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TRANSFORMS FOR MINIMAL SURFACES
IN 5-DIMENSIONAL SPACE FORMS

Makoto Sakaki

Abstract. For a minimal surface in a 5-dimensional space form, we give
transforms to get another minimal surface in another 5-or 4-dimensional space
form.

1. Introduction

For a minimal surface in the 3-sphere 𝑆3, the unit normal vector field, that is,
the Gauss map gives another minimal surface in 𝑆3 possibly with singularities (cf.
[5]). It is generalized by Bolton, Pedit and Woodward [2] for superconformal mini-
mal surfaces in odd-dimensional spheres. On the other hand, Bolton and Vrancken
[3] discovered new transforms from a minimal surface with non-circular ellipse of
curvature in the 5-sphere 𝑆5, to another minimal surface in 𝑆5, which are called
(±)transforms (see also [1, 4]).

In this paper, generalizing them, we give transforms from a minimal surface in a
5-dimensional space form, to another minimal surface in another 5-or 4-dimensional
space form.

Let 𝑁𝑛(𝑐) be the 𝑛-dimensional Riemannian space form of constant curvature
𝑐, where 𝑐 is either 1, 0 or −1. In particular, let 𝑁𝑛(1) = 𝑆𝑛, 𝑁𝑛(0) = 𝑅𝑛

and 𝑁𝑛(−1) = 𝐻𝑛. Let 𝑅𝑛+1
1 be the (𝑛 + 1)-dimensional Minkowski space with

standard coordinate system (𝑥1, · · · , 𝑥𝑛, 𝑥𝑛+1) of signature (+, · · · , +, −). Then
𝐻𝑛 = {(𝑥1, · · · , 𝑥𝑛, 𝑥𝑛+1) ∈ 𝑅𝑛+1

1 | 𝑥2
1 + · · · + 𝑥2

𝑛 − 𝑥2
𝑛+1 = −1},

and
𝑆𝑛

1 = {(𝑥1, · · · , 𝑥𝑛, 𝑥𝑛+1) ∈ 𝑅𝑛+1
1 | 𝑥2

1 + · · · + 𝑥2
𝑛 − 𝑥2

𝑛+1 = 1},

where 𝑆𝑛
1 is the 𝑛-dimensional de Sitter space.

Let 𝑓 : 𝑀 → 𝑁5(𝑐) be an immersion of a 2-dimensional manifold 𝑀 into 𝑁5(𝑐).
We denote by ℎ the second fundamental form of 𝑓 . The first normal space 𝑇 ⊥

1 (𝑥)
at 𝑥 ∈ 𝑀 is defined by

𝑇 ⊥
1 (𝑥) = {ℎ(𝑋, 𝑌 ) | 𝑋, 𝑌 ∈ 𝑇𝑥𝑀}.
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The ellipse of curvature 𝐸(𝑥) at 𝑥 ∈ 𝑀 is defined by
𝐸(𝑥) = {ℎ(𝑋, 𝑋) | 𝑋 ∈ 𝑇𝑥𝑀, |𝑋| = 1}.

We assume that 𝑓 : 𝑀 → 𝑁5(𝑐) is a minimal immersion. Suppose that the
ellipse of curvature is non-degenerate at any point. Then the dimension of the first
normal space is 2 at any point. Let 𝑒5 be the unit normal vector to 𝑓(𝑀) which
is orthogonal to the first normal space. Then we can regard 𝐺 = 𝑒5 as a map to
either 𝑆5, 𝑆4 or 𝑆5

1 , according to when 𝑐 = 1, 0 or −1. It is the Gauss-like map.

Theorem 1.1. Let 𝑓 : 𝑀 → 𝑁5(𝑐) be a minimal surface. Suppose that the
ellipse of curvature is a non-degenerate circle at any point. If the Gauss-like map
𝐺 is non-degenerate, then it gives a minimal surface in either 𝑆5, 𝑆4 or 𝑆5

1 .

Remark 1.1. The case 𝑐 = 1 can be seen in [2].

Next we consider the case where the ellipse of curvature is not a circle. For
a minimal surface 𝑓 : 𝑀 → 𝑁5(𝑐), suppose that the ellipse of curvature is non-
degenerate and non-circular at any point. Let 𝑎 and 𝑏 be the semi-minor and semi-
major axes of the ellipse of curvature, respectively. We choose the local normal
orthonormal frame field {𝑒𝛼}36𝛼65 so that 𝑒3 is in the direction of the semi-minor
axis and 𝑒4 is in the direction of the semi-major axis. Now, for 𝜀 = +1 or −1, let

𝑓𝜀 = 𝜀

√︂
1 −

(︁𝑎

𝑏

)︁2
𝑒4 + 𝑎

𝑏
𝑒5.

Then 𝑓𝜀 is a map to either 𝑆5, 𝑆4 or 𝑆5
1 , according to when 𝑐 = 1, 0 or −1.

Theorem 1.2. Let 𝑓 : 𝑀 → 𝑁5(𝑐) be a minimal surface. Suppose that the
ellipse of curvature is non-degenerate and non-circular at any point. Then 𝑓𝜀 gives
a minimal surface in either 𝑆5, 𝑆4 or 𝑆5

1 .

Remark 1.2. It is a generalization of [3] for 𝑆5.

2. Preliminaries

In this section, we recall the method of moving frames for surfaces in 5-
dimensional space forms. We shall use the following convention on the ranges
of indices:

1 6 𝐴, 𝐵, . . . 6 5, 1 6 𝑖, 𝑗, . . . 6 2, 3 6 𝛼, 𝛽, . . . 6 5.

Let {𝑒𝐴} be a local orthonormal frame field in 𝑁5(𝑐), and {𝜔𝐴} be the dual
coframe field. Let 𝜔𝐴

𝐵 denote the connection forms which satisfy 𝜔𝐴
𝐵 = −𝜔𝐵

𝐴 . The
structure equations are given by

(2.1) 𝑑𝜔𝐴 = −
∑︁

𝐵

𝜔𝐴
𝐵 ∧ 𝜔𝐵 ,

𝑑𝜔𝐴
𝐵 = −

∑︁
𝐶

𝜔𝐴
𝐶 ∧ 𝜔𝐶

𝐵 + 1
2

∑︁
𝐶,𝐷

𝑅𝐴
𝐵𝐶𝐷𝜔𝐶 ∧ 𝜔𝐷, 𝑅𝐴

𝐵𝐶𝐷 = 𝑐(𝛿𝐴
𝐶𝛿𝐵𝐷 − 𝛿𝐴

𝐷𝛿𝐵𝐶).

Let 𝑓 : 𝑀 → 𝑁5(𝑐) be a surface in 𝑁5(𝑐). When 𝑐 = 1, 𝑓 is an 𝑅6-valued map
with ⟨𝑓, 𝑓⟩ = 1. When 𝑐 = −1, 𝑓 is an 𝑅6

1-valued map with ⟨𝑓, 𝑓⟩ = −1.
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We choose the frame {𝑒𝐴} so that {𝑒𝑖} are tangent to 𝑓(𝑀). In the following,
the argument will be restricted to 𝑓(𝑀). Then 𝜔𝛼 = 0 along 𝑓(𝑀), and by (2.1),
we have

0 = −
∑︁

𝑖

𝜔𝛼
𝑖 ∧ 𝜔𝑖.

So there exists a symmetric tensor {ℎ𝛼
𝑖𝑗} so that

𝜔𝛼
𝑖 =

∑︁
𝑗

ℎ𝛼
𝑖𝑗𝜔𝑗 ,

where ℎ𝛼
𝑖𝑗 are the components of the second fundamental form ℎ of 𝑓 .

In the ambient 𝑅6(⊃ 𝑆5), 𝑅5 or 𝑅6
1(⊃ 𝐻5), according to when 𝑐 = 1, 0 or −1,

we have
𝑑𝑒𝑗 =

∑︁
𝑖

𝑒𝑖𝜔
𝑖
𝑗 +

∑︁
𝛼

𝑒𝛼𝜔𝛼
𝑗 − 𝑐𝑓𝜔𝑗 ,

and
𝑑𝑒𝛽 =

∑︁
𝑖

𝑒𝑖𝜔
𝑖
𝛽 +

∑︁
𝛼

𝑒𝛼𝜔𝛼
𝛽 .

The mean curvature vector 𝐻 of 𝑓 is given by

𝐻 = 1
2

∑︁
𝛼

(ℎ𝛼
11 + ℎ𝛼

22)𝑒𝛼.

We say that 𝑓 is minimal if 𝐻 = 0 identically.

3. Proof of Theorem 1.1

Proof. Since the ellipse of curvature is a non-degenerate circle at any point,
we can choose the local orthonormal frame field {𝑒𝐴} so that

(ℎ3
𝑖𝑗) =

(︂
𝑎 0
0 −𝑎

)︂
, (ℎ4

𝑖𝑗) =
(︂

0 𝑎
𝑎 0

)︂
, (ℎ5

𝑖𝑗) =
(︂

0 0
0 0

)︂
,

where 𝑎 > 0. Then
𝜔3

1 = 𝑎𝜔1, 𝜔3
2 = −𝑎𝜔2, 𝜔4

1 = 𝑎𝜔2, 𝜔4
2 = 𝑎𝜔1, 𝜔5

1 = 𝜔5
2 = 0.

We compute that
0 = 𝑑𝜔5

1 = −𝜔5
3 ∧ 𝜔3

1 − 𝜔5
4 ∧ 𝜔4

1 = 𝑎(𝜔1 ∧ 𝜔5
3 − 𝜔5

4 ∧ 𝜔2)
and

0 = 𝑑𝜔5
2 = −𝜔5

3 ∧ 𝜔3
2 − 𝜔5

4 ∧ 𝜔4
2 = 𝑎(𝜔5

3 ∧ 𝜔2 + 𝜔1 ∧ 𝜔5
4).

Then, using the notation like
𝜔5

3 = (𝜔5
3)1𝜔1 + (𝜔5

3)2𝜔2, 𝜔5
4 = (𝜔5

4)1𝜔1 + (𝜔5
4)2𝜔2,

we have
(𝜔5

3)2 − (𝜔5
4)1 = 0, (𝜔5

3)1 + (𝜔5
4)2 = 0.

So we can write
𝜔5

3 = 𝑝𝜔1 + 𝑞𝜔2, 𝜔5
4 = 𝑞𝜔1 − 𝑝𝜔2

for some functions 𝑝 and 𝑞.
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For the Gauss-like map 𝐺 = 𝑒5, we have
𝑑𝐺(𝑒1) = 𝑑𝑒5(𝑒1) = (𝜔3

5)1 𝑒3 + (𝜔4
5)1 𝑒4 = −𝑝𝑒3 − 𝑞𝑒4,

𝑑𝐺(𝑒2) = 𝑑𝑒5(𝑒2) = (𝜔3
5)2 𝑒3 + (𝜔4

5)2 𝑒4 = −𝑞𝑒3 + 𝑝𝑒4,

and
⟨𝑑𝐺(𝑒1), 𝑑𝐺(𝑒1)⟩ = ⟨𝑑𝐺(𝑒2), 𝑑𝐺(𝑒2)⟩ = 𝑝2 + 𝑞2, ⟨𝑑𝐺(𝑒1), 𝑑𝐺(𝑒2)⟩ = 0.

Assume that 𝐺 is non-degenerate in the following. Then 𝑝2 + 𝑞2 > 0, and 𝐺 is
conformal to 𝑓 .

Now we have
𝑑𝐺 = −𝑒3(𝑝𝜔1 + 𝑞𝜔2) − 𝑒4(𝑞𝜔1 − 𝑝𝜔2).

Let * denote the Hodge star operator so that *𝜔1 = 𝜔2 and *𝜔2 = −𝜔1. Then
*𝑑𝐺 = 𝑒3(𝑞𝜔1 − 𝑝𝜔2) − 𝑒4(𝑝𝜔1 + 𝑞𝜔2) = 𝑒3𝜔5

4 − 𝑒4𝜔5
3 .

We can compute that
𝑑(*𝑑𝐺) = −2(𝑝2 + 𝑞2)𝑒5𝜔1 ∧ 𝜔2.

Denoting the Laplacian by Δ, we get Δ𝐺 = −2(𝑝2 + 𝑞2)𝐺. So the Gauss-like map
𝐺 is a conformal harmonic map to either 𝑆5, 𝑆4 or 𝑆5

1 , according to when 𝑐 = 1, 0
or −1. Thus 𝐺 gives a minimal surface in either 𝑆5, 𝑆4 or 𝑆5

1 . �

4. Proof of Theorem 1.2

Proof. Since the ellipse of curvature is non-degenerate and non-circular at
any point, we can choose the local orthonormal frame field {𝑒𝐴} so that

(ℎ3
𝑖𝑗) =

(︂
𝑎 0
0 −𝑎

)︂
, (ℎ4

𝑖𝑗) =
(︂

0 𝑏
𝑏 0

)︂
, (ℎ5

𝑖𝑗) =
(︂

0 0
0 0

)︂
,

where 0 < 𝑎 < 𝑏. We note that 𝑎 and 𝑏 are the semi-minor and semi-major axes of
the ellipse of curvature, respectively. Then we have

𝜔3
1 = 𝑎𝜔1, 𝜔3

2 = −𝑎𝜔2, 𝜔4
1 = 𝑏𝜔2, 𝜔4

2 = 𝑏𝜔1, 𝜔5
1 = 𝜔5

2 = 0.

We compute that
𝑑𝜔3

1 = 𝑑𝑎 ∧ 𝜔1 − 𝑎𝜔1
2 ∧ 𝜔2 = −𝜔3

2 ∧ 𝜔2
1 − 𝜔3

4 ∧ 𝜔4
1 = 𝑎𝜔1

2 ∧ 𝜔2 − 𝑏𝜔3
4 ∧ 𝜔2.

Using the notation like
𝜔1

2 = (𝜔1
2)1𝜔1 + (𝜔1

2)2𝜔2, 𝜔3
4 = (𝜔3

4)1𝜔1 + (𝜔3
4)2𝜔2,

𝑑𝑎 = 𝑎1𝜔1 + 𝑎2𝜔2, 𝑑𝑏 = 𝑏1𝜔1 + 𝑏2𝜔2,

we have
2𝑎(𝜔1

2)1 − 𝑏(𝜔3
4)1 = −𝑎2.

Similarly, from 𝑑𝜔3
2 , 𝑑𝜔4

1 and 𝑑𝜔4
2 ,

2𝑎(𝜔1
2)2 − 𝑏(𝜔3

4)2 = 𝑎1, 2𝑏(𝜔1
2)2 − 𝑎(𝜔3

4)2 = 𝑏1, 2𝑏(𝜔1
2)1 − 𝑎(𝜔3

4)1 = −𝑏2.

Thus we get
2𝑎𝜔1

2 − 𝑏𝜔3
4 = *𝑑𝑎, 2𝑏𝜔1

2 − 𝑎𝜔3
4 = *𝑑𝑏,
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and
𝜔1

2 = 1
4(*𝑑 log(𝑏2 − 𝑎2)), 𝜔3

4 = 𝑎(*𝑑𝑏) − 𝑏(*𝑑𝑎)
𝑏2 − 𝑎2 = − *𝑑(𝑎/𝑏)

1 − (𝑎/𝑏)2 .

Next we compute that

0 = 𝑑𝜔5
1 = −𝜔5

3 ∧ 𝜔3
1 − 𝜔5

4 ∧ 𝜔4
1 = 𝑎𝜔1 ∧ 𝜔5

3 − 𝑏𝜔5
4 ∧ 𝜔2

and
0 = 𝑑𝜔5

2 = −𝜔5
3 ∧ 𝜔3

2 − 𝜔5
4 ∧ 𝜔4

2 = 𝑎𝜔5
3 ∧ 𝜔2 + 𝑏𝜔1 ∧ 𝜔5

4 .

Then we can write

𝜔5
3 = 𝑏(𝑝𝜔1 + 𝑞𝜔2), 𝜔5

4 = 𝑎(𝑞𝜔1 − 𝑝𝜔2)

for some functions 𝑝 and 𝑞.
From 𝑑𝜔3

4 = −𝜔3
1 ∧ 𝜔1

4 − 𝜔3
2 ∧ 𝜔2

4 − 𝜔3
5 ∧ 𝜔5

4 , we obtain

(4.1) − Δ(𝑎/𝑏)
1 − (𝑎/𝑏)2 − 2(𝑎/𝑏)|𝑑(𝑎/𝑏)|2

(1 − (𝑎/𝑏)2)2 = 𝑎𝑏(2 − 𝑝2 − 𝑞2).

Set 𝑟 = 𝑎/𝑏. Then 𝑓𝜀 = 𝜀
√

1 − 𝑟2𝑒4 + 𝑟𝑒5. We can compute that

𝑑𝑓𝜀(𝑒1) = − 𝜀𝑏
√︀

1 − 𝑟2𝑒2 +
(︁

𝜀
𝑟2√

1 − 𝑟2
− 𝑎𝑝

)︁
𝑒3

−
(︁

𝜀
𝑟1√

1 − 𝑟2
+ 𝑎𝑞

)︁
(𝑟𝑒4 − 𝜀

√︀
1 − 𝑟2𝑒5),

and

𝑑𝑓𝜀(𝑒2) = − 𝜀𝑏
√︀

1 − 𝑟2𝑒1 −
(︁

𝜀
𝑟1√

1 − 𝑟2
+ 𝑎𝑞

)︁
𝑒3

−
(︁

𝜀
𝑟2√

1 − 𝑟2
− 𝑎𝑝

)︁
(𝑟𝑒4 − 𝜀

√︀
1 − 𝑟2𝑒5).

Set
𝐴 = 𝜀

𝑟1√
1 − 𝑟2

+ 𝑎𝑞, 𝐵 = 𝜀
𝑟2√

1 − 𝑟2
− 𝑎𝑝.

Then we have

⟨𝑑𝑓𝜀(𝑒1), 𝑑𝑓𝜀(𝑒1)⟩ = ⟨𝑑𝑓𝜀(𝑒2), 𝑑𝑓𝜀(𝑒2)⟩ = 𝑏2 − 𝑎2 + 𝐴2 + 𝐵2(> 0)

= 𝑏2 − 𝑎2 + |𝑑𝑟|2

1 − 𝑟2 + 2𝜀𝑎(𝑞𝑟1 − 𝑝𝑟2)√
1 − 𝑟2

+ 𝑎2(𝑝2 + 𝑞2),

and ⟨𝑑𝑓𝜀(𝑒1), 𝑑𝑓𝜀(𝑒2)⟩ = 0. So 𝑓𝜀 is conformal to 𝑓 .
Now we have

𝑑𝑓𝜀 = − 𝜀𝑏
√︀

1 − 𝑟2(𝑒2𝜔1 + 𝑒1𝜔2) − 𝜀𝑒3(*𝑑(sin−1 𝑟)) − 𝑎𝑒3(𝑝𝜔1 + 𝑞𝜔2)

+ 𝜀𝑒4𝑑(
√︀

1 − 𝑟2) + 𝑒5𝑑𝑟 − 𝑎𝑟𝑒4(𝑞𝜔1 − 𝑝𝜔2) + 𝜀𝑎
√︀

1 − 𝑟2𝑒5(𝑞𝜔1 − 𝑝𝜔2),

and

*𝑑𝑓𝜀 = 𝜀
√︀

1 − 𝑟2(𝑒1𝜔4
2 − 𝑒2𝜔4

1) + 𝜀𝑒3𝑑(sin−1 𝑟) + 𝑒3𝜔5
4

+ 𝜀𝑒4(*𝑑(
√︀

1 − 𝑟2)) + 𝑒5(*𝑑𝑟) − 𝑟2𝑒4𝜔5
3 + 𝜀𝑟

√︀
1 − 𝑟2𝑒5𝜔5

3 .
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We need to compute 𝑑(*𝑑𝑓𝜀) to get Δ𝑓𝜀. We note that

Δ(
√︀

1 − 𝑟2) = − 𝑟Δ𝑟√
1 − 𝑟2

− |𝑑𝑟|2

(1 − 𝑟2)3/2 ,

and by (4.1),

Δ𝑟 = 𝑎𝑏(𝑝2 + 𝑞2 − 2)(1 − 𝑟2) − 2𝑟|𝑑𝑟|2

1 − 𝑟2 .

By a little long but straight computation, we can show that

Δ𝑓𝜀 = −2
(︁

𝑏2 − 𝑎2 + |𝑑𝑟|2

1 − 𝑟2 + 2𝜀𝑎(𝑞𝑟1 − 𝑝𝑟2)√
1 − 𝑟2

+ 𝑎2(𝑝2 + 𝑞2)
)︁

𝑓𝜀.

Hence, the map 𝑓𝜀 is a conformal harmonic map to either 𝑆5, 𝑆4 or 𝑆5
1 , according

to when 𝑐 = 1, 0 or −1. Thus 𝑓𝜀 gives a minimal surface in either 𝑆5, 𝑆4 or 𝑆5
1 . �
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