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ON A PROPERTY OF STIRLING POLYNOMIALS

Farid Bencherif and Tarek Garici

Abstract. We positively answer a question posed in 1960 by D. S. Mitrinović
and R. S. Mitrinović (Publ. Fac. Electrotech. Univ. Belgrade, Ser. Math.
Phys. 34 (1960), 1–23) about the Stirling numbers of the first kind.

1. Introduction

We bring a positive answer to a question posed by D. S. Mitrinović and R. S. Mi-
trinović in 1960 [4] about the Stirling numbers of the first kind 𝑠(𝑛, 𝑘) defined by
𝑥(𝑥 − 1) · · · (𝑥 − 𝑛 + 1) =

∑︀
𝑘>0 𝑠(𝑛, 𝑘)𝑥𝑘. In what follows, we denote by ⌊𝑥⌋ the

integer part of a real number 𝑥 and by mod (𝑛, 2) the remainder of the division
of 𝑛 by 2. We recall that a primitive polynomial is a polynomial over an integral
domain 𝑅 such that no non-invertible element of 𝑅 divides all its coefficients at
once.

Theorem 1.1. Let (𝑚𝑛)𝑛>0 be the sequence defined by

(1.1) 𝑚𝑛 := 1
(𝑛 + 1)!

∏︁
𝑝 prime and 𝑝6𝑛+1

𝑝
⌊ 𝑛

𝑝−1 ⌋+
⌊︀

𝑛
𝑝(𝑝−1)

⌋︀
+

⌊︀
𝑛

𝑝2(𝑝−1)

⌋︀
+···

.

Then for any 𝑛 > 0, 𝑚𝑛 is a non-negative integer and for any positive integer 𝑘,
we have

𝑠(𝑛, 𝑛 − 2𝑘) = 1
𝑚2𝑘

(︂
𝑛

2𝑘 + 1

)︂
𝑃2𝑘(𝑛), (𝑛 > 2𝑘)(1.2)

𝑠(𝑛, 𝑛 − 2𝑘 − 1) = 1
𝑚2𝑘+1

(︂
𝑛

2𝑘 + 2

)︂
𝑛(𝑛 − 1)𝑃2𝑘+1(𝑛) (𝑛 > 2𝑘 + 1),(1.3)

where 𝑃2𝑘(𝑥) and 𝑃2𝑘+1(𝑥) are two primitive polynomials over Z satisfying

(1.4) 𝑃2𝑘(0) = 𝑃2𝑘+1(0).

The sequence (𝑚𝑛)𝑛>0 = (1, 1, 4, 2, 48, 16, 576, . . .) is the sequence 𝐴163176 in
the OEIS [6]. The first few expressions of the polynomials 𝑃𝑛(𝑥) for 2 6 𝑛 6 9 are
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𝑃2(𝑥) = 3𝑥 − 1,

𝑃3(𝑥) = −1,

𝑃4(𝑥) = 15𝑥3 − 30𝑥2 + 5𝑥 + 2,

𝑃5(𝑥) = −3𝑥2 + 7𝑥 + 2,

𝑃6(𝑥) = 63𝑥5 − 315𝑥4 + 315𝑥3 + 91𝑥2 − 42𝑥 − 16,

𝑃7(𝑥) = −9𝑥4 + 54𝑥3 − 51𝑥2 − 58𝑥 − 16,

𝑃8(𝑥) = 135𝑥7 − 1260𝑥6 + 3150𝑥5 − 840𝑥4 − 2345𝑥3 − 540𝑥2 + 404𝑥 + 144,

𝑃9(𝑥) = −15𝑥6 + 165𝑥5 − 465𝑥4 − 17𝑥3 + 648𝑥2 + 548𝑥 + 144.

In [4], Mitrinović and Mitrinović state the relations (1.2), (1.3) and (1.4) for 𝑘 ∈
{1, 2, 3, 4, 5, 6}, and then raise the question of whether these equalities are true in
the general case. Theorem 1.1, main result of our paper, brings a positive answer
to this question.

2. Proof of Theorem 1.1

To prove the theorem, it is useful to note the following three lemmas. The proof
is mainly based on the properties of the Nörlund polynomials and the sequence
(𝑚𝑛)𝑛>0. The Nörlund polynomials 𝐵

(𝑥)
𝑛 are defined by [5]

(︁ 𝑧

𝑒𝑧 − 1

)︁𝑥

=
∞∑︁

𝑛=0
𝐵(𝑥)

𝑛

𝑧𝑛

𝑛! .

For any positive integer 𝑛, 𝐵
(𝑥)
𝑛 is a polynomial over the rational number field of

degree 𝑛 and it is divisible by 𝑥.
The Bernoulli numbers 𝐵𝑛 are defined for 𝑛 > 0 by 𝐵𝑛 = 𝐵

(1)
𝑛 . It is well known

that

(2.1) 𝐵2𝑛+1 = 0 (𝑛 > 1).

Lemma 2.1. For any positive integer 𝑛, we have

(2.2)

(︀
𝐵(𝑥)

𝑛

)︀
= (−1)𝑛−1 𝐵𝑛

𝑛
,

[𝑥2]
(︀
𝐵

(𝑥)
2𝑛+1

)︀
= 2𝑛 + 1

4𝑛
𝐵2𝑛

Proof. Let 𝑛 > 1. In [3, Theorems 1 and 2], Liu and Srivastava have de-
termined explicitly the coefficients of the polynomial 𝐵

(𝑥)
𝑛 . They proved that for

1 6 𝑘 6 𝑛, the coefficient of the 𝑥𝑘 term in 𝐵
(𝑥)
𝑛 is given by

[𝑥𝑘]𝐵(𝑥)
𝑛 = (−1)𝑛−𝑘 𝑛!

𝑘!
∑︁ 𝐵𝜈1 · · · 𝐵𝜈𝑘

(𝜈1 · · · 𝜈𝑘)𝜈1! · · · 𝜈𝑘! ,
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where the sum is taken over all positive integers 𝜈1, . . . , 𝜈𝑘 that satisfy 𝜈1+· · ·+𝜈𝑘 =
𝑛. Applying this for 𝑘 = 1, we obtain easily (2.2), and for 𝑘 = 2 we get

[𝑥2]
(︀
𝐵

(𝑥)
2𝑛+1

)︀
= −1

2

2𝑛∑︁
𝑗=1

(︂
2𝑛 + 1

𝑗

)︂
𝐵𝑗𝐵2𝑛+1−𝑗

𝑗(2𝑛 + 1 − 𝑗)

= −1
2

(︂
2𝑛 + 1

1

)︂
𝐵1𝐵2𝑛

2𝑛
− 1

2

(︂
2𝑛 + 1

2𝑛

)︂
𝐵2𝑛𝐵1

2𝑛

− 1
2

2𝑛−1∑︁
𝑗=2

(︂
2𝑛 + 1

𝑗

)︂
𝐵𝑗𝐵2𝑛+1−𝑗

𝑗(2𝑛 + 1 − 𝑗)

= 2𝑛 + 1
4𝑛

𝐵2𝑛 − 1
2

2𝑛−1∑︁
𝑗=2

(︂
2𝑛 + 1

𝑗

)︂
𝐵𝑗𝐵2𝑛+1−𝑗

𝑗(2𝑛 + 1 − 𝑗) .

The proof will be complete if we can show that
2𝑛−1∑︁
𝑗=2

(︂
2𝑛 + 1

𝑗

)︂
𝐵𝑗𝐵2𝑛+1−𝑗

𝑗(2𝑛 + 1 − 𝑗) = 0.

As the case 𝑛 = 1 is obvious, let us consider the case 𝑛 > 2. Firstly we remind
that after 𝐵1, all the Bernoulli numbers with odd index vanish. Note that 𝑗 and
(2𝑛 + 1 − 𝑗) have a different parity, so we deduce that at least one of 𝐵𝑗 and
𝐵2𝑛+1−𝑗 has an odd index greater than 1 and therefore 𝐵𝑗𝐵2𝑛+1−𝑗 = 0 for any
2 6 𝑗 6 2𝑛 − 1. �

In the proof of Theorem 1.1, the following lemma is essential.

Lemma 2.2. For any integer 𝑛 > 2, we have

(2.3)
(︂

𝑥 − 1
𝑛

)︂
𝐵(𝑥)

𝑛 = 1
𝑚𝑛

(︂
𝑥

𝑛 + 1

)︂
(𝑥(𝑥 − 1))mod (𝑛,2)𝑃𝑛(𝑥)

where 𝑃𝑛(𝑥) is a primitive polynomial over Z.

Proof. Let 𝑛 be a positive integer. For any prime number 𝑝, let 𝑟𝑝(𝑛) be the
highest power of 𝑝 that divides 𝑛!. Adelberg [1, Corollary 3] shows that if we set
𝑛𝑝 = 𝑝

⌊︀
𝑛

𝑝−1
⌋︀

and

(2.4) 𝑑𝑛 = 1
𝑛!

∏︁
𝑝 prime and 𝑝6𝑛+1

𝑝𝑟𝑝(𝑛𝑝),

then 𝑑𝑛𝐵
(𝑥)
𝑛 is a primitive polynomial over Z.

By the Legendre’s formula [7, p. 31], we obtain that for any prime number 𝑝
less than or equal to 𝑛 + 1

(2.5) 𝑟𝑝(𝑛𝑝) =
∑︁
𝑘>0

⌊︁ 1
𝑝𝑘

⌊︁ 𝑛

𝑝 − 1

⌋︁⌋︁
=

∑︁
𝑘>0

⌊︁ 𝑛

𝑝𝑘(𝑝 − 1)

⌋︁
.

From (2.4), (2.5) and (1.1), we obtain 𝑑𝑛 = (𝑛 + 1)𝑚𝑛. On the other hand, from
the definition of the Nörlund polynomials, it is easy to see that 𝐵

(𝑥)
𝑛 is divisible
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by 𝑥. Moreover, from (2.2) and (2.1) we have that for any odd integer 𝑛 > 3,
[𝑥](𝐵(𝑥)

𝑛 ) = (−1)𝑛−1 𝐵𝑛

𝑛 = 0 and 𝐵
(1)
𝑛 = 𝐵𝑛 = 0. It follows that in Z[𝑥], the

primitive polynomial (𝑛 + 1)𝑚𝑛𝐵
(𝑥)
𝑛 is divisible by 𝑥(𝑥(𝑥 − 1))mod (𝑛,2) for 𝑛 > 2.

The quotient 𝑃𝑛(𝑥) of these two polynomials is also a primitive polynomial over Z
and then we have

(2.6) (𝑛 + 1)𝑚𝑛𝐵(𝑥)
𝑛 = 𝑥(𝑥(𝑥 − 1))mod (𝑛,2)𝑃𝑛(𝑥), (𝑛 > 2).

Multiplying both sides of (2.6) by 1
(𝑛+1)𝑚𝑛

(︀
𝑥−1

𝑛

)︀
, we deduce (2.3). �

The following lemma states some properties of the sequence (𝑚𝑛)𝑛>0 defined
by (1.1).

Lemma 2.3. For any non-negative integer 𝑛, we have
(1) 𝑚𝑛 is an integer
(2) 𝑚2𝑛 = (𝑛 + 1)𝑚2𝑛+1

Proof. Let 𝑛 be a non-negative integer. For any prime number 𝑝 6 𝑛 + 1
and for any integer 𝑘 > 0, we have 𝑛

𝑝𝑘(𝑝−1) − 𝑛+1
𝑝𝑘+1 = 𝑛+1−𝑝

𝑝𝑘+1(𝑝−1) > 0 and then⌊︀
𝑛

𝑝𝑘(𝑝−1)
⌋︀

−
⌊︀

𝑛+1
𝑝𝑘+1

⌋︀
> 0. By the Legendre’s formula, we have

𝑣𝑝(𝑚𝑛) =
∑︁
𝑘>0

(︁⌊︁ 𝑛

𝑝𝑘(𝑝 − 1)

⌋︁
−

⌊︁𝑛 + 1
𝑝𝑘+1

⌋︁)︁
> 0.

It follows that 𝑚𝑛 is an integer.
Let 𝑝 6 𝑛 + 1 be a prime number. It is clear that for all positive integers 𝑥 and

𝑦 we have ⌊︁𝑥 + 1
𝑦

⌋︁
−

⌊︁𝑥

𝑦

⌋︁
=

{︃
1 if 𝑦 divides 𝑥 + 1,

0 otherwise.

Thus

𝑣𝑝

(︁ (𝑛 + 1)𝑚2𝑛+1

𝑚2𝑛

)︁
= 𝑣𝑝(2−1) +

∑︁
𝑘>0

⌊︁ 2𝑛 + 1
𝑝𝑘(𝑝 − 1)

⌋︁
−

⌊︁ 2𝑛

𝑝𝑘(𝑝 − 1)

⌋︁
.

Since, 𝑝𝑘(𝑝 − 1) divide 2𝑛 + 1 if and only if 𝑝 = 2 and 𝑘 = 0, then for any prime 𝑝,
𝑣𝑝

(︀ (𝑛+1)𝑚2𝑛+1
𝑚2𝑛

)︀
= 0, which is equivalent to state that (𝑛+1)𝑚2𝑛+1

𝑚2𝑛
= 1. �

Now we can prove the theorem by using these lemmas.
Let 𝑘 be a positive integer. It is well known that (cf. [2, p. 329])

(2.7) 𝑠(𝑛, 𝑛 − 𝑗) =
(︂

𝑛 − 1
𝑗

)︂
𝐵

(𝑛)
𝑗 , for 𝑛 > 𝑗 > 0.

By Lemma 2.2, (2.7) can be written as

𝑠(𝑛, 𝑛 − 𝑗) = 1
𝑚𝑗

(︂
𝑛

𝑗 + 1

)︂
(𝑛(𝑛 − 1))mod (𝑗,2)𝑃𝑗(𝑛) (𝑛 > 𝑗 > 2),
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Since 𝑃𝑗(𝑥) is a primitive polynomial over Z, applying this result for 𝑗 = 2𝑘 (resp.
𝑗 = 2𝑘 + 1) gives (1.2), (resp. (1.3)). Furthermore, by taking at first 𝑛 = 2𝑘 in
(2.6) and then 𝑛 = 2𝑘 + 1 we get

(2𝑘 + 1)𝑚2𝑘𝐵
(𝑥)
2𝑘 = 𝑥𝑃2𝑘(𝑥),

(2𝑘 + 2)𝑚2𝑘+1𝐵
(𝑥)
2𝑘+1 = 𝑥3𝑃2𝑘+1(𝑥) − 𝑥2𝑃2𝑘+1(𝑥).

It follows that
𝑃2𝑘(0) = [𝑥]((2𝑘 + 1)𝑚2𝑘𝐵

(𝑥)
2𝑘 ),

𝑃2𝑘+1(0) = [𝑥2](−(2𝑘 + 2)𝑚2𝑘+1𝐵
(𝑥)
2𝑘+1).

By Lemma 2.1, these last two equalities can be written as

𝑃2𝑘(0) = −𝑚2𝑘(2𝑘 + 1)𝐵2𝑘

2𝑘
,

𝑃2𝑘+1(0) = −(𝑘 + 1)𝑚2𝑘+1(2𝑘 + 1)𝐵2𝑘

2𝑘
.

Given this and the second relation of Lemma 2.3, we can deduce that 𝑃2𝑘+1(0) =
𝑃2𝑘(0). This establishes (1.4). The proof of the theorem is now complete.

Remark 2.1. As we know that for any non-negative integer 𝑛, 𝐵
(𝑥)
𝑛 is a poly-

nomial of degree 𝑛, by using relation (2.6) we deduce that for any 𝑘 > 1, we have
deg(𝑃2𝑘) = 2𝑘 − 1 and deg(𝑃2𝑘+1) = 2𝑘 − 2.

Acknowledgment. Supported by LA3C, Laboratoire d’Arithmétique Codage
Combinatoire et Calcul formel.
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