TOPOLOGICALLY BOOLEAN AND $g(x)$-CLEAN RINGS

Angelina Yan Mui Chin and Kiat Tat Qua

Abstract

Let R be a ring with identity and let $g(x)$ be a polynomial in $Z(R)[x]$ where $Z(R)$ denotes the center of R. An element $r \in R$ is called $g(x)$-clean if $r=u+s$ for some $u, s \in R$ such that u is a unit and $g(s)=0$. The ring R is $g(x)$-clean if every element of R is $g(x)$-clean. We consider $g(x)=x(x-c)$ where c is a unit in R such that every root of $g(x)$ is central in R. We show, via set-theoretic topology, that among conditions equivalent to R being $g(x)$-clean, is that R is right (left) c-topologically boolean.

1. Introduction

Let R be a ring with identity and let $g(x)$ be a polynomial in $Z(R)[x]$ where $Z(R)$ denotes the center of R. Let $\operatorname{Id}(R)$ and $U(R)$ denote the set of idempotents and the set of units in R, respectively. The notion of $g(x)$-clean rings first appeared in a 2002 paper of Camillo and Simón [1], where an element $r \in R$ is called $g(x)$ clean if $r=u+s$ for some $u \in U(R)$ and $s \in R$ such that $g(s)=0$. The ring R is $g(x)$-clean if every element of R is $g(x)$-clean. Note that if $r \in R$ is $g(x)$-clean and $g(x)$ is a factor of a polynomial $h(x) \in Z(R)[x]$, then r is also $h(x)$-clean.

Clearly, if $g(x)=x^{2}-x$, then $g(x)$-clean rings are clean. However, in general, $g(x)$-clean rings are not necessarily clean. A well-known example is the group ring $\mathbb{Z}_{(7)} C_{3}$ where $\mathbb{Z}_{(7)}=\{m / n \mid m, n \in \mathbb{Z}, \operatorname{gcd}(7, n)=1\}$ and C_{3} is the cyclic group of order 3. By [7, Example 2.7], $\mathbb{Z}_{(7)} C_{3}$ is $\left(x^{4}-1\right)$-clean. However, Han and Nicholson [4] have shown that $\mathbb{Z}_{(7)} C_{3}$ is not clean.

Conversely, for a clean ring R, there may exist a $g(x) \in Z(R)[x]$ such that R is not $g(x)$-clean (see [3] Example 2.3]). Indeed, let R be a Boolean ring containing more than two elements. Let $c \in R$ where $0 \neq c \neq 1$ and let $g(x)=x^{2}+(1+c) x+c=$ $(x+1)(x+c)$. Since R is Boolean, so it is clean. Suppose that R is $g(x)$-clean. Then $c=u+s$ for some $u \in U(R)$ and $s \in R$ such that $g(s)=0$. Note that $u=1$ since R is Boolean. Therefore, $s=c+1$. However, $g(c+1)=c \neq 0$ which contradicts the assumption that $g(s)=0$. Hence, it follows that R is clean but not $g(x)$-clean.

2010 Mathematics Subject Classification: Primary 16U99.
Key words and phrases: $g(x)$-clean, n-clean, topologically boolean.
Communicated by Zoran Petrović.

In [2], a ring R (not necessarily commutative) is said to be right (left) topologically boolean, or a right (left) tb-ring for short, if for every pair of distinct maximal right (left) ideals of R, there is a nontrivial idempotent in exactly one of them. The case where R is commutative has been considered earlier in 5]. Now let $g_{c}(x)=x(x-c) \in Z(R)[x]$. Here, we define a ring R to be right (left) c-topologically boolean, or a right (left) c-tb ring for short, if for every pair of distinct maximal right (left) ideals of R, there is a root of $g_{c}(x)$ in exactly one of them. We say that R is a c-tb ring if it is both right and left c-tb. Clearly, when $c=1$, a right (left) c-tb ring is just a right (left) tb-ring.

In this paper we consider $g(x)=x(x-c) \in Z(R)[x]$ where c is a unit in R such that every root of $g(x)$ is central in R and show via set-theoretic topology that among conditions equivalent to R being $g(x)$-clean is that R is right (left) c-tb. Throughout this paper, all rings are assumed to be associative with identity.

2. Some preliminaries

Let n be a positive integer. For a ring R and polynomial $g(x) \in Z(R)[x]$, an element $r \in R$ is said to be $(n, g(x))$-clean if $r=u_{1}+\cdots+u_{n}+s$ for some $u_{1}, \ldots, u_{n} \in U(R)$ and $s \in R$ such that $g(s)=0$. The ring R is $(n, g(x))$-clean if all of its elements are $(n, g(x))$-clean. Clearly, a $(1, g(x))$-clean ring is $g(x)$-clean. In [8], an element $r \in R$ is said to be n-clean if $r=e+u_{1}+\cdots+u_{n}$ for some $e \in \operatorname{Id}(R)$ and $u_{1}, \ldots, u_{n} \in U(R)$. The ring R is n-clean if all of its elements are n-clean.

In [7. Theorem 2.1], Wang and Chen showed that if $g(x)=(x-a)(x-b) \in$ $Z(R)[x]$ with $b-a \in U(R)$, then R is $g(x)$-clean if and only if R is clean. In [3 Theorem 3.2], Fan and Yang gave another proof of the same result. In the following, we give an extension to n-clean rings as follows:

Theorem 2.1. Let R be a ring and let $g(x)=(x-a)(x-b) h(x) \in Z(R)[x]$ such that $b-a \in U(R)$. If R is n-clean, then R is $(n, g(x))$-clean $(n \in \mathbb{N})$.

Proof. Let $r \in R$. Since R is n-clean, then $(r-a)(b-a)^{-1}=e+u_{1}+\cdots+u_{n}$ for some $e \in \operatorname{Id}(R)$ and $u_{i} \in U(R)(i=1, \ldots, n)$. Thus, $r=(e(b-a)+a)+$ $u_{1}(b-a)+\cdots+u_{n}(b-a)$, where $u_{i}(b-a) \in U(R)(i=1, \ldots, n)$. Note that $g((e(b-a)+a)=e(b-a)(e(b-a)-(b-a)) h(e(b-a)+a)=0 \cdot h(e(b-a)+a)=0$. Hence, $e(b-a)+a$ is a root of $g(x)$. It follows that R is $(n, g(x))$-clean.

By Theorem 2.1 and the fact that clean rings are n-clean for any integer $n \geqslant 1$ (by [9, Lemma 2.1]), we obtain the following:

Corollary 2.1. Let R be a ring and let $g(x)=(x-a)(x-b) \in Z(R)[x]$ such that $b-a \in U(R)$. Then R is $g(x)$-clean if and only if R is n-clean for all positive integers n.

Let R be a ring and let $g(x) \in Z(R)[x]$. An element $r \in R$ is called weakly $g(x)$-clean if $r=u+s$ or $r=u-s$ for some $u \in U(R)$ and $s \in R$ such that $g(s)=0$. We say that R is weakly $g(x)$-clean if every element in R is weakly $g(x)$-clean. Clearly, a $g(x)$-clean ring is weakly $g(x)$-clean. It is also clear that if
R is a weakly $g(x)$-clean ring and $g(x)$ is a factor of a polynomial $h(x) \in Z(R)[x]$, then R is also a weakly $h(x)$-clean ring.

In the following we obtain some results which generalise parts of Theorem 3.5 in 3 .

Proposition 2.1. Let R be a ring which is weakly $x(x-c)$-clean where $c \in$ $Z(R)$. Then $c \in U(R)$.

Proof. Let $g(x)=x(x-c) \in Z(R)[x]$. Since R is weakly $g(x)$-clean, $c=u+s$ or $c=u-s$ for some $u \in U(R)$ and $s \in R$ such that $g(s)=0$. For the case $c=u+s$, we have that $s=-u+c$ and hence, $s^{2}=(-u+c)^{2}=u^{2}+c r$ for some $r \in R$. Since $0=g(s)=s(s-c)$, we also have $s^{2}=c s$. Thus, $c(s-r)=u^{2} \in U(R)$. This implies that $c \in U(R)$. For the case $c=u-s$, we have that $s=u-c$ and hence, $s^{2}=(u-c)^{2}=u^{2}-c r$ for some $r \in R$. Since $0=g(s)=s(s-c)$, we also have $s^{2}=c s$. Thus, $c(s+r)=u^{2} \in U(R)$ which implies that $c \in U(R)$.

Lemma 2.1. Let R be a ring and let $g(x)=a x^{m}-b x^{n}, h(x)=a x^{m}+b x^{n} \in$ $Z(R)[x]$ where m, n are positive integers of different parity. Then R is $g(x)$-clean if and only if R is $h(x)$-clean.

Proof. (\Rightarrow) : Assume that R is a $g(x)$-clean ring. Then for any $r \in R,-r=$ $u+s$ where $u \in U(R)$ and $s \in R$ such that $g(s)=0$. It follows that $r=(-u)+(-s)$. Note that

$$
\begin{aligned}
h(-s) & =a(-s)^{m}+b(-s)^{n}=(-1)^{m} a s^{m}+(-1)^{n} b s^{n} \\
& = \begin{cases}a s^{m}-b s^{n}, & \text { if } m \text { is even, } n \text { is odd } \\
-\left(a s^{m}-b s^{n}\right), & \text { if } m \text { is odd, } n \text { is even }\end{cases} \\
& =0 .
\end{aligned}
$$

It follows that r is $h(x)$-clean.
(\Leftarrow) : Suppose that R is $h(x)$-clean. Then for any $r \in R,-r=u+s$ where $u \in U(R)$ and $s \in R$ such that $h(s)=0$. It follows that $r=(-u)+(-s)$. Then since

$$
\begin{aligned}
g(-s) & =a(-s)^{m}-b(-s)^{n}=(-1)^{m} a s^{m}-(-1)^{n} b s^{n} \\
& = \begin{cases}a s^{m}+b s^{n}, & \text { if } m \text { is even, } n \text { is odd } \\
-\left(a s^{m}+b s^{n}\right), & \text { if } m \text { is odd, } n \text { is even }\end{cases} \\
& =0,
\end{aligned}
$$

we have that r is $g(x)$-clean.
Theorem 2.2. Let R be a ring and let $c \in Z(R)$. Then the following are equivalent:
(a) R is $x(x-c)$-clean;
(b) R is $x(x+c)$-clean;
(c) R is n-clean for all positive integers n and $c \in U(R)$.

Proof. (a) \Leftrightarrow (b): This follows readily by Lemma 2.1
$(\mathrm{a}) \Rightarrow(\mathrm{c})$: Assume (a). By Proposition 2.1. we have $c \in U(R)$. It follows by Corollary 2.1 that R is n-clean for all positive integers n.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$: This follows readily by Theorem 2.1 (take $n=1$).
Lemma 2.2. Let R be a ring, let $c \in U(R)$ and let all roots of $g(x)=x(x-c)$ in R be central. For any $a, b \in R$, if $a b=c$, then $b a=c$.

Proof. Let $a, b \in R$ such that $a b=c$. Since c is a root of $g(x)$, we have that c is central and therefore, $b a(b a-c)=b a b a-c(b a)=b(a b) a-c(b a)=c(b a)-c(b a)=0$. Thus, $b a$ is a root of $g(x)$ and hence, $b a$ is also central. Then $c a=(a b) a=a(b a)=$ $b a a$ and it follows that $c^{2}=c(a b)=(c a) b=(b a a) b=b a c$. Since $c \in U(R)$ (by the hypothesis), it follows that $c=b a$.

3. Some equivalent conditions for $x(x-c)$-clean rings

Let R be a ring. A proper right (left) ideal P of R is said to be prime if $a R b \subseteq P$ with $a, b \in R$ implies that $a \in P$ or $b \in P$. Given a ring R, let $\operatorname{Spec}_{r}(R)$ be the set of all proper right ideals of R which are prime. It has been shown in [10, Corollary 2.8] that if R is not a right quasi-duo ring, then $\operatorname{Spec}_{r}(R)$ is a topological space with the weak Zariski topology but not with the Zariski topology. For a right ideal I of R, let $\mathcal{U}_{r}(I)=\left\{P \in \operatorname{Spec}_{r}(R) \mid P \nsupseteq I\right\}$ and $\mathcal{V}_{r}(I)=$ $\operatorname{Spec}_{r}(R) \backslash \mathcal{U}_{r}(I)$. Let $\tau=\left\{\mathcal{U}_{r}(I) \mid I\right.$ is a right ideal of $\left.R\right\}$. Then τ contains the empty set and $\operatorname{Spec}_{r}(R)$. In general, τ is just a subbase of the weak Zariski topology on $\operatorname{Spec}_{r}(R)$. For any element $a \in R$, let $\mathcal{U}_{r}(a)=\mathcal{U}_{r}(a R)$ and $\mathcal{V}_{r}(a)=\mathcal{V}_{r}(a R)$. Then $\mathcal{U}_{r}(a)=\left\{P \in \operatorname{Spec}_{r}(R) \mid a \notin P\right\}$ and $\mathcal{V}_{r}(a)=\left\{P \in \operatorname{Spec}_{r}(R) \mid a \in P\right\}$. The left prime spectrum $\operatorname{Spec}_{l}(R)$ and the weak Zariski topology associated with it are defined analogously. Let $\operatorname{Max}_{r}(R)\left(\operatorname{Max}_{l}(R)\right)$ be the set of all maximal right (left) ideals of R. Since maximal right (left) ideals are prime right (left) ideals (see $\mathbf{6}$), $\operatorname{Max}_{r}(R)\left(\operatorname{Max}_{l}(R)\right)$ inherits the weak Zariski topology on $\operatorname{Spec}_{r}(R)\left(\operatorname{Spec}_{l}(R)\right)$. Let $U_{r}(I)=\operatorname{Max}_{r}(R) \cap \mathcal{U}_{r}(I)$ and $V_{r}(I)=\operatorname{Max}_{r}(R) \cap \mathcal{V}_{r}(I)$ for any right ideal I of R. Then, in particular, $U_{r}(a)=\operatorname{Max}_{r}(R) \cap \mathcal{U}_{r}(a)$ and $V_{r}(a)=\operatorname{Max}_{r}(R) \cap \mathcal{V}_{r}(a)$ for any $a \in R$.

Recall that a clopen set in a topological space is a set which is both open and closed. A topological space is said to be zero-dimensional if it has a base consisting of clopen sets.

We begin with the following lemmas.
Lemma 3.1. Let R be a ring, let $g(x)=x(x-c) \in Z(R)[x]$ where $c \in U(R)$ and let $s \in R$ be a central root of $g(x)$. Let N be a maximal right ideal of R. If $s \notin N$, then $c-s \in N$.

Proof. Since $g(s)=0$, we have that $s(s-c)=0 \in P$ for any prime right ideal P of R. Then since s is central, it follows that every prime right ideal of R contains either s or $s-c$. Now since $c=s+(c-s)$ and $c \in U(R)$, we have that $1=s c^{-1}+(c-s) c^{-1}$. Hence, every prime right ideal of R contains either s or $c-s$ but not both. Since maximal right ideals are prime right ideals (by [6]), it follows that if $s \notin N$, then $c-s \in N$.

Lemma 3.2. Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ where $c \in U(R)$. Let $s, t \in R$ be central roots of $g(x)$. Then $c^{-1} s t, s+t-c^{-1}$ st and $c-s$ are also roots of $g(x)$.

Proof. We first note that since $s(s-c)=0$ and $t(t-c)=0$, we thus have $s=c^{-1} s^{2}$ and $t=c^{-1} t^{2}$. Then

$$
\begin{aligned}
g\left(c^{-1} s t\right) & =c^{-1} s t\left(c^{-1} s t-c\right)=c^{-2}(s t)^{2}-s t \\
& =c^{-2}(s t)^{2}-c^{-1} s^{2} t=c^{-2}\left(s^{2} t\right)(t-c)=0 .
\end{aligned}
$$

We also have that

$$
\begin{aligned}
g\left(s+t-c^{-1} s t\right)= & \left(s+t-c^{-1} s t\right)\left(s+t-c^{-1} s t-c\right) \\
= & s(s-c)+s\left(t-c^{-1} s t\right)+t\left(s-c^{-1} s t\right) \\
& +t(t-c)-c^{-1} s t\left(s-c^{-1} s t\right)-c^{-1} s t(t-c)=0 .
\end{aligned}
$$

Finally, we note that $g(c-s)=(c-s)((c-s)-c)=(s-c) s=g(s)=0$.
Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ where $c \in U(R)$. Let $\xi=\left\{U_{r}(s) \mid s \in R\right.$ is a central root of $\left.g(x)=x(x-c)\right\}$. By Lemma 3.2 and the following lemma, we may deduce that ξ is closed under intersection and union.

Lemma 3.3. Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ with $c \in U(R)$ such that every root of $g(x)$ is central in R. If $s, t \in R$ are roots of $g(x)$, then the following hold.
(a) $U_{r}(s) \cap U_{r}(t)=U_{r}\left(c^{-1} s t\right)$;
(b) $U_{r}(s) \cup U_{r}(t)=U_{r}\left(s+t-c^{-1} s t\right)$;
(c) $U_{r}(s)=V_{r}(c-s)$. In particular, every set in ξ is clopen.

Proof. (a) Let $P \in \mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t)$. Then $P \in \operatorname{Spec}_{r}(R)$ with $s, t \notin P$. Note that $c \notin P$. Since c, s, t are central in R and P is a prime right ideal of R, it follows that $c^{-1} s t \notin P$. Hence, $P \in \mathcal{U}_{r}\left(c^{-1} s t\right)$ and therefore, $\mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t) \subseteq$ $\mathcal{U}_{r}\left(c^{-1} s t\right)$. Conversely, suppose that $P \in \mathcal{U}_{r}\left(c^{-1} s t\right)$. If s or t belongs to P, then since s, t are central in R and P is a right ideal of R, it follows that $c^{-1} s t \in P$; a contradiction. Thus s and t do not belong to P, that is, $P \in \mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t)$. Hence, $\mathcal{U}_{r}\left(c^{-1} s t\right) \subseteq \mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t)$. The equality $\mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t)=\mathcal{U}_{r}\left(c^{-1} s t\right)$ thus follows. Then $U_{r}(s) \cap U_{r}(t)=\mathcal{U}_{r}(s) \cap \mathcal{U}_{r}(t) \cap \operatorname{Max}_{r}(R)=\mathcal{U}_{r}\left(c^{-1} s t\right) \cap \operatorname{Max}_{r}(R)=U_{r}\left(c^{-1} s t\right)$.
(b) Let $P \in \mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t)$. Then $s \notin P$ or $t \notin P$. Without loss of generality, suppose that $s \notin P$. Since $s(s-c)=0 \in P$ and $s \notin P$ with s central in R, it follows that $s-c \in P$. Then $\left(1-c^{-1} s\right) t=-c^{-1}(s-c) t \in P$. If $s+\left(1-c^{-1} s\right) t \in P$, then it will follow that $s \in P$; a contradiction. Thus, $s+\left(1-c^{-1} s\right) t \notin P$ and hence, $P \in \mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right)$. The inclusion $\mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t) \subseteq \mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right)$ therefore holds. For the reverse inclusion, suppose that $P \in \mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right)$. Then $s+\left(1-c^{-1} s\right) t \notin P$. If s and t both belong to P, then $s+\left(1-c^{-1} s\right) t \in P$; a contradiction. Hence, either $s \notin P$ or $t \notin P$, that is, $P \in \mathcal{U}_{r}(s)$ or $P \in \mathcal{U}_{r}(t)$. Therefore, $P \in \mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t)$ and the inclusion $\mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right) \subseteq \mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t)$
follows. Hence, $\mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t)=\mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right)$. It follows that

$$
\begin{aligned}
U_{r}(s) \cup U_{r}(t) & =\left(\mathcal{U}_{r}(s) \cap \operatorname{Max}_{r}(R)\right) \cup\left(\mathcal{U}_{r}(t) \cap \operatorname{Max}_{r}(R)\right) \\
& =\left(\mathcal{U}_{r}(s) \cup \mathcal{U}_{r}(t)\right) \cap \operatorname{Max}_{r}(R) \\
& =\mathcal{U}_{r}\left(s+\left(1-c^{-1} s\right) t\right) \cap \operatorname{Max}_{r}(R)=U_{r}\left(s+\left(1-c^{-1} s\right) t\right) .
\end{aligned}
$$

(c) By using Lemma 3.1, we have $U_{r}(s)=\operatorname{Max}_{r}(R) \backslash U_{r}(c-s)=V_{r}(c-s)$. It follows that every set in ξ is clopen.

Next, we extend Proposition 2.4 in [2] as follows:
Proposition 3.1. Let R be an $x(x-c)$-clean ring with $c \in Z(R)$ such that every root of $x(x-c)$ is central in R. Then R is a right $c-t b$ ring.

Proof. By Proposition 2.1, $c \in U(R)$. Let M and N be distinct maximal right ideals of R. Then there exists $a \in M \backslash N$ and $N+a R=R$. Hence, $1-a r \in N$ for some $r \in R$. Since N is a right ideal of $R, c-\operatorname{arc}=(1-a r) c \in N$. Let $y=a r c$. Then $c-y \in N$ and $y \in M \backslash N$. Since R is $x(x-c)$-clean, there exist a unit $u \in R$ and a root $s \in R$ of $x(x-c)$ such that $y=u+s$. If $s \in M$, then $u=y-s \in M$ from which it follows that $M=R$; a contradiction since M is a maximal right ideal of R. Thus, $s \notin M$. If $s \notin N$, then $c-s \in N$ (by Lemma 3.1) and hence, $u=y-s=(y-c)+(c-s) \in N$. It follows that $N=R$ which is also not possible since N is a maximal right ideal of R. We thus have that s is a root of $x(x-c)$ belonging to N only. Hence, R is a right c-tb ring.

Proposition 3.2. Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ with $c \in U(R)$ such that every root of $g(x)$ in R is central. If R is a right c-tb ring, then ξ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$. In particular, $\operatorname{Max}_{r}(R)$ is a compact, zero-dimensional Hausdorff space.

Proof. Note that if M_{1} and M_{2} are two distinct maximal right ideals of R, then since R is a right c-tb ring, there exists a root $s \in R$ of $g(x)$ such that $s \notin M_{1}$, $s \in M_{2}$ (that is, $\left.M_{1} \in U_{r}(s), M_{2} \notin U_{r}(s)\right)$. The points in $\operatorname{Max}_{r}(R)$ can therefore be separated by disjoint clopen sets belonging to ξ. Hence, $\operatorname{Max}_{r}(R)$ is Hausdorff. By [2, Lemma 2.1] we have that $\operatorname{Max}_{r}(R)$ is compact.

To show that ξ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$, let $K \subseteq \operatorname{Max}_{r}(R)$ be a closed subset and take $M \notin K$. For each $N \in K$, since $N \neq M$, there exists a clopen set $U_{r}\left(s_{N}\right) \in \xi$ separating M and N, say $N \in U_{r}\left(s_{N}\right)$. The collection $\left\{U_{r}\left(s_{N}\right) \mid N \in K\right\}$ is therefore an open cover of the set K. Since K is compact, it has a finite subcover, that is, K is contained in a finite cover of sets of the form $U_{r}\left(s_{N}\right)$ with $N \in K$. By Lemma 3.3 there exists a clopen set $C \in \xi$ separating M from K. Hence, ξ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$. Since every set in ξ is clopen (by Lemma 3.3), it follows that $\operatorname{Max}_{r}(R)$ is zero-dimensional.

Proposition 3.3. Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ with $c \in U(R)$ such that every root of $g(x)$ in R is central. If ξ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$, then for any $a \in R$, there exists a root s of $g(x)$ such that $s \notin M$ for every $M \in V_{r}(a)$ and $s \in N$ for every $N \in V_{r}(a-c)$.

Proof. Consider the disjoint closed sets $V_{r}(a)$ and $V_{r}(a-c)$. Since ξ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$ and $\operatorname{Max}_{r}(R)$ is compact, there is a clopen set $U_{r}(s) \in \xi$ separating the sets $V_{r}(a)$ and $V_{r}(a-c)$. Without loss of generality, assume that $V_{r}(a) \subseteq U_{r}(s)$ and $V_{r}(a-c) \subseteq V_{r}(s)$. Then it follows that $s \notin M$ for every $M \in V_{r}(a)$ and $s \in N$ for every $N \in V_{r}(a-c)$.

Proposition 3.4. Let R be a ring and let $g(x)=x(x-c) \in Z(R)[x]$ with $c \in U(R)$ such that every root of $g(x)$ in R is central. If for every $a \in R$ there exists a root $s \in Z(R)$ of $g(x)$ such that $V_{r}(a) \subseteq U_{r}(s)$ and $V_{r}(a-c) \subseteq V_{r}(s)$, then R is $g(x)$-clean.

Proof. Let $a \in R$. By the hypothesis, there exists a root $s \in Z(R)$ of $g(x)$ such that $V_{r}(a) \subseteq U_{r}(s)$ and $V_{r}(a-c) \subseteq V_{r}(s)$. We claim that $a-s$ is a unit. Let M be a maximal right ideal of R. Note that if $a \in M$, then $a-s \notin M$, since $s \notin M$. Next, suppose that $a \notin M$. If $a-s \in M$, then $s \notin M$, and hence, $c-s \in M$ (by Lemma 3.1. Then since $(a-c)+(c-s)=a-s \in M$, it follows that $a-c \in M$ and hence, $s \in M$ (because $\left.V_{r}(a-c) \subseteq V_{r}(s)\right)$; a contradiction. Thus, $a-s \notin M$. We have therefore shown that $a-s \notin M$ for any maximal right ideal M of R. Hence, $a-s$ has a right inverse, that is, $(a-s) v=1$ for some $v \in R$. Then $(a-s)(v c)=c$ and by Lemma 2.2, we have that $(v c)(a-s)=c$. Since $c \in U(R) \cap Z(R)$, we can conclude that $a-s$ is a unit in R. Hence, a is the sum of a unit and a root of $g(x)$ in R. Since a is arbitrary in R, it follows that R is $g(x)$-clean.

We are now ready for the main result.
Theorem 3.1. Let R be a ring and let $x(x-c) \in Z(R)[x]$ with $c \in U(R)$. If every root of $x(x-c)$ is central in R, then the following conditions are equivalent.
(a) R is $x(x-c)$-clean;
(b) R is $x(x+c)$-clean;
(c) R is n-clean for all positive integers n;
(d) R is a right c-tb ring;
(e) The collection $\xi=\left\{U_{r}(s) \mid s \in R\right.$ is a root of $\left.x(x-c)\right\}$ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$;
(f) For every $a \in R$, there exists a root $s \in Z(R)$ of $x(x-c)$ such that $V_{r}(a) \subseteq U_{r}(s)$ and $V_{r}(a-c) \subseteq V_{r}(s)$;
(g) R is a left c - $t b$ ring;
(h) The collection $\xi=\left\{U_{l}(s) \mid s \in R\right.$ is a root of $\left.x(x-c)\right\}$ forms a base for the weak Zariski topology on $\operatorname{Max}_{l}(R)$.

Proof. By Theorem 2.2 it follows readily that $(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow$ (c). By Proposition 3.1. we readily have $(\mathrm{a}) \Rightarrow(\mathrm{d})$. The implications $(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow$ (f) follow by Propositions 3.2 and 3.3 respectively. The implication (f) \Rightarrow (a) is straightforward by using Proposition 3.4 By using the left analogue of the arguments in the proofs of $(\mathrm{a}) \Rightarrow(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{f}) \Rightarrow(\mathrm{a})$, we obtain the equivalence $(\mathrm{a}) \Leftrightarrow(\mathrm{g}) \Leftrightarrow(\mathrm{h})$.

A ring R is said to be strongly clean if every element of R is the sum of an idempotent and a unit which commute with one another. A strongly clean ring is
therefore clean and hence, $x(x-1)$-clean. On the other hand, an abelian $x(x-1)$ clean ring is clearly strongly clean. We thus have the following as a consequence of Theorem 3.1:

Corollary 3.1. Let R be an abelian ring. The following conditions are equivalent:
(a) R is clean;
(b) R is strongly clean;
(c) R is $x(x+1)$-clean;
(d) R is n-clean for all positive integers n;
(e) R is a right tb-ring;
(f) The collection $\xi=\left\{U_{r}(s) \mid s \in \operatorname{Id}(R)\right\}$ forms a base for the weak Zariski topology on $\operatorname{Max}_{r}(R)$;
(g) For every $a \in R$, there exists $s \in \operatorname{Id}(R)$
such that $V_{r}(a) \subseteq U_{r}(s)$ and $V_{r}(a-1) \subseteq V_{r}(s)$;
(h) R is a left tb-ring;
(i) The collection $\xi=\left\{U_{l}(s) \mid s \in \operatorname{Id}(R)\right\}$ forms a base for the weak Zariski topology on $\operatorname{Max}_{l}(R)$.

References

1. V.P. Camillo, J. J. Simón, The Nicholson-Varadarajan theorem on clean linear transformations, Glasg. Math. J. 44 (2002), 365-369.
2. A. Y. M. Chin, Clean elements in abelian rings, Proc. Indian Acad. Sci., Math. Sci. 119 (2009), 145-148.
3. L. Fan, X. Yang, On rings whose elements are the sum of a unit and a root of a fixed polynomial, Commun. Algebra 36 (2008), 269-278.
4. J. Han, W. K. Nicholson, Extensions of clean rings, Commun. Algebra 29 (2001), 2589-2595.
5. W. Wm. McGovern, Neat rings, J. Pure Appl. Algebra 205 (2006), 243-265.
6. S. H. Sun, Rings in which every prime ideal is contained in a unique maximal right ideal, J. Pure Appl. Algebra 78 (1992), 183-194.
7. Z. Wang, J. Chen, A note on clean rings, Algebra Colloq. 14 (2007), 537-540.
8. G. Xiao, W. Tong, n-clean rings and weakly unit stable range rings, Commun. Algebra 33 (2005), 1501-1517.
9._, n-clean rings, Algebra Colloq. 13 (2006), 599-606.
9. G. Zhang, W. Tong, F. Wang, Spectra of maximal 1-sided ideals and primitive ideals, Commun. Algebra 34 (2006), 2879-2896.

Institute of Mathematical Sciences (Received 2005 2015)
University of Malaya
Kuala Lumpur
Malaysia
acym@um.edu.my
Department of Mathematical and Actuarial Sciences Universiti Tunku Abdul Rahman
Kajang, Selangor
Malaysia
quakt@utar.edu.my

