PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 102(116) (2017), 241-246

DOI: https://doi.org/10.2298/PIM1716241S

TRANSFORMS FOR MINIMAL SURFACES **IN 5-DIMENSIONAL SPACE FORMS**

Makoto Sakaki

ABSTRACT. For a minimal surface in a 5-dimensional space form, we give transforms to get another minimal surface in another 5-or 4-dimensional space form.

1. Introduction

For a minimal surface in the 3-sphere S^3 , the unit normal vector field, that is, the Gauss map gives another minimal surface in S^3 possibly with singularities (cf. [5]). It is generalized by Bolton, Pedit and Woodward [2] for superconformal minimal surfaces in odd-dimensional spheres. On the other hand, Bolton and Vrancken [3] discovered new transforms from a minimal surface with non-circular ellipse of curvature in the 5-sphere S^5 , to another minimal surface in S^5 , which are called (\pm) transforms (see also [1, 4]).

In this paper, generalizing them, we give transforms from a minimal surface in a 5-dimensional space form, to another minimal surface in another 5-or 4-dimensional space form.

Let $N^n(c)$ be the *n*-dimensional Riemannian space form of constant curvature c, where c is either 1, 0 or -1. In particular, let $N^n(1) = S^n$, $N^n(0) = R^n$ and $N^n(-1) = H^n$. Let R_1^{n+1} be the (n+1)-dimensional Minkowski space with standard coordinate system $(x_1, \dots, x_n, x_{n+1})$ of signature $(+, \dots, +, -)$. Then

$$H^{n} = \{(x_{1}, \cdots, x_{n}, x_{n+1}) \in R_{1}^{n+1} \mid x_{1}^{2} + \cdots + x_{n}^{2} - x_{n+1}^{2} = -1\},\$$

and

$$S_1^n = \{ (x_1, \cdots, x_n, x_{n+1}) \in R_1^{n+1} \mid x_1^2 + \cdots + x_n^2 - x_{n+1}^2 = 1 \},$$

is the *n* dimensional de Sitter space

where S_1^n is the *n*-dimensional de Sitter space. Let $f: M \to N^5(c)$ be an immersion of a 2-dimensional manifold M into $N^5(c)$. We denote by h the second fundamental form of f. The first normal space $T_1^{\perp}(x)$ at $x \in M$ is defined by

$$T_1^{\perp}(x) = \{h(X, Y) \mid X, Y \in T_x M\}.$$

2010 Mathematics Subject Classification: Primary 53A10; Secondary 53B25. Key words and phrases: minimal surface, space form, transform, ellipse of curvature.

Communicated by Stevan Pilipović.

The ellipse of curvature E(x) at $x \in M$ is defined by

$$E(x) = \{h(X, X) \mid X \in T_x M, \ |X| = 1\}.$$

We assume that $f: M \to N^5(c)$ is a minimal immersion. Suppose that the ellipse of curvature is non-degenerate at any point. Then the dimension of the first normal space is 2 at any point. Let e_5 be the unit normal vector to f(M) which is orthogonal to the first normal space. Then we can regard $G = e_5$ as a map to either S^5 , S^4 or S_1^5 , according to when c = 1, 0 or -1. It is the Gauss-like map.

THEOREM 1.1. Let $f: M \to N^5(c)$ be a minimal surface. Suppose that the ellipse of curvature is a non-degenerate circle at any point. If the Gauss-like map G is non-degenerate, then it gives a minimal surface in either S^5 , S^4 or S_1^5 .

REMARK 1.1. The case c = 1 can be seen in [2].

Next we consider the case where the ellipse of curvature is not a circle. For a minimal surface $f: M \to N^5(c)$, suppose that the ellipse of curvature is nondegenerate and non-circular at any point. Let a and b be the semi-minor and semimajor axes of the ellipse of curvature, respectively. We choose the local normal orthonormal frame field $\{e_{\alpha}\}_{3 \leq \alpha \leq 5}$ so that e_3 is in the direction of the semi-minor axis and e_4 is in the direction of the semi-major axis. Now, for $\varepsilon = +1$ or -1, let

$$f^{\varepsilon} = \varepsilon \sqrt{1 - \left(\frac{a}{b}\right)^2} e_4 + \frac{a}{b} e_5$$

Then f^{ε} is a map to either S^5 , S^4 or S_1^5 , according to when c = 1, 0 or -1.

THEOREM 1.2. Let $f: M \to N^5(c)$ be a minimal surface. Suppose that the ellipse of curvature is non-degenerate and non-circular at any point. Then f^{ε} gives a minimal surface in either S^5 , S^4 or S_1^5 .

REMARK 1.2. It is a generalization of [3] for S^5 .

2. Preliminaries

In this section, we recall the method of moving frames for surfaces in 5dimensional space forms. We shall use the following convention on the ranges of indices:

$$1 \leq A, B, \ldots \leq 5, \quad 1 \leq i, j, \ldots \leq 2, \quad 3 \leq \alpha, \beta, \ldots \leq 5.$$

Let $\{e_A\}$ be a local orthonormal frame field in $N^5(c)$, and $\{\omega^A\}$ be the dual coframe field. Let ω_B^A denote the connection forms which satisfy $\omega_B^A = -\omega_A^B$. The structure equations are given by

(2.1)
$$d\omega^A = -\sum_B \omega^A_B \wedge \omega^B,$$

$$d\omega_B^A = -\sum_C \omega_C^A \wedge \omega_B^C + \frac{1}{2} \sum_{C,D} R^A_{BCD} \omega^C \wedge \omega^D, \quad R^A_{BCD} = c(\delta_C^A \delta_{BD} - \delta_D^A \delta_{BC}).$$

Let $f: M \to N^5(c)$ be a surface in $N^5(c)$. When c = 1, f is an R^6 -valued map with $\langle f, f \rangle = 1$. When c = -1, f is an R_1^6 -valued map with $\langle f, f \rangle = -1$.

We choose the frame $\{e_A\}$ so that $\{e_i\}$ are tangent to f(M). In the following, the argument will be restricted to f(M). Then $\omega^{\alpha} = 0$ along f(M), and by (2.1), we have

$$0 = -\sum_{i} \omega_{i}^{\alpha} \wedge \omega^{i}.$$

So there exists a symmetric tensor $\{h_{ij}^{\alpha}\}$ so that

$$\omega_i^{\alpha} = \sum_j h_{ij}^{\alpha} \omega^j,$$

where h_{ij}^{α} are the components of the second fundamental form h of f. In the ambient $R^6(\supset S^5)$, R^5 or $R_1^6(\supset H^5)$, according to when c = 1, 0 or -1, we have

$$de_j = \sum_i e_i \omega_j^i + \sum_\alpha e_\alpha \omega_j^\alpha - cf \omega^j,$$

and

$$de_{\beta} = \sum_{i} e_{i} \omega_{\beta}^{i} + \sum_{\alpha} e_{\alpha} \omega_{\beta}^{\alpha}.$$

The mean curvature vector H of f is given by

$$H = \frac{1}{2} \sum_{\alpha} (h_{11}^{\alpha} + h_{22}^{\alpha}) e_{\alpha}.$$

We say that f is minimal if H = 0 identically.

3. Proof of Theorem 1.1

PROOF. Since the ellipse of curvature is a non-degenerate circle at any point, we can choose the local orthonormal frame field $\{e_A\}$ so that

$$(h_{ij}^3) = \begin{pmatrix} a & 0\\ 0 & -a \end{pmatrix}, \quad (h_{ij}^4) = \begin{pmatrix} 0 & a\\ a & 0 \end{pmatrix}, \quad (h_{ij}^5) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix},$$

where a > 0. Then

$$\omega_1^3 = a\omega^1, \quad \omega_2^3 = -a\omega^2, \quad \omega_1^4 = a\omega^2, \quad \omega_2^4 = a\omega^1, \quad \omega_1^5 = \omega_2^5 = 0.$$

We compute that

$$0 = d\omega_1^5 = -\omega_3^5 \wedge \omega_1^3 - \omega_4^5 \wedge \omega_1^4 = a(\omega^1 \wedge \omega_3^5 - \omega_4^5 \wedge \omega^2)$$

and

$$0 = d\omega_2^5 = -\omega_3^5 \wedge \omega_2^3 - \omega_4^5 \wedge \omega_2^4 = a(\omega_3^5 \wedge \omega^2 + \omega^1 \wedge \omega_4^5).$$

Then, using the notation like

$$\omega_3^5 = (\omega_3^5)_1 \omega^1 + (\omega_3^5)_2 \omega^2, \quad \omega_4^5 = (\omega_4^5)_1 \omega^1 + (\omega_4^5)_2 \omega^2,$$

we have

$$(\omega_3^5)_2 - (\omega_4^5)_1 = 0, \quad (\omega_3^5)_1 + (\omega_4^5)_2 = 0.$$

So we can write

$$\omega_3^5 = p\omega^1 + q\omega^2, \quad \omega_4^5 = q\omega^1 - p\omega^2$$

for some functions p and q.

SAKAKI

For the Gauss-like map $G = e_5$, we have

$$dG(e_1) = de_5(e_1) = (\omega_5^3)_1 \ e_3 + (\omega_5^4)_1 \ e_4 = -pe_3 - qe_4,$$

$$dG(e_2) = de_5(e_2) = (\omega_5^3)_2 \ e_3 + (\omega_5^4)_2 \ e_4 = -qe_3 + pe_4,$$

and

$$\langle dG(e_1), dG(e_1) \rangle = \langle dG(e_2), dG(e_2) \rangle = p^2 + q^2, \quad \langle dG(e_1), dG(e_2) \rangle = 0.$$

Assume that G is non-degenerate in the following. Then $p^2 + q^2 > 0$, and G is conformal to f.

Now we have

$$dG = -e_3(p\omega^1 + q\omega^2) - e_4(q\omega^1 - p\omega^2).$$

Let * denote the Hodge star operator so that $*\omega^1 = \omega^2$ and $*\omega^2 = -\omega^1$. Then

$$*dG = e_3(q\omega^1 - p\omega^2) - e_4(p\omega^1 + q\omega^2) = e_3\omega_4^5 - e_4\omega_3^5.$$

We can compute that

$$d(*dG) = -2(p^2 + q^2)e_5\omega^1 \wedge \omega^2$$

Denoting the Laplacian by Δ , we get $\Delta G = -2(p^2 + q^2)G$. So the Gauss-like map G is a conformal harmonic map to either S^5 , S^4 or S_1^5 , according to when c = 1, 0 or -1. Thus G gives a minimal surface in either S^5 , S^4 or S_1^5 .

4. Proof of Theorem 1.2

PROOF. Since the ellipse of curvature is non-degenerate and non-circular at any point, we can choose the local orthonormal frame field $\{e_A\}$ so that

$$(h_{ij}^3) = \begin{pmatrix} a & 0\\ 0 & -a \end{pmatrix}, \quad (h_{ij}^4) = \begin{pmatrix} 0 & b\\ b & 0 \end{pmatrix}, \quad (h_{ij}^5) = \begin{pmatrix} 0 & 0\\ 0 & 0 \end{pmatrix},$$

where 0 < a < b. We note that a and b are the semi-minor and semi-major axes of the ellipse of curvature, respectively. Then we have

$$\omega_1^3 = a\omega^1, \quad \omega_2^3 = -a\omega^2, \quad \omega_1^4 = b\omega^2, \quad \omega_2^4 = b\omega^1, \quad \omega_1^5 = \omega_2^5 = 0.$$

We compute that

$$d\omega_1^3 = da \wedge \omega^1 - a\omega_2^1 \wedge \omega^2 = -\omega_2^3 \wedge \omega_1^2 - \omega_4^3 \wedge \omega_1^4 = a\omega_2^1 \wedge \omega^2 - b\omega_4^3 \wedge \omega^2.$$

Using the notation like

$$\begin{split} \omega_2^1 &= (\omega_2^1)_1 \omega^1 + (\omega_2^1)_2 \omega^2, \quad \omega_4^3 = (\omega_4^3)_1 \omega^1 + (\omega_4^3)_2 \omega^2, \\ da &= a_1 \omega^1 + a_2 \omega^2, \quad db = b_1 \omega^1 + b_2 \omega^2, \end{split}$$

we have

$$2a(\omega_2^1)_1 - b(\omega_4^3)_1 = -a_2.$$

Similarly, from $d\omega_2^3$, $d\omega_1^4$ and $d\omega_2^4$,

$$2a(\omega_2^1)_2 - b(\omega_4^3)_2 = a_1, \quad 2b(\omega_2^1)_2 - a(\omega_4^3)_2 = b_1, \quad 2b(\omega_2^1)_1 - a(\omega_4^3)_1 = -b_2.$$

Thus we get

$$2a\omega_2^1 - b\omega_4^3 = *da, \quad 2b\omega_2^1 - a\omega_4^3 = *db$$

and

$$\omega_2^1 = \frac{1}{4}(*d\log(b^2 - a^2)), \quad \omega_4^3 = \frac{a(*db) - b(*da)}{b^2 - a^2} = -\frac{*d(a/b)}{1 - (a/b)^2}$$

Next we compute that

$$0 = d\omega_1^5 = -\omega_3^5 \wedge \omega_1^3 - \omega_4^5 \wedge \omega_1^4 = a\omega^1 \wedge \omega_3^5 - b\omega_4^5 \wedge \omega^2$$

and

$$0 = d\omega_2^5 = -\omega_3^5 \wedge \omega_2^3 - \omega_4^5 \wedge \omega_2^4 = a\omega_3^5 \wedge \omega^2 + b\omega^1 \wedge \omega_4^5.$$

Then we can write

$$\omega_3^5 = b(p\omega^1 + q\omega^2), \quad \omega_4^5 = a(q\omega^1 - p\omega^2)$$

for some functions p and q. From $d\omega_4^3 = -\omega_1^3 \wedge \omega_4^1 - \omega_2^3 \wedge \omega_4^2 - \omega_5^3 \wedge \omega_4^5$, we obtain $\Delta(a/b) = 2(a/b)|d(a/b)|^2$

(4.1)
$$-\frac{\Delta(a/b)}{1-(a/b)^2} - \frac{2(a/b)|d(a/b)|^2}{(1-(a/b)^2)^2} = ab(2-p^2-q^2).$$

Set r = a/b. Then $f^{\varepsilon} = \varepsilon \sqrt{1 - r^2} e_4 + r e_5$. We can compute that

$$df^{\varepsilon}(e_1) = -\varepsilon b\sqrt{1-r^2}e_2 + \left(\varepsilon \frac{r_2}{\sqrt{1-r^2}} - ap\right)e_3 \\ - \left(\varepsilon \frac{r_1}{\sqrt{1-r^2}} + aq\right)(re_4 - \varepsilon\sqrt{1-r^2}e_5),$$

and

$$df^{\varepsilon}(e_2) = -\varepsilon b\sqrt{1-r^2}e_1 - \left(\varepsilon \frac{r_1}{\sqrt{1-r^2}} + aq\right)e_3 - \left(\varepsilon \frac{r_2}{\sqrt{1-r^2}} - ap\right)(re_4 - \varepsilon\sqrt{1-r^2}e_5).$$

 Set

$$A = \varepsilon \frac{r_1}{\sqrt{1 - r^2}} + aq, \quad B = \varepsilon \frac{r_2}{\sqrt{1 - r^2}} - ap.$$

Then we have

$$\begin{split} \langle df^{\varepsilon}(e_1), df^{\varepsilon}(e_1) \rangle &= \langle df^{\varepsilon}(e_2), df^{\varepsilon}(e_2) \rangle = b^2 - a^2 + A^2 + B^2 (>0) \\ &= b^2 - a^2 + \frac{|dr|^2}{1 - r^2} + \frac{2\varepsilon a(qr_1 - pr_2)}{\sqrt{1 - r^2}} + a^2(p^2 + q^2), \end{split}$$

and $\langle df^{\varepsilon}(e_1), df^{\varepsilon}(e_2) \rangle = 0$. So f^{ε} is conformal to f. Now we have

$$df^{\varepsilon} = -\varepsilon b\sqrt{1 - r^2}(e_2\omega^1 + e_1\omega^2) - \varepsilon e_3(*d(\sin^{-1}r)) - ae_3(p\omega^1 + q\omega^2) + \varepsilon e_4d(\sqrt{1 - r^2}) + e_5dr - are_4(q\omega^1 - p\omega^2) + \varepsilon a\sqrt{1 - r^2}e_5(q\omega^1 - p\omega^2),$$

and

$$*df^{\varepsilon} = \varepsilon \sqrt{1 - r^2} (e_1 \omega_2^4 - e_2 \omega_1^4) + \varepsilon e_3 d(\sin^{-1} r) + e_3 \omega_4^5 \\ + \varepsilon e_4 (*d(\sqrt{1 - r^2})) + e_5 (*dr) - r^2 e_4 \omega_3^5 + \varepsilon r \sqrt{1 - r^2} e_5 \omega_3^5.$$

SAKAKI

We need to compute $d(*df^{\varepsilon})$ to get Δf^{ε} . We note that

$$\Delta(\sqrt{1-r^2}) = -\frac{r\Delta r}{\sqrt{1-r^2}} - \frac{|dr|^2}{(1-r^2)^{3/2}},$$

and by (4.1),

$$\Delta r = ab(p^2 + q^2 - 2)(1 - r^2) - \frac{2r|dr|^2}{1 - r^2}.$$

By a little long but straight computation, we can show that

$$\Delta f^{\varepsilon} = -2\Big(b^2 - a^2 + \frac{|dr|^2}{1 - r^2} + \frac{2\varepsilon a(qr_1 - pr_2)}{\sqrt{1 - r^2}} + a^2(p^2 + q^2)\Big)f^{\varepsilon}.$$

Hence, the map f^{ε} is a conformal harmonic map to either S^5 , S^4 or S_1^5 , according to when c = 1, 0 or -1. Thus f^{ε} gives a minimal surface in either S^5 , S^4 or S_1^5 . \Box

References

- M. Antić, L. Vrancken, Sequences of minimal surfaces in S²ⁿ⁺¹, Isr. J. Math. 179 (2010), 493–508.
- J. Bolton, F. Pedit, L. M. Woodward, Minimal surfaces and the affine Toda field model, J. Reine Angew. Math. 459 (1995), 119–150.
- J. Bolton, L. Vrancken, Transforms for minimal surfaces in the 5-sphere, Differ. Geom. Appl. 27 (2009), 34–46.
- B. Dioos, J. Van der Veken, L. Vrancken, Sequences of harmonic maps in the 3-sphere, Math. Nachr. 288 (2015), 2001–2015.
- 5. H.B. Lawson, Complete minimal surfaces in S³, Ann. Math. (2) **92** (1970), 335–374.

Graduate School of Science and Technology Hirosaki University Hirosaki Japan sakaki@hirosaki-u.ac.jp (Received 21 09 2016)