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Abstract. A class of nonlocal gravity models, where nonlocal term contains
an analytic function of the d’Alembert operator �, is considered. For sim-
plicity, these models are considered without matter sector. Related equations
of motion for gravitational field gµν(x) are presented and analyzed for a con-
stant scalar curvature R. The corresponding solutions for the cosmological

scale factor a(t) of the FLRW universe are found and discussed.

1. Introduction

General Relativity (GR), which is Einstein theory of gravity (ETG), is a domi-
nant theory of gravitational phenomena in the last hundred years. It is successfully
confirmed in the Solar system, and predicted black holes, gravitational lensing and
gravitational waves, which have been observed. It also predicts dark matter and
dark energy, which are very interesting proposals but not yet experimentally con-
firmed.

Despite its nice theoretical properties and great phenomenological achieve-
ments, Einstein GR is not a complete theory of gravity and it should be modified
in its geometrical sector. Motivations for modification of ETG come from quantum
gravity, string theory, astrophysics and cosmology. Modifications started already
at the early days of GR and have been intensified after discovery of accelerated ex-
pansion of the universe in 1998 (for a review, see [2, 14]). There are no theoretical
principle that could tell us which of huge number of possibilities is an appropri-
ate modification of ETG. Therefore, modification consists in replacement of scalar
curvature R in the Einstein–Hilbert action S = 1

16πG

∫

R
√−g d4x by a covariant
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scalar construction in the framework of the pseudo-Riemannian geometry. A mod-
ified gravity theory to be valuable it has in a limit to contain Einstein GR and
give an acceptable answer to problems of the ETG. One of actual and promising
modifications is nonlocal modified gravity (e.g. see review [9] and [13, 11]).

Here we present cosmological solutions for a nonlocal gravity model (2.1) with
constant scalar curvature (R = R0) in equations of motion (2.2). R = R0 is a
restriction on possible solutions of equations (2.3) and (2.4) for the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric. It is not so restrictive as the condi-
tion that the Hubble parameter (H) is a constant, but it is a stronger condition
than ansätze already used in nonlocal gravity models [9, 1, 12], e.g., �R = aR+ b.

2. Nonlocal gravity

In this paper, we consider a class of nonlocal gravity models without matter,
given by the modified Einstein–Hilbert action in the form

(2.1) S =
1

16πG

∫

(

R − 2Λ + H(R)F(�)G(R)
)√

−g d4x,

where H(R)F(�)G(R) is a nonlocal term with F(�) =
∑∞

n=0 fn�
n as an analytic

function of the d’Alembert operator �. H(R) and G(R) are some differentiable
functions of the scalar curvature R and Λ is the cosmological constant. Inspiration
to take nonlocal F(�) in the analytic form comes from string theory, particularly
from p-adic string theory (e.g. see recent review [10])

By variation of action (2.1) with respect to the metric gµν , we obtain the
equations of motion (EOM) for gµν (e.g., see [6] for details), i.e.,

Gµν + Λgµν − 1

2
gµνH(R)F(�)G(R) + RµνΦ − KµνΦ(2.2)

+
1

2

∞
∑

n=1

fn

n−1
∑

ℓ=0

(

gµνgαβ∂α�
ℓH(R)∂β�

n−1−ℓG(R)

− 2∂µ�
ℓH(R)∂ν�

n−1−ℓG(R) + gµν�
ℓH(R)�n−ℓG(R)

)

= 0,

where Gµν = Rµν − 1
2 Rgµν is the Einstein tensor, and

Kµν = ∇µ∇ν − gµν�, Φ = H′(R)F(�)G(R) + G′(R)F(�)H(R).

Here, the sign ′ denotes derivative with respect to R.
In the case of a homogeneous and isotropic metric of the universe, i.e., the

FLRW metric, equation (2.2) is equivalent to the following system of equations
(trace and 00 component):

4Λ − R − 2H(R)F(�)G(R) + RΦ + 3�Φ(2.3)

+

∞
∑

n=1

fn

n−1
∑

ℓ=0

(

∂µ�
ℓH(R)∂µ

�
n−1−ℓG(R) + 2�ℓH(R)�n−ℓG(R)

)

= 0,
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G00 + Λg00 − 1

2
g00H(R)F(�)G(R) + R00Φ − K00Φ(2.4)

+
1

2

∞
∑

n=1

fn

n−1
∑

ℓ=0

(

g00gαβ∂α�
ℓH(R)∂β�

n−1−ℓG(R)

− 2∂0�
ℓH(R)∂0�

n−1−ℓG(R) + g00�
ℓH(R)�n−ℓG(R)

)

= 0.

The search for a general solution of the scale factor a(t) of equations (2.3) and
(2.4) is a hard task. We find here particular cosmological solutions for the case of
constant scalar curvature R0.

3. Constant scalar curvature

Since we use the FLRW metric ds2 = −dt2+a2(t)
(

dr2

1−kr2 +r2dθ2+r2 sin2 θdφ2
)

,
where k = ±1, 0 is curvature constant and the speed of light c = 1, then scalar

curvature is R = 6
(

ä
a +

(

ȧ
a

)2
+ k

a2

)

and � = − ∂2

∂t2 − 3H ∂
∂t , where H = ȧ

a is the

Hubble parameter.
We want to find the solution of equations of motion (2.3) and (2.4) for cosmo-

logical scale factor a(t) when R = R0 = constant. It is useful to start from the
differential equation

6
( ä

a
+

( ȧ

a

)2
+

k

a2

)

= R0.

The change of variable b(t) = a2(t) yields a second order linear differential
equation with constant coefficients

(3.1) 3b̈ − R0b + 6k = 0.

Depending on the sign of R0, we have the following general solutions for b(t) :

(3.2)

R0 > 0, b(t) =
6k

R0
+ σ cosh

√

R0/3 t + τ sinh
√

R0/3 t,

R0 = 0, b(t) = −kt2 + σt + τ,

R0 < 0, b(t) =
6k

R0
+ σ cos

√

−R0/3 t + τ sin
√

−R0/3 t,

where σ and τ are some constants.
Assumption that scalar curvature is constant simplifies the equations of motion

(2.3) and (2.4) considerably and they take the form

(3.3)

−2U + R0U ′ = R0 − 4Λ,

1

2
U + R00U ′ = Λ − G00,

where U = f0G(R)H(R)|R=R0
and U ′ = f0

∂
∂R (G(R)H(R))|R=R0

.
System of equations (3.3) has two solutions:

U = 2Λ − R0, U ′ = −1,(3.4)

U =
1

2
(R0U ′ + 4Λ − R0), R0 + 4R00 = 0.(3.5)
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The above solution (3.4) for U and U ′ presents constraint on the form of nonlocal
term in (2.1), while solution (3.5) is also a constraint on parameters σ, τ, k and R0

in the expressions for b(t) in (3.2).

3.1. Solution (3.4). Solution (3.4) implies constraint on functions G(R) and
H(R) in action (2.1) in the form f0G(R)H(R)|R=R0

= 2Λ−R0. One of possibilities

is f0 = 1 and G(R) = H(R) =
√

2Λ − R + Y (R), where Y (R0) = Y ′(R)|R=R0
= 0

and all higher derivatives of Y (R) at the point R = R0 are arbitrary. Then the
Einstein term in action (2.1) disappears and it can be rewritten as

(3.6) S =
1

16πG

∫

(

Y (R) +
√

2Λ − R + Y (R) F (�)
√

2Λ − R + Y (R)
)√−g d4x,

where now F (�) =
∑∞

n=1 fn�
n. With respect to solution (3.4), parameters in

expressions (3.2) are arbitrary.

3.2. Solution (3.5): condition R0 + 4R00 = 0. Consider now constraints
which equation R0 + 4R00 = 0 implies on the parameters σ, τ, k and R0 in (3.2).
Since

R00 = −3
ä

a
=

3

4

(ḃ)2 − 2bb̈

b2 ,

one has the following connections between the parameters:

(3.7)

R0 > 0, 36k2 = R2
0(σ2 − τ2),

R0 = 0, σ2 + 4kτ = 0,

R0 < 0, 36k2 = R2
0(σ2 + τ2).

3.2.1. Case R0 > 0. In this case, it is convenient to take R0 = 4Λ, Λ > 0.
Hence, scale factor a(t) (3.2) is

a(t) =

√

3k

2Λ
+ σ cosh 2

√

Λ/3 t + τ sinh 2
√

Λ/3 t , k = ±1.

According to (3.7), in this case

σ2 − τ2 =
9k2

4Λ2 =
9

4Λ2

and we can introduce ϕ such that

cosh 2ϕ =
σ√

σ2 − τ2
=

2σΛ

3
, sinh 2ϕ =

τ√
σ2 − τ2

=
2τΛ

3
.

Now we can write a(t) as

(3.8) a(t) =

√

3

2Λ

(

k + cosh 2
(
√

Λ/3 t + ϕ
))

, k = ±1.

After further transformations of (3.8) we obtain

a(t) =
√

3/Λ cosh
(

√

Λ/3 t + ϕ
)

, k = +1,

a(t) =
√

3/Λ
∣

∣sinh
(
√

Λ/3 t + ϕ
)
∣

∣, k = −1
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which are the same solutions as in the Einstein gravity with cosmological con-
stant Λ.

Now, let σ2 − τ2 = 0; then the scale factor takes the form

a(t) =
√

σ e±

√
Λ/3 t, k = 0, σ > 0.

3.2.2. Case R0 = 0. Taking into account condition σ2 +4kτ = 0, there are two
solutions for the cosmological scale factor a(t) for all values of time t:

(1) k = 0: a(t) =
√

τ , τ > 0.
(2) k = −1: a(t) = t, σ = τ = 0, (c = 1).

Solution (1) corresponds to the Minkowski space. Solution (2) is related to the
Milne model of the universe.

3.2.3. Case R0 < 0. Taking R0 = 4Λ, Λ < 0, the corresponding scale factor
a(t) in (3.2) is

(3.9) a(t) =

√

3k

2Λ
+ σ cos 2

√

−Λ/3 t + τ sin 2
√

−Λ/3 t , Λ < 0.

According to (3.7), in this case

σ2 + τ2 =
9k2

4Λ2 =
9

4Λ2

and we can introduce ϕ such that

cos 2ϕ =
σ√

σ2 + τ2
= −2σΛ

3
, sin 2ϕ =

τ√
σ2 + τ2

= −2τΛ

3
.

We can now rewrite (3.9) as

(3.10) a(t) =

√

− 3

2Λ

(

− k + cos 2
(
√

−Λ/3 t − ϕ
)

)

, Λ < 0 , k = −1.

By standard trigonometric transformation, solution (3.10) can be rewritten in
the usual form

a(t) =
√

−3/Λ cos
(
√

−Λ/3 t − ϕ
)

, Λ < 0, (k = −1).

3.3. Solution (3.6): condition on G(R) and H(R). Here we consider some
functions G(R) and H(R) which satisfy the relation

U =
1

2
(R0U ′ + 4Λ − R0) ,(3.11)

where

U = f0G(R)H(R)|R=R0
, U ′ = f0

∂

∂R
(G(R)H(R))|R=R0

.

Let us start with H(R) = Rp and G(R) = Rq, where p and q are some integers.

Then U = f0Rp+q
0 , U ′ = f0(p + q)Rp+q−1

0 and equality (3.11) becomes

f0Rp+q
0 (2 − p − q) = 4Λ − R0.



58 DIMITRIJEVIĆ, DRAGOVICH, RAKIĆ, AND STANKOVIĆ

3.3.1. Case. 1: p = q = 1. In this case, action (2.1) becomes

S =
1

16πG

∫

(

R − 2Λ + RF(�)R
)√−g d4x

and R0 is related to the cosmological constant Λ by equality R0 = 4Λ. Some
cosmological solutions of nonlocal model (3.3.1) are considered in [1, 12, 7].

3.3.2. Case. 2: p + q = 0. Now action (2.1) takes the form

S =
1

16πG

∫

(

R − 2Λ + R−pF(�)Rp
)√−g d4x

with condition f0 = 2Λ − R0

2 . Studies of this model can be found in [4, 3]. The
special case when p = 1 is introduced and investigated in [5].

3.3.3. Case. 3: H(R) = G(R) =
√

R − 2Λ. In this case we have

U = f0(R0 − 2Λ), U ′ = f0,

and equality (3.11) becomes

f0(R0 − 4Λ) = 4Λ − R0.

If R0 = 4Λ, then f0 is an arbitrary parameter. When f0 = −1 then the correspond-
ing action coincides with (3.6). However, if f0 = 0, then we can write the action
as

(3.12) S =
1

16πG

∫

(R − 2Λ +
√

R − 2Λ F (�)
√

R − 2Λ )
√−g d4x,

where F (�) =
∑∞

n=1 fn�
n. Note that (3.12) can be rewritten in the form

(3.13) S =
1

16πG

∫ √
R − 2Λ F(�)

√
R − 2Λ

√−g d4x,

where F(�) = 1 + F (�) = 1 +
∑∞

n=1 fn �
n.

4. Concluding remarks

When scalar curvature R is a constant, we obtained cosmological solutions for
scale factor a(t) of nonlocal gravity model (2.1). These solutions are interesting as
backgrounds for cosmological perturbations, e.g. see [8]. Presented a(t) solutions
in Subsection 3.2 are the same as in the local Einstein gravity.

The relations U = f0G(R)H(R)|R=R0
and U ′ = f0

∂
∂R (G(R)H(R))|R=R0

related
to action (2.1) have to satisfy two conditions. When U = 2Λ − R0 and U ′ = −1
then model (2.1) does not contain Einstein gravity and there is no restriction on
parameters σ, τ and k in solutions (3.2). Relation U = 1

2 (R0U ′+4Λ−R0) is another
possibility, which is consistent with obtained standard solutions in Subsection 3.2.

A consideration similar to the above one was given in [4], but the present
analysis is more general and complete. For further investigation, we find very
promising nonlocal gravity model presented by action (3.13).
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