑅/𝑃 is prime; hence, 𝑃/𝐽(𝑅) is a prime ideal of 𝑅/𝐽(𝑅). As
every potent ring is commutative, 𝑅/𝐽(𝑅) is a commutative 𝜋-regular ring. It
follows from Lemma 3.1 that 𝑃/𝐽(𝑅) is a maximal ideal of 𝑅/𝐽(𝑅). We infer that
𝑃 is a maximal ideal of 𝑅.

Clearly, 𝑅 := 𝑅/𝑃 is an Abelian exchange ring. Since 𝑃 is maximal, 𝑅/𝑃 is
simple. For any 0 ̸= 𝑥 ∈ 𝑅, we have 𝑅𝑥𝑅 = 𝑅. By Lemma 3.2, 𝑥 ∈ 𝑈(𝑅/𝑃 ).
Hence, 𝑅/𝑃 is a division ring. On the other hand, 𝑅/𝑃 ∼= 𝑅/𝐽(𝑅)/𝑃/𝐽(𝑅) is
potent. Thus, we have some 𝑚 ∈ N such that 𝑥𝑚+1 = 𝑥, and so 𝑥𝑚 = 1. This
implies that 𝑅/𝑃 is torsion, as required.

Conversely, assume that (1)–(3) hold. Assume that 𝑅 is not uniquely 𝜋-clean.
Set 𝑆 = 𝑅/𝐽(𝑅). In view of Theorem 2.3, 𝑆 is not periodic. By using Herstein’s
theorem, there exists some 𝑎 ∈ 𝑆 such that 𝑎𝑚 ̸= 𝑎𝑚+1𝑓(𝑎) for any 𝑚 ∈ N and
any 𝑓(𝑥) ∈ Z[𝑥]. Let Ω = {𝐼 C 𝑆 | �̄�𝑚 ̸= �̄�𝑚+1𝑓(�̄�) in 𝑆/𝐼 for any 𝑚 ∈ N and any
𝑓(𝑥) ∈ Z[𝑥]}. Then Ω is an nonempty inductive. By using Zorn’s lemma, there
exists an ideal 𝑄 of 𝑆 which is maximal in Ω. If 𝑄 is not prime, then there exist
two ideals 𝐾 and 𝐿 of 𝑅 such that 𝐾, 𝐿 * 𝑄 and 𝐾𝐿 ⊆ 𝑄. By the maximality of
𝑄, we can find some 𝑠, 𝑡 ∈ N and some 𝑓(𝑥), 𝑔(𝑥) ∈ Z[𝑥] such that �̄�𝑠 = �̄�𝑠+1𝑓(�̄�)
in 𝑅/

(︀
𝐾 + 𝑄

)︀
and �̄�𝑡 = �̄�𝑡+1𝑔(�̄�) in 𝑅/

(︀
𝐿 + 𝑄

)︀
. Thus, 𝑎𝑠 − 𝑎𝑠+1𝑓(𝑎) ∈ 𝐾 + 𝑄 and

𝑎𝑡 − 𝑎𝑡+1𝑔(𝑎) ∈ 𝐿 + 𝑄, and so
(︀
𝑎𝑠 − 𝑎𝑠+1𝑓(𝑎)

)︀(︀
𝑎𝑡 − 𝑎𝑡+1𝑔(𝑎)

)︀
∈ (𝐾 + 𝑄)(𝐿 + 𝑄) ⊆

𝐾𝐿 + 𝑄 ⊆ 𝑄. In 𝑆/𝑄, we have �̄�𝑠+𝑡 = �̄�𝑠+𝑡+1ℎ(�̄�) for some ℎ(𝑥) ∈ Z[𝑥]. This
contradicts the choice of 𝑄. Hence, 𝑄 ∈ 𝐽- spec(𝑅). By hypothesis, 𝑅/𝑄 is torsion,
and so 𝑅/𝑄 is periodic, which is impossible. Therefore 𝑅 is uniquely 𝜋-clean. �

Corollary 3.1. A ring 𝑅 is uniquely clean if and only if
(1) 𝑅 is uniquely 𝜋-clean.
(2) 𝑅/𝑀 ∼= Z2 for all maximal ideals 𝑀 of 𝑅.

Proof. Suppose 𝑅 is uniquely clean. Then 𝑅 is uniquely 𝜋-clean. (2) is proved
by [3, Theorem 2.1].

Conversely, assume that (1) and (2) hold. For all maximal ideals 𝑀 of 𝑅,
1𝑅/𝑀 is not the sum of two units in 𝑅/𝑀 . In view of Lemma 2.1, 𝑅 is an Abelian
exchange ring, and so it is clean. Let 𝑥 ∈ 𝑅. Write 𝑥 = 𝑒1 + 𝑢1 = 𝑒2 + 𝑢2,
𝑒1 = 𝑒2

1, 𝑒2 = 𝑒2
2 and 𝑢1, 𝑢2 ∈ 𝑈(𝑅). If 𝑅

(︀
1 − 𝑒2(1 − 𝑒1)

)︀
𝑅 ̸= 𝑅, then there

exists a maximal ideal 𝑀 of 𝑅 such that 𝑅
(︀
1 − 𝑒2(1 − 𝑒1)

)︀
𝑅 ⊆ 𝑀 . Clearly,



THE POWER OF ELEMENT IS THE SUM OF AN IDEMPOTENT AND A UNIT 141

𝐽(𝑅) ⊆ 𝑀 . Hence, �̄� = 𝑒1 + 𝑢1 = 𝑒2 + 𝑢2 in 𝑅/𝑀 . By Theorem 3.1, 𝑅/𝑀 is a
division ring. This implies that 𝑒𝑖 are 0̄ or 1̄. If 𝑒1 ̸= 𝑒2, then 1𝑅/𝑀 is the sum
of two units, a contradiction. Therefore we get 𝑒1 − 𝑒2 ∈ 𝑀 . This implies that
𝑒2(1 − 𝑒1) = (𝑒1 − 𝑒2)(𝑒1 − 1) ∈ 𝑀 , and so 1 = 𝑒2(1 − 𝑒1) +

(︀
1 − 𝑒2(1 − 𝑒1)

)︀
∈ 𝑀 ,

a contradiction. As a result, 𝑅
(︀
1 − 𝑒2(1 − 𝑒1)

)︀
𝑅 = 𝑅. As 𝑒2(1 − 𝑒1) ∈ 𝑅 is

an idempotent, we get 𝑒2(1 − 𝑒1) = 0, and so 𝑒2 = 𝑒2𝑒1. Likewise, 𝑒1 = 𝑒1𝑒2.
Consequently, 𝑒1 = 𝑒2, and then 𝑢1 = 𝑢2. Therefore 𝑅 is uniquely clean. �

Let 𝑆(𝑅) be the nonempty set of all ideals of a ring 𝑅 generated by central
idempotents. By Zorn’s lemma, 𝑆(𝑅) contains maximal elements. As usually, we
say that 𝑅/𝑃 is a Pierce stalk if 𝑃 is a maximal element of the set 𝑆(𝑅), and that
𝑃 is a Pierce ideal. Let Pier(𝑅) be the set of all Pierce ideals of 𝑅.

Proposition 3.1. Every uniquely 𝜋-clean ring is the subdirect product of rings
𝑅𝑖, where each 𝑅𝑖/𝐽(𝑅𝑖) is torsion.

Proof. Let 𝑅 be a uniquely 𝜋-clean ring. [9, Remark 11.2] says that the inter-
section of all Pierce ideals of 𝑅 is zero, i.e.,

⋂︀
{ 𝑃 | 𝑃 ∈ Pier(𝑅)} = 0. Let 𝜙𝑃 : 𝑅 →

𝑅/𝑃 be the natural epimorphism. Then
⋂︀

𝑃 ∈Pier(𝑅) ker 𝜙𝑃 =
⋂︀

𝑃 ∈Pier(𝑅) 𝑃 = 0.
Hence, 𝑅 is the subdirect product of all 𝑅/𝑃 , where 𝑃 ∈ Pier(𝑅). In view of
Lemma 2.1, 𝑅 is an Abelian exchange ring. Let 𝑃 ∈ Pier(𝑅). Then 𝑅/𝑃 is an
exchange ring. As 𝑅 is indecomposable, we see that 𝑅/𝑃 is a local ring. By an
argument in [6], 𝑅/𝑃 is uniquely 𝜋-clean, and so 𝑅/𝑃/𝐽(𝑅/𝑃 ) is potent from
Lemma 2.3, as needed. �

Lemma 3.3. Let 𝑅 be an Abelian exchange ring. Then 𝐽*(𝑅) = 𝐽(𝑅).

Proof. Let 𝑀 be a maximal ideal of 𝑅. If 𝐽(𝑅) * 𝑀 , then 𝐽(𝑅) + 𝑀 = 𝑅.
Write 𝑥 + 𝑦 = 1 with 𝑥 ∈ 𝐽(𝑅), 𝑦 ∈ 𝑀 . Then 𝑦 = 1 − 𝑥 ∈ 𝑈(𝑅), an absurd.
Hence, 𝐽(𝑅) ⊆ 𝑀 . This implies that 𝐽(𝑅) ⊆ 𝐽*(𝑅). Let 𝑥 ∈ 𝐽*(𝑅), and let
𝑟 ∈ 𝑅. If 𝑅(1 − 𝑥𝑟)𝑅 ̸= 𝑅, then we can find a maximal ideal 𝑀 of 𝑅 such that
𝑅(1 − 𝑥𝑟)𝑅 ⊆ 𝑀 , and so 1 − 𝑥𝑟 ∈ 𝑀 . It follows that 1 = 𝑥𝑟 + (1 − 𝑥𝑟) ∈ 𝑀 , which
is imposable. Therefore 𝑅(1 − 𝑥𝑟)𝑅 = 𝑅. In light of Lemma 3.2, 1 − 𝑥𝑟 ∈ 𝑈(𝑅),
and then 𝑥 ∈ 𝐽(𝑅). This completes the proof. �

Theorem 3.2. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) 𝑅 is an exchange ring;
(2) 𝑅/𝐽*(𝑅) is potent and every idempotent uniquely lifts modulo 𝐽*(𝑅).

Proof. Suppose 𝑅 is uniquely 𝜋-clean. Then 𝑅 is an Abelian exchange ring
by Lemma 2.1. In view of Lemma 3.3, 𝐽*(𝑅) = 𝐽(𝑅). It follows from Lemma 2.3
that 𝑅/𝐽*(𝑅) is potent. Let 𝑒−𝑒2 ∈ 𝐽(𝑅). Then we can find an idempotent 𝑓 ∈ 𝑅
such that 𝑒 − 𝑓 ∈ 𝐽(𝑅). Since (𝑒 − 𝑓)2(︀

1 − (𝑒 − 𝑓)
)︀

= 0, we get 𝑒 = 𝑓 , as desired.
Conversely, assume that (1) and (2) hold. Let 𝑒 ∈ 𝑅 be an idempotent, and let

𝑟 ∈ 𝑅. Then 𝑒𝑟(1 − 𝑒) ∈ 𝑅/𝐽*(𝑅) is potent. This implies that 𝑒𝑟(1 − 𝑒) = 0̄, and
so 𝑒𝑟(1 − 𝑒) ∈ 𝐽*(𝑅). Since 𝑒 − 𝑒, 𝑒 −

(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
∈ 𝐽*(𝑅), by the uniqueness,

we get 𝑒 = 𝑒 + 𝑒𝑟(1 − 𝑒), and so 𝑒𝑟 = 𝑒𝑟𝑒. Likewise, 𝑟𝑒 = 𝑒𝑟𝑒; hence that 𝑒𝑟 = 𝑟𝑒.
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Thus, 𝑅 is Abelian. In light of Lemma 3.3, 𝐽*(𝑅) = 𝐽(𝑅). Therefore we complete
the proof, in terms of Lemma 2.3. �

Corollary 3.2. Let 𝑅 be a ring which has finitely many maximal ideals. Then
𝑅 is uniquely 𝜋-clean if and only if

(1) 𝑅 is an exchange ring;
(2) 𝑅/𝐽*(𝑅) is the direct sum of finitely many torsion rings and every idem-

potent uniquely lifts modulo 𝐽*(𝑅).

Proof. ⇒: Clearly, 𝑅 is an exchange ring. Let 𝑀 be a maximal ideal of 𝑅. As
in the proof of Lemma 3.3, we see that 𝐽(𝑅) ⊆ 𝑀 . This shows that 𝑀 ∈ 𝐽- spec(𝑅).
Therefore 𝑅/𝑀 is torsion by Theorem 3.1. Since 𝑅 has finitely many maximal ideals
𝑀1, . . . , 𝑀𝑛, we see that 𝑅/𝐽*(𝑅) ∼= 𝑅/𝑀1 ⊕ · · · ⊕ 𝑅/𝑀𝑛. Therefore 𝑅/𝐽*(𝑅) is
the direct sum of finitely many torsion rings, as desired.

⇐: As every torsion ring is potent, we see that 𝑅/𝐽*(𝑅) is potent. Therefore
we complete the proof, by Theorem 3.2. �

Theorem 3.3. Let 𝑅 be a ring. Then 𝑅 is uniquely 𝜋-clean if and only if
(1) For any 𝑎 ∈ 𝑅, there exist an 𝑚 ∈ N and a unique 𝑒 ∈ 𝑅 such that

𝑎𝑚 − 𝑒 ∈ 𝐽*(𝑅).
(2) 𝐽*(𝑅) = {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}.

Proof. One direction is obvious by Lemma 3.3 and Theorem 2.4.
Conversely, assume that (1) and (2) hold. Let 𝑥 ∈ 𝑁(𝑅). Then 𝑥𝑚 − 1 ∈ 𝑈(𝑅)

for all 𝑚 ∈ N. By hypothesis, we have 𝑥 ∈ 𝐽*(𝑅), and so 𝑁(𝑅) ⊆ 𝐽*(𝑅). Let
𝑒 ∈ 𝑅 be an idempotent, and let 𝑟 ∈ 𝑅. Then 𝑒 + 𝑒𝑟(1 − 𝑒) + 0 = 𝑒 + 𝑒𝑟(1 − 𝑒)
with 0, 𝑒𝑟(1 − 𝑒) ∈ 𝐽*(𝑅). By the uniqueness, we get 𝑒𝑟 = 𝑒𝑟𝑒. Similarly, we
have 𝑟𝑒 = 𝑒𝑟𝑒. That is, 𝑒𝑟 = 𝑟𝑒. We infer that 𝑅 is Abelian. For any 𝑎 ∈ 𝑅,
there exist an 𝑚 ∈ N and a unique 𝑒 ∈ 𝑅 such that 𝑤 := 𝑎𝑚 − 𝑒 ∈ 𝐽*(𝑅). Then
𝑎𝑚 = (1 − 𝑒) + (2𝑒 − 1 + 𝑤). But 2𝑒 − 1 + 𝑤 = (1 − 2𝑒)

(︀
(1 − 2𝑒)𝑤 − 1

)︀
∈ 𝑈(𝑅),

by (2). If there exists an idempotent 𝑓 ∈ 𝑅 such that 𝑎𝑚 − 𝑓 ∈ 𝑈(𝑅), then
𝑒−𝑓 = (𝑎𝑚 −𝑓)− (𝑎𝑚 −𝑒) = (𝑎𝑚 −𝑓)

(︀
1− (𝑎𝑚 −𝑓)−1(𝑎𝑚 −𝑒)

)︀
∈ 𝑈(𝑅). It follows

from (𝑒 + 𝑓 − 1)(𝑒 − 𝑓)2 = 0 that 𝑓 = 1 − 𝑒, and we are through. �

Let 𝑃 (𝑅) be the intersection of all prime ideals of 𝑅, i.e., 𝑃 (𝑅) is the prime
radical of 𝑅. As is well known, 𝑃 (𝑅) is the intersection of all minimal prime ideals
of 𝑅.

Corollary 3.3. Let 𝑅 be a uniquely 𝜋-clean in which every prime ideal is
maximal. Then

𝑃 (𝑅) = {𝑥 ∈ 𝑅 | 𝑥𝑚 − 1 ∈ 𝑈(𝑅) for all 𝑚 ∈ N}.

Proof. As every maximal ideal is prime, we deduce that 𝐽*(𝑅) = 𝑃 (𝑅), and
therefore we complete the proof by Theorem 3.3. �
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4. Certain Classes

In this section we investigate certain classes of uniquely 𝜋-clean rings. We now
recall the concept of ideal-extensions. Let 𝑅 be a ring with an identity and 𝑆 be
a ring (not necessary unitary), and let 𝑆 be an 𝑅-𝑅-bimodule in which (𝑠1𝑠2)𝑟 =
𝑠1(𝑠2𝑟), 𝑟(𝑠1𝑠2) = (𝑟𝑠1)𝑠2 and (𝑠1𝑟)𝑠2 = 𝑠1(𝑟𝑠2) for all 𝑠1, 𝑠2 ∈ 𝑆, 𝑟 ∈ 𝑅. The
ideal extension 𝐼(𝑅; 𝑆) is defined to be the additive Abelian group 𝑅 ⊕ 𝑆 with
multiplication (𝑟1, 𝑠1)(𝑟2, 𝑠2) = (𝑟1𝑟2, 𝑠1𝑠2 + 𝑟1𝑠2 + 𝑠1𝑟2) (see [10]). We start this
section by examining when an ideal extension is uniquely 𝜋-clean.

Theorem 4.1. The ideal-extension 𝐼(𝑅; 𝑆) is uniquely 𝜋-clean and 𝑆 is idem-
potent-free if and only if

(1) 𝑅 is uniquely 𝜋-clean;
(2) If 𝑒 = 𝑒2 ∈ 𝑅, then 𝑒𝑠 = 𝑠𝑒 for all 𝑠 ∈ 𝑆;
(3) If 𝑠 ∈ 𝑆, then there exists an 𝑠′ ∈ 𝑆 such that 𝑠𝑠′ = 𝑠′𝑠 and 𝑠+𝑠′+𝑠𝑠′ = 0.

Proof. Assume that (1)–(3) hold. Let 𝑒 ∈ 𝑆 be an idempotent. Then (−𝑒) +
𝑠′ + (−𝑒)𝑠′ = 0 for some 𝑠′ ∈ 𝑆. Hence, (1 − 𝑒)(1 + 𝑠′) = 1, and so 𝑒 = 0. That
is, 𝑆 is idempotent-free. Let (𝑎, 𝑠) ∈ 𝐼(𝑅; 𝑆). Then 𝑎 ∈ 𝑅 is uniquely 𝜋-clean.
Thus, we have some 𝑛 ∈ N such that 𝑎𝑛 ∈ 𝑅 is uniquely clean. Write 𝑎𝑛 = 𝑒 + 𝑢,
𝑒 = 𝑒2 ∈ 𝑅, 𝑢 ∈ 𝑈(𝑅). Hence, (𝑎, 𝑠)𝑛 = (𝑎𝑛, 𝑥) = (𝑒, 0) + (𝑢, 𝑥) for some 𝑥 ∈ 𝑆.
Clearly, (𝑒, 0)2 = (𝑒, 0). As 𝑥 ∈ 𝑆, we see that 𝑢−1𝑥 ∈ 𝑆, and so we have some 𝑡 ∈ 𝑆
such that 𝑢−1𝑥 + 𝑡 + 𝑢−1𝑥𝑡 = 0 and 𝑢−1𝑥𝑡 = 𝑡𝑢−1𝑥. This implies that 1 + 𝑢−1𝑥 =
(1+𝑡)−1 ∈ 𝑈(𝑅). One easily checks that (𝑢, 𝑥)−1 = (𝑢−1, −(1+𝑢−1𝑥)−1𝑢−1𝑥𝑢−1);
hence, (𝑢, 𝑥) ∈ 𝑈

(︀
𝐼(𝑅; 𝑆)

)︀
. Write (𝑎, 𝑠)𝑛 = (𝑓, 𝑦) + (𝑣, 𝑤), (𝑓, 𝑦)2 = (𝑓, 𝑦) and

(𝑣, 𝑤) ∈ 𝑈
(︀
𝐼(𝑅; 𝑆)

)︀
. Then 𝑓 = 𝑓2 ∈ 𝑅, 𝑦 = 0 and 𝑣 ∈ 𝑈(𝑅). Clearly, 𝑎𝑛 = 𝑓 + 𝑣.

Further, 𝑥 = 𝑦 + 𝑤 = 𝑤. This implies that 𝑓 = 𝑒, 𝑣 = 𝑢, and so (𝑓, 𝑦) = (𝑒, 0),
(𝑣, 𝑤) = (𝑢, 𝑥). As a result, (𝑎, 𝑠) ∈ 𝐼(𝑅; 𝑆) is uniquely 𝜋-clean, and so 𝐼(𝑅; 𝑆) is
uniquely 𝜋-clean.

Assume that 𝐼(𝑅; 𝑆) is uniquely 𝜋-clean and 𝑆 is idempotent-free. Then 𝑅
is uniquely 𝜋-clean. Let 𝑒 = 𝑒2 ∈ 𝑅 and 𝑠 ∈ 𝑆. In view of Lemma 2.1, (𝑒, 0) =
(𝑒, 0)2 ∈ 𝐼(𝑅; 𝑆) is central. Hence, (𝑒, 0)(0, 𝑠) = (0, 𝑠)(𝑒, 0), and so 𝑒𝑠 = 𝑠𝑒. For
any 𝑠 ∈ 𝑆, there exists some 𝑛 ∈ N such that (1, 𝑠)𝑛 ∈ 𝐼(𝑅; 𝑆) is uniquely clean.
Write (1, 𝑠)𝑛 = (1, 𝑥) = (𝑓, 𝑦)+(𝑢, 𝑣) where 𝑥 ∈ 𝑆, (𝑓, 𝑦) ∈ 𝐼(𝑅; 𝑆) is an idempotent
and (𝑢, 𝑣) ∈ 𝐼(𝑅; 𝑆) is a unit. Clearly, 𝑓 = 0, and so 𝑦 = 0. This implies that
𝑥 = 𝑦 + 𝑣 = 𝑣; hence, (1, 𝑥) ∈ 𝐼(𝑅; 𝑆) is a unit. Further, (1, 𝑠) ∈ 𝐼(𝑅; 𝑆) is a unit.
Write (1, 𝑠)−1 = (1, 𝑠′) for a 𝑠′ ∈ 𝑆. Then 𝑠𝑠′ = 𝑠′𝑠 and 𝑠 + 𝑠′ + 𝑠𝑠′ = 0, hence the
result. �

Corollary 4.1. Let 𝑅 be uniquely 𝜋-clean. Then 𝑆 = {(𝑎𝑖𝑗) ∈ 𝑇𝑛(𝑅) | 𝑎11 =
· · · = 𝑎𝑛𝑛} is uniquely 𝜋-clean.

Proof. Let 𝑇 = {(𝑎𝑖𝑗) ∈ 𝑇𝑛(𝑅) | 𝑎11 = · · · = 𝑎𝑛𝑛 = 0}. Then 𝑆 ∼= 𝐼(𝑅; 𝑇 ).
Then the result follows by Theorem 4.1. �

A ring 𝑅 is called potently 𝐽-clean if for any 𝑎 ∈ 𝑅 there exists a potent 𝑝 ∈ 𝑅
such that 𝑎 − 𝑝 ∈ 𝐽(𝑅). We shall show that such rings form a subclass of uniquely
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𝜋-clean rings. A ring 𝑅 is an exchange ring if and only if 𝑅/𝐽(𝑅) is an exchange
ring, and every idempotent lifts modulo 𝐽(𝑅). We have

Lemma 4.1. Every potently 𝐽-clean ring is an exchange ring.

Proof. Let 𝑅 be a potently 𝐽-clean ring. Then 𝑅/𝐽(𝑅) is potent, and so it
is an exchange ring. Let 𝑒 ∈ 𝑅/𝐽(𝑅) be an idempotent. Then we have a potent
𝑝 ∈ 𝑅 such that 𝑤 := 𝑒 − 𝑝 ∈ 𝐽(𝑅). Write 𝑝 = 𝑝𝑛 for some 𝑛 > 2. Then 𝑝𝑛−1 ∈ 𝑅
is an idempotent. Moreover, 𝑒 = 𝑝 + 𝑤, and so 𝑒𝑛−1 = 𝑝𝑛−1 + 𝑣 for some 𝑣 ∈ 𝐽(𝑅).
But 𝑒 − 𝑒𝑛−1 ∈ 𝐽(𝑅). Hence, 𝑒 − 𝑝𝑛−1 =

(︀
𝑒 − 𝑒𝑛−1)︀

+
(︀
𝑒𝑛−1 − 𝑝𝑛−1)︀

∈ 𝐽(𝑅). So
idempotents can be lifted modulo 𝐽(𝑅). Therefore 𝑅 is an exchange ring. �

Theorem 4.2. Every Abelian potently 𝐽-clean ring is uniquely 𝜋-clean.

Proof. Let 𝑅 be an Abelian potently 𝐽-clean ring. Then 𝑅 is an exchange
ring by Lemma 4.1. Thus, every idempotent in 𝑅 lifts modulo 𝐽(𝑅). For any
𝑎 ∈ 𝑅, there exists a potent 𝑝 ∈ 𝑅 such that 𝑎 − 𝑝 ∈ 𝐽(𝑅). This implies that
�̄� ∈ 𝑅/𝐽(𝑅) is potent, and so 𝑅/𝐽(𝑅) is potent. According to Lemma 2.3, 𝑅 is
uniquely 𝜋-clean. �

Corollary 4.2. Let 𝑅 be Abelian. If for any sequence of elements {𝑎𝑖} ⊆ 𝑅
there exists a 𝑘 ∈ N and 𝑛1, · · · , 𝑛𝑘 > 2 such that (𝑎1 − 𝑎𝑛1

1 ) · · · (𝑎𝑘 − 𝑎𝑛𝑘

𝑘 ) = 0,
then 𝑅 is uniquely 𝜋-clean.

Proof. For any 𝑎 ∈ 𝑅, we have a 𝑘 ∈ N and 𝑛1, · · · , 𝑛𝑘 > 2 such that
(𝑎 − 𝑎𝑛1) · · · (𝑎 − 𝑎𝑛𝑘 ) = 0. This implies that 𝑎𝑘 = 𝑎𝑘+1𝑓(𝑎) for some 𝑓(𝑡) ∈ Z[𝑡].
By Herstein’s theorem, 𝑅 is periodic. Therefore every element in 𝑅 is the sum of
a potent element and a nilpotent element.

Clearly, 𝑅/𝐽(𝑅) is isomorphic to a subdirect product of some primitive rings 𝑅𝑖.
Case 1. There exists a subring 𝑆𝑖 of 𝑅𝑖 which admits an epimorphism 𝜑𝑖 :

𝑆𝑖 → 𝑀2(𝐷𝑖) where 𝐷𝑖 is a division ring.
Case 2. 𝑅𝑖

∼= 𝑀𝑚𝑖(𝐷𝑖) for a division ring 𝐷𝑖. Clearly, the hypothesis is inher-
ited by all subrings, all homomorphic images and all corners of 𝑅, we claim that,
for any sequence of elements {𝑎𝑖} ⊆ 𝑀2(𝐷𝑖) there exists 𝑠 ∈ N and 𝑚1, . . . , 𝑚𝑠 > 2
such that (𝑎1 − 𝑎𝑚1

1 ) · · · (𝑎𝑠 − 𝑎𝑚𝑠
𝑠 ) = 0. Choose 𝑎𝑖 = 𝑒12 if 𝑖 is odd and 𝑎𝑖 = 𝑒21 if 𝑖

is even. Then (𝑎1 −𝑎𝑚1
1 )(𝑎2 −𝑎𝑚2

2 ) · · · (𝑎𝑠 −𝑎𝑚𝑠
𝑠 ) = 𝑎1𝑎2 · · · 𝑎𝑠 ̸= 0, a contradiction.

This forces 𝑚𝑖 = 1 for all 𝑖. We infer that each 𝑅𝑖 is reduced, and then so is 𝑅/𝐽(𝑅).
If 𝑎 ∈ 𝑁(𝑅), we have some 𝑛 ∈ N such that 𝑎𝑛 = 0, and thus �̄�𝑛 = 0 is 𝑅/𝐽(𝑅).
Hence, �̄� ∈ 𝐽

(︀
𝑅/𝐽(𝑅)

)︀
= 0. This implies that 𝑎 ∈ 𝐽(𝑅), and so 𝑁(𝑅) ⊆ 𝐽(𝑅).

Therefore 𝑅 is potently 𝐽-clean, hence the result by Theorem 4.2. �

5. Uniquely 𝜋-nil Clean Rings

In this section, we explore uniquely 𝜋-nil-clean rings, and completely determine
when a ring is uniquely 𝜋-nil-clean ring.

Lemma 5.1. Let 𝑅 be a ring. Then the following statements are equivalent:
(1) 𝑅 is uniquely 𝜋-nil-clean.
(2) 𝑅 is an Abelian periodic ring.
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Proof. (1) ⇒ (2). Let 𝑒 ∈ 𝑅 be an idempotent and 𝑟 ∈ 𝑅. Choose 𝑎 =
𝑒 + 𝑒𝑟(1 − 𝑒). Then we can find some 𝑚 ∈ N such that 𝑎𝑚 ∈ 𝑅 is uniquely nil
clean. As 𝑎 = 𝑎𝑚 = 𝑒 + 𝑒𝑟(1 − 𝑒) =

(︀
𝑒 + 𝑒𝑟(1 − 𝑒)

)︀
+ 0, by the uniqueness, we get

𝑒𝑟(1 − 𝑒) = 0, and so 𝑒𝑟 = 𝑒𝑟𝑒. Likewise, 𝑟𝑒 = 𝑒𝑟𝑒, and so 𝑒𝑟 = 𝑟𝑒. Therefore 𝑅
is Abelian. Let 𝑎 ∈ 𝑅. Then there exists some 𝑛 ∈ N such that 𝑎𝑛 = 𝑓 + 𝑢, where
𝑓 = 𝑓2 ∈ 𝑅 and 𝑢 ∈ 𝑁(𝑅). Hence, 𝑎2𝑛 = 𝑓 + 𝑣 for a 𝑣 ∈ 𝑁(𝑅) and 𝑢𝑣 = 𝑣𝑢.
This shows that 𝑎𝑛 − 𝑎2𝑛 = 𝑢 − 𝑣 ∈ 𝑁(𝑅). Thus, we have a 𝑘 ∈ N such that
𝑎𝑛𝑘 = 𝑎𝑛𝑘+1𝑓(𝑎) for some 𝑓(𝑡) ∈ Z[𝑡]. In light of Herstein’s theorem, 𝑅 is periodic.

(2) ⇒ (1) Let 𝑎 ∈ 𝑅. Since 𝑅 is periodic, there exists some 𝑚 ∈ N such that
𝑎𝑚 ∈ 𝑅 is an idempotent. Write 𝑎𝑚 = 𝑒 + 𝑤 where 𝑒 = 𝑒2 ∈ 𝑅 and 𝑤 ∈ 𝑁(𝑅).
Then 𝑎𝑚 − 𝑒 = 𝑤 ∈ 𝑁(𝑅). As 𝑅 is Abelian, we see that

(︀
𝑎𝑚 − 𝑒

)︀3 = 𝑎𝑚 − 𝑒. Thus,(︀
𝑎𝑚 − 𝑒

)︀(︀
1 − (𝑎𝑚 − 𝑒)2)︀

= 1, and so 𝑎𝑚 = 𝑒, as required. �

As every finite ring is periodic, it follows from Lemma 5.1 that every finite
commutative ring is uniquely 𝜋-nil-clean, e.g., Z𝑛[𝛼] = {𝑎 + 𝑏𝛼 | 𝑎, 𝑏 ∈ Z𝑛, 𝛼 =
− 1

2 +
√

3
2 𝑖, 𝑖2 = −1}.

The above observation leads us to the following result alluded to earlier.

Theorem 5.1. Let 𝑅 be a ring. Then the following are equivalent:
(1) 𝑅 is uniquely 𝜋-nil-clean.
(2) 𝑅 is uniquely 𝜋-clean and 𝐽(𝑅) is nil.
(3) For any 𝑎 ∈ 𝑅, there exist some 𝑚 ∈ N and a unique idempotent 𝑒 ∈ 𝑅

such that 𝑎𝑚 − 𝑒 ∈ 𝑃 (𝑅).

Proof. (1) ⇒ (3). By virtue of Lemma 5.1, 𝑅 is an Abelian periodic ring.
In view of [2, Theorem 2], 𝑁(𝑅) forms an ideal of 𝑅, and so 𝑁(𝑅) = 𝑃 (𝑅). For
any 𝑎 ∈ 𝑅, there exists some 𝑚 ∈ N such that 𝑎𝑚 is uniquely nil clean. Write
𝑎𝑚 = 𝑒 + 𝑤 with 𝑒 = 𝑒2 and 𝑤 ∈ 𝑁(𝑅). Therefore 𝑎𝑚 − 𝑒 ∈ 𝑃 (𝑅), as required.

(3) ⇒ (2). Let 𝑒 ∈ 𝑅 be an idempotent, and let 𝑟 ∈ 𝑅. Then we have
an idempotent 𝑓 ∈ 𝑅 such that 𝑒𝑟(1 − 𝑒) = 𝑓 + 𝑤 for a 𝑤 ∈ 𝑃 (𝑅). Hence,
1 − 𝑓 = 1 − 𝑒𝑟(1 − 𝑒) + 𝑤 =

(︀
1 − 𝑒𝑟(1 − 𝑒)

)︀(︀
1 + (1 + 𝑒𝑟(1 − 𝑒))𝑤

)︀
∈ 𝑈(𝑅). We

infer that 𝑓 = 0, and so 𝑒𝑟(1 − 𝑒) = 𝑤 ∈ 𝑃 (𝑅). But we have a unique expression
𝑒 + 𝑒𝑟(1 − 𝑒) = 𝑒 + 𝑒𝑟(1 − 𝑒) + 0 where 𝑒𝑟(1 − 𝑒), 0 ∈ 𝑃 (𝑅). By the uniqueness, we
get 𝑒 = 𝑒 + 𝑒𝑟(1 − 𝑒), and so 𝑒𝑟 = 𝑒𝑟𝑒. Similarly, 𝑟𝑒 = 𝑒𝑟𝑒. Therefore 𝑒𝑟 = 𝑟𝑒, i.e.,
𝑅 is Abelian.

Let 𝑥 ∈ 𝐽(𝑅). Write 𝑥 = ℎ + 𝑣 with ℎ = ℎ2 ∈ 𝑅, 𝑣 ∈ 𝑃 (𝑅). Then ℎ = 𝑥 − 𝑣 ∈
𝐽(𝑅); hence that ℎ = 0. It follows that 𝐽(𝑅) = 𝑃 (𝑅). Accordingly, for any 𝑎 ∈ 𝑅,
there exist some 𝑚 ∈ N and a unique idempotent 𝑒 ∈ 𝑅 such that 𝑎𝑚 − 𝑒 ∈ 𝐽(𝑅).

If 𝑥 ∈ 𝑁(𝑅), then we have an idempotent 𝑔 ∈ 𝑅 and a 𝑢 ∈ 𝑃 (𝑅) such that
𝑥 = 𝑔 + 𝑢, and so 𝑔 = 𝑥 − 𝑢. As 𝑅 is Abelian, we see that 𝑥𝑢 = 𝑢𝑥, and then
𝑔 ∈ 𝑁(𝑅). This shows that 𝑔 = 0. Consequently, 𝑥 = 𝑢 ∈ 𝑃 (𝑅) ⊆ 𝐽(𝑅). We infer
that 𝑁(𝑅) ⊆ 𝐽(𝑅). In light of Corollary 2.4, 𝑅 is uniquely 𝜋-clean, as desired.

(2) ⇒ (1). In view of Lemma 2.1, 𝑅 is Abelian. In view of Lemma 2.3, 𝑅/𝐽(𝑅)
is potent. Let 𝑎 ∈ 𝑅. Then �̄� = 𝑎𝑚(𝑚 > 2), and so 𝑎 − 𝑎𝑚 ∈ 𝐽(𝑅). As 𝐽(𝑅) is
nil, every idempotent lifts modulo 𝐽(𝑅). Hence, we can find some 𝑛 ∈ N such that
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(𝑎 − 𝑎𝑚)𝑛 = 0, and so 𝑎𝑛 = 𝑎𝑛+1𝑓(𝑎) for some 𝑓(𝑡) ∈ Z[𝑡]. In terms of Herstein’s
theorem, 𝑅 is periodic. This completes the proof, by Lemma 5.1. �

Corollary 5.1. Let 𝑅 be a ring. Then the following statements are equivalent:
(1) 𝑅 is uniquely 𝜋-nil-clean.
(2) 𝑅/𝐽(𝑅) is potent, 𝑅 is Abelian and 𝐽(𝑅) is nil.
(3) For any 𝑎 ∈ 𝑅, there exists some 𝑚 ∈ N and a central idempotent 𝑒 ∈ 𝑅

such that 𝑎𝑚 − 𝑒 ∈ 𝑃 (𝑅).

Proof. (1) ⇔ (2) is proved by Theorem 5.1 and Lemma 2.3.
(1) ⇒ (3) This is obvious, in view of Lemma 5.1 and Theorem 5.1.
(3) ⇒ (1). For any 𝑎 ∈ 𝑅, there exist some 𝑚 ∈ N and a central idempotent

𝑒 ∈ 𝑅 such that 𝑎𝑚 − 𝑒 ∈ 𝑃 (𝑅). Write 𝑎𝑚 − 𝑓 ∈ 𝑃 (𝑅) for an idempotent 𝑓 ∈ 𝑅.
Then 𝑒 − 𝑓 = (𝑎𝑚 − 𝑓) − (𝑎𝑚 − 𝑒) ∈ 𝑃 (𝑅). As (𝑒 − 𝑓)3 = 𝑒 − 𝑓 , we conclude that
𝑒 = 𝑓 , and we are through by Theorem 5.1. �

Let 𝑛 > 2 be a fixed integer. Following Yaqub [8], a ring 𝑅 is said to be
generalized 𝑛-like provided that for any 𝑎, 𝑏 ∈ 𝑅, (𝑎𝑏)𝑛 − 𝑎𝑏𝑛 − 𝑎𝑛𝑏 + 𝑎𝑏 = 0.

Proposition 5.1. Every generalized 𝑛-like ring is uniquely 𝜋-nil-clean.

Proof. Let 𝑎 ∈ 𝑅. Then 𝑎2𝑛 − 2𝑎𝑛+1 + 𝑎2 = 0, and so (𝑎 − 𝑎𝑛)2 = 0. Thus,
𝑎 − 𝑎𝑛 ∈ 𝑁(𝑅). Hence, 𝑎𝑚 = 𝑎𝑚+1𝑓(𝑎) for some 𝑓(𝑡) ∈ Z[𝑡]. Accordingly, 𝑅 is
periodic by Herstein’s theorem.

Let 𝑒, 𝑓 ∈ 𝑅. Since 𝑅 is a generalized 𝑛-like ring, we have(︀
(1 − 𝑒)𝑓

)︀𝑛
𝑒 =

(︀
(1 − 𝑒)𝑓𝑒

)︀𝑛 − (1 − 𝑒)𝑓𝑒 + (1 − 𝑒)𝑓𝑒 = 0;(︀
(1 − 𝑒)𝑓

)︀𝑛 = (1 − 𝑒)𝑓 + (1 − 𝑒)𝑓 − (1 − 𝑒)𝑓 = (1 − 𝑒)𝑓.

Reiterating in the last, we get (1−𝑒)𝑓 =
(︀
(1−𝑒)𝑓

)︀2𝑛, and so (1−𝑒)𝑓𝑒 = 0. Hence,
𝑓𝑒 = 𝑒𝑓𝑒. Likewise, 𝑒𝑓 = 𝑒𝑓𝑒. Therefore 𝑒𝑓 = 𝑓𝑒. We infer that 𝑅 is Abelian.
Therefore we conclude that 𝑅 is uniquely 𝜋-nil-clean, in terms of Lemma 5.1. �

Let 𝑅 =
{︁(︁ 𝑥 𝑦 𝑧

0 𝑥2 0
0 0 𝑥

)︁
| 𝑥, 𝑦, 𝑧 ∈ 𝐺𝐹 (4)

}︁
. It is easy to check that for each 𝑎 ∈ 𝑅,

𝑎7 = 𝑎 or 𝑎7 = 𝑎2 = 0. Therefore 𝑅 is a generalized 7-like ring. By Proposition 5.1,
𝑅 is uniquely 𝜋-clean which is a noncommutative periodic ring.

An element 𝑎 ∈ 𝑅 is uniquely weakly nil-clean provided that 𝑎 or −𝑎 is uniquely
nil-clean. A ring 𝑅 is uniquely weakly nil-clean ring provided that every element
in 𝑅 is uniquely weakly nil-clean [5].

Lemma 5.2. Every uniquely weakly nil-clean ring is uniquely 𝜋-nil-clean.

Proof. Let 𝑅 be a uniquely weakly nil-clean ring. In view of [5, Theorem 12],
𝑅 is Abelian. Let 𝑎 ∈ 𝑅. Then there exists an idempotent 𝑒 ∈ 𝑅 such that
𝑎 − 𝑒 ∈ 𝑁(𝑅) or −𝑎 − 𝑒 ∈ 𝑁(𝑅). If 𝑎 − 𝑒 ∈ 𝑁(𝑅), then 𝑎 − 𝑎2 ∈ 𝑁(𝑅). If
−𝑎 − 𝑒 ∈ 𝑁(𝑅), then 𝑎 + 𝑎2 ∈ 𝑁(𝑅). In any case, 𝑎𝑛 = 𝑎𝑛+1𝑓(𝑎) for some
𝑓(𝑡) ∈ Z[𝑡]. In view of Herstein’s theorem, 𝑅 is periodic. Therefore 𝑅 is uniquely
𝜋-nil-clean, in terms of Lemma 5.1. �
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[5, Theorem 12] says that a ring 𝑅 is a uniquely weakly nil-clean ring if and
only if 𝑅 is Abelian, 𝐽(𝑅) is nil and 𝑅/𝐽(𝑅) is a Boolean ring, Z3 or the product
of two such rings. We have

Theorem 5.2. A ring 𝑅 is a uniquely weakly nil-clean ring if and only if
(1) 𝑅 is uniquely 𝜋-nil-clean;
(2) 𝑅/𝐽(𝑅) is a Boolean ring, Z3 or the product of two such rings.

Proof. ⇒: In view of Lemma 5.2, proving (1). Further, proving (2) in terms
of [4, Theorem 18].

⇐: As 𝑅 is uniquely 𝜋-nil-clean, in view of Corollary 5.1, 𝑅 is Abelian and
𝐽(𝑅) is nil, then by (2) and in light of [5, Theorem 18], 𝑅 is a uniquely weakly
nil-clean ring. �

Corollary 5.2. A ring 𝑅 is a uniquely weakly nil-clean ring if and only if
for any 𝑎 ∈ 𝑅, there exists a central idempotent 𝑒 ∈ 𝑅 such that 𝑎 − 𝑒 ∈ 𝑃 (𝑅) or
𝑎 + 𝑒 ∈ 𝑃 (𝑅).

Proof. ⇒: In view of Corollary 5.1, 𝑅 is uniquely 𝜋-nil-clean. For any 𝑎 ∈ 𝑅,
by hypothesis, we see that �̄� or −�̄� is an idempotent in 𝑅/𝐽(𝑅). By virtue of [1,
Theorem 1.12], 𝑅/𝐽(𝑅) is a Boolean ring, Z3 or the product of two such rings.

⇐: Let 𝑎 ∈ 𝑅. By (2), there exists a central idempotent 𝑒 ∈ 𝑅 such that
𝑎 − 𝑒 ∈ 𝑃 (𝑅) or 𝑎 + 𝑒 ∈ 𝑃 (𝑅). Hence, 𝑎2 − 𝑒 = (𝑎 − 𝑒)(𝑎 + 𝑒) ∈ 𝑃 (𝑅). Thus, 𝑅
is uniquely 𝜋-nil-clean, by Theorem 5.1. Let 𝑥 ∈ 𝐽(𝑅). Then there exists a central
idempotent 𝑓 ∈ 𝑅 such that 𝑥 − 𝑓 or 𝑥 + 𝑓 is in 𝑃 (𝑅). If 𝑥 − 𝑓 ∈ 𝑃 (𝑅), then
𝑓 ∈ 𝐽(𝑅), and so 𝑓 = 0. This implies that 𝑥 ∈ 𝑃 (𝑅). If 𝑥 + 𝑓 ∈ 𝐽(𝑅), similarly,
𝑥 ∈ 𝑃 (𝑅). Hence, 𝐽(𝑅) ⊆ 𝑃 (𝑅). We infer that 𝐽(𝑅) = 𝑃 (𝑅). Thus, 𝑅/𝐽(𝑅) is a
Boolean ring, Z3 or the product of two such rings, by [1, Theorem 1.12]. In light
of Theorem 5.2, the result follows. �

A ring 𝑅 is uniquely nil-clean provided that every element in 𝑅 is uniquely
nil-clean. [5, Corollary 13] says that 𝑅 is a uniquely nil-clean ring if and only if 𝑅
is a uniquely weakly nil-clean ring and 2 ∈ 𝐽(𝑅). Further, we derive

Corollary 5.3. A ring 𝑅 is a uniquely nil-clean ring if and only if
(1) 𝑅 is uniquely 𝜋-nil-clean;
(2) 𝑅/𝐽(𝑅) is a Boolean ring.

Proof. ⇒: Clearly, 𝑅 is uniquely 𝜋-nil-clean. In view of [3, Theorem 4.5],
𝑅/𝐽(𝑅) is Boolean.

⇐: By virtue of Theorem 5.2, 𝑅 is a uniquely weakly nil-clean ring. As 22 = 2,
we see that 2 ∈ 𝐽(𝑅). Therefore 𝑅 is a uniquely nil-clean ring, in terms of [5,
Corollary 13]. �
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