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FLAT DOUBLE ROTATIONAL SURFACES IN

EUCLIDEAN AND LORENTZ–MINKOWSKI 4-SPACE

Wendy Goemans

Abstract. A new type of surfaces in 4-dimensional Euclidean and Lorentz–
Minkowski space is constructed by performing two simultaneous rotations on
a planar curve. In analogy with rotational surfaces, the resulting surfaces
are called double rotational surfaces. Classification theorems of flat double
rotational surfaces are proved. These classifications contain amongst other
cones over 4-dimensional Clelia curves. As a side product these new kinds of
curves in 4-space are defined.

1. Introduction

Rotational surfaces or surfaces of revolution in Euclidean 3-space are well-
known study subjects in classical differential geometry (see e.g. [5]). Their intuitive
construction, being the trace of a rotated planar curve, is appealing to geometers
and prompting alteration. For instance, the helicoidal surfaces or generalized he-
licoids arise when a planar curve is rotated about an axis in its supporting plane
and simultaneously translated in the direction of that rotation axis, see e.g. [5].

Together with Van de Woestyne the author studied another generalization of
rotational surfaces, namely, twisted surfaces, see [4] and the references therein.
Later, a second kind of twisted surfaces was defined in [6]. Twisted surfaces were
first defined in [5] and are constructed by rotating a planar curve about an axis in
its supporting plane while simultaneously rotating it in its supporting plane. Here
this construction is carried over to 4-space since there is ‘more space to twist’ there,
or, as prof. B. Rouxel wrote in a private communication: ‘. . . il y a plus de place !’.

Already in the previous century, Moore [7] and Vranceanu [8] defined and
studied surfaces of revolution in Euclidean 4-space. Later several properties of these
rotational surfaces in Euclidean 4-space were treated in e.g. [1]. Also, equivalent
notions are defined and examined in pseudo-Euclidean 4-spaces, see e.g. [2].
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In this contribution a generalization of these rotational surfaces is considered,
namely, double rotational surfaces in 4-space are constructed by performing two
simultaneous rotations on a planar curve.

This article is organized as follows. First some preliminaries on Euclidean and
Lorentz–Minkowski 4-space are repeated. Then double rotational surfaces in these
spaces are defined. Following, a classification of flat double rotational surfaces is
proved. Related to this last part, a 4-dimensional version of Clelia curves is defined.

2. Preliminaries

Euclidean 4-space E
4 is R

4 = {(w, x, y, z) | w, x, y, z ∈ R} endowed with the

Euclidean scalar product 〈u, v〉 =
∑4

i=1 uivi, while Lorentz–Minkowski 4-space E
4
1

is obtained by endorsing R
4 with the Lorentz–Minkowski scalar product 〈u, v〉1 =

−u1v1 +
∑4

i=2 uivi, both for vectors u = (u1, u2, u3, u4), v = (v1, v2, v3, v4) ∈ R
4.

In E
4 there exist two types of rotations: on the one hand rotations about

a point, which leave invariant two perpendicular planes, and on the other hand
rotations about a plane. Since the latter type is a special case of the former type,
only rotations about a point are considered in this work. For instance, see e.g. [7],

(2.1)









cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cosϕ − sinϕ
0 0 sinϕ cosϕ









where θ, ϕ ∈ R are the rotation angles, represents a rotation about the origin that
leaves invariant the wx-plane and the yz-plane. As is clear, if either θ = 0 or ϕ = 0,
this reduces to a rotation about the wx-plane or about the yz-plane, respectively.

In E
4
1 a vector v is called spacelike if 〈v, v〉1 > 0 or v = 0, timelike if 〈v, v〉1 < 0

and lightlike or null if 〈v, v〉1 = 0 with v 6= 0. Hence, the w-axis is timelike while
the x-, y- and z-axis are spacelike. Furthermore, the wx-, wy- and wz-plane are
timelike, while the xy-, xz- and yz-plane are spacelike. A rotation in E

4
1 about

the origin that leaves the wx-plane and the yz-plane invariant is given by a matrix
similar to (2.1) where in the upper left 2 × 2 block the trigonometric functions are
replaced by the hyperbolic functions and the minus sign is removed, see e.g., [2].

For a surface in E
4 or E

4
1 parameterized by ψ(s, t) : U ⊂ R

2 → E
4
(1), the

components of the first fundamental form are E = 〈ψs, ψs〉(1), F = 〈ψs, ψt〉(1) and

G = 〈ψt, ψt〉(1). The Gaussian curvature K of a non-degenerate (i.e., EG−F 2 6= 0)

surface is given by Brioschi’s formula, see e.g., [5], K = k(EG− F 2)−2 where

(2.2) k =
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A surface which has identically vanishing Gaussian curvature is called a flat surface.
Here and in what follows, the parameters s and t are often dropped for nota-

tional purposes. The subscript (1) means no subscript for the Euclidean case and
subscript 1 for the Lorentz–Minkowski case. A subscript s or t at a function Z(s, t)
denotes the partial derivative of Z with respect to s or t, respectively.
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3. Double rotational surfaces in E
4 and E

4
1

Double rotational surfaces are on the one hand studied as a continuation of the
research on twisted surfaces in 3-space, see [4] and the references therein, and on
the other hand they are a generalization of the rotational surfaces in 4-space, see
e.g. [1, 2, 7, 8]. Combining these two viewpoints leads to the following definition.

Definition 3.1. A double rotational surface is the trace of a planar curve, the
profile curve, that is subjected to two different simultaneous rotations, possibly at
different rotation speeds. One of these rotations must leave invariant the supporting
plane of the profile curve, hence rotates the profile curve in its supporting plane.

Now an explicit parameterization of these double rotational surfaces is stated.

3.1. Double rotational surfaces in E
4. Without losing generality assume

that the profile curve α lies in the wx-plane, α(t) = (f(t) + a1, g(t) + a2, 0, 0) with
f and g real-valued functions. This profile curve is subjected to a rotation about
the point (a1, a2, 0, 0) which leaves invariant the wx-plane and the yz-plane,









a1

a2

0
0









+









cos(bs) − sin(bs) 0 0
sin(bs) cos(bs) 0 0

0 0 cos(b̃s) − sin(b̃s)

0 0 sin(b̃s) cos(b̃s)

















f(t)
g(t)

0
0









where a1, a2, b, b̃ ∈ R. Simultaneously, α is rotated about another point which we
can, up to a translation, choose to be the origin, using a rotation with rotation
angles c, d ∈ R that leaves invariant the xy-plane and the wz-plane, that is,









cos(cs) 0 0 − sin(cs)
0 cos(ds) − sin(ds) 0
0 sin(ds) cos(ds) 0

sin(cs) 0 0 cos(cs)

















a1 + f(t) cos(bs) − g(t) sin(bs)
a2 + f(t) sin(bs) + g(t) cos(bs)

0
0









.

Thus, up to transformations, a double rotational surface in E
4 is parameterized by

(3.1) ψ(s, t) =









cos(cs) (a1 + f(t) cos(bs) − g(t) sin(bs))
cos(ds) (a2 + f(t) sin(bs) + g(t) cos(bs))
sin(ds) (a2 + f(t) sin(bs) + g(t) cos(bs))
sin(cs) (a1 + f(t) cos(bs) − g(t) sin(bs))









with a1, a2, b, c, d ∈ R. Here it is always assumed that c and d are non-zero since
otherwise the surface is a twisted surface that lies in a 3-space.

If b = 0, that is, the profile curve is not rotated in its supporting plane, this
construction and hence parameterization (3.1) reduces to that of a rotational surface
in E

4, which is studied in e.g. [1]. See also the special examples there and in [8].

3.2. Double rotational surfaces in E
4
1. In E

4
1 a distinction between the

different possibilities for the causal character (spacelike, timelike or lightlike/null)
of the supporting plane of the profile curve must be made. The existence of these
different causal characters of vectors and planes in E

4
1 leads to deviating and un-

expected results when studying surfaces and curvature properties of them in E
4
1.
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Indeed, as is clear from e.g. [4, 6], including profile curves in lightlike planes and
performing rotations about lightlike axes lead to necessary adjustments of the con-
struction of twisted surfaces and to substantially different results. Hence, in this
work only profile curves in non-null planes and rotations keeping invariant non-null
planes are taken into account. That way, two distinct parameterizations of double
rotational surfaces in E

4
1 can be given.

3.2.1. A profile curve in a timelike plane. Without losing generality, take a
profile curve α(t) = (f(t) + a1, g(t) + a2, 0, 0), with f and g real-valued functions,
in the timelike wx-plane. Rotate this profile curve in its supporting plane about
the point (a1, a2, 0, 0) while leaving invariant the wx-plane and the yz-plane. Si-
multaneously the profile curve is rotated about the origin using a rotation that
leaves invariant the wz-plane and the xy-plane. Then, up to transformations, a
first possible double rotational surface in E

4
1 is parameterized by

(3.2) ψ(s, t) =









cosh(cs) (a1 + f(t) cosh(bs) + g(t) sinh(bs))
cos(ds) (a2 + f(t) sinh(bs) + g(t) cosh(bs))
sin(ds) (a2 + f(t) sinh(bs) + g(t) cosh(bs))
sinh(cs) (a1 + f(t) cosh(bs) + g(t) sinh(bs))









where a1, a2, b, c, d ∈ R and c and d are both non-zero.
3.2.2. A profile curve in a spacelike plane. One can, again without losing gen-

erality, start with a profile curve α(t) = (0, f(t) + a1, 0, g(t) + a2) in the spacelike
xz-plane. This profile curve is then rotated about the point (0, a1, 0, a2) using a
rotation that leaves invariant the wy-plane and the xz-plane. Simultaneously, ro-
tate the profile curve using a rotation about the origin leaving the wz-plane and
the xy-plane invariant. Therefore, up to transformations, a second possible double
rotational surface in E

4
1 is parameterized by

(3.3) ψ(s, t) =









sinh(cs) (a2 + f(t) sin(bs) + g(t) cos(bs))
cos(ds) (a1 + f(t) cos(bs) − g(t) sin(bs))
sin(ds) (a1 + f(t) cos(bs) − g(t) sin(bs))

cosh(cs) (a2 + f(t) sin(bs) + g(t) cos(bs))









where a1, a2, b, c, d ∈ R and c and d are both non-zero.
In the case b = 0, parameterizations (3.2) and (3.3) reduce to that of a ro-

tational surface in E
4
1. These are examined in e.g. [2] where the name ‘double

rotational surface’ is used differently to denote a rotational surface in E
4
1.

4. Flat double rotational surfaces in E
4 and E

4
1

Classification theorems of flat double rotational surfaces in E
4 and E

4
1 are

proved by carrying out the manipulations of the equations with the computer al-
gebra system Maple. In order to reduce the work in the calculations it is assumed
that f(t) = t. Using Maple it is easy to see that this can be done without losing
generality since the alternative choice g(t) = t leads to the same equations.

Theorem 4.1 (Flat double rotational surfaces in E
4). Excluding the twisted

surfaces in E
3 and the rotational surfaces in E

4, a double rotational surface in E
4

parameterized by (3.1) is flat if and only if it is either, up to transformation,
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• a cone over the curve (here is p ∈ R)
(

cos(cs) (cos(bs) − p sin(bs)) , cos(ds) (sin(bs) + p cos(bs)) ,(4.1)

sin(ds) (sin(bs) + p cos(bs)) , sin(cs) (cos(bs) − p sin(bs))
)

,

• parameterized by (3.1) with a1 = a2 = 0, d = ±c, f(t) = t and g implicitly
defined by, where p, q ∈ R and p non-zero,

(4.2) p log
(

1 +
g2(t)

t2

)

− 2 arctan
(g(t)

t

)

= q − 2p log t.

Proof. For a surface parameterized by (3.1) with f(t) = t we calculate

E = (b2 + c2)g2(t) + (b2 + d2)t2 + a2
1c

2 + a2
2d

2 − 2(a1c
2g(t) − a2d

2t) sin(bs)

+ (2(d2−c2)tg(t) sin(bs)+2(a1c
2t+a2d

2g(t))) cos(bs)+(c2−d2)(t2−g2(t)) cos2(bs),

F = b(tg′(t) − g(t)) and G = 1 + g′2(t).

Inserting these in equation (2.2) for the numerator of the Gaussian curvature, one
obtains a quiet large condition for K ≡ 0 which can be summarized by

(4.3)

4
∑

i=0

Ai(t) cosi(bs) +

3
∑

i=0

Bi(t) cosi(bs) sin(bs) = 0.

Here the coefficients Ai and Bj are expressions in a1, a2, b, c, d, t, g(t) and up
to second order derivatives of g. Because of the linear independency of the cosine
and sine functions all the coefficients Ai(t) and Bj(t) for i ∈ {0, 1, 2, 3, 4} and
j ∈ {0, 1, 2, 3} must vanish. Therefore,

A4 = (c− d)2(c+ d)2g′′(t)
(

(t3 − 3tg2(t))g′(t) + 3t2g(t) − g3(t)
)

= 0,

B3 = (c− d)2(c+ d)2g′′(t)
(

(−3t2g(t) + g3(t))g′(t) + t3 − 3tg2(t)
)

= 0.

Hence four different cases must be examined.
Case 1 or 2 d = c or d = −c. Using this, one obtains that

A2 = 2c4 ((Pg′(t) +Q)g′′(t) +R1) = 0 = B1 = 2c4 ((−Qg′(t) + P )g′′(t) +R2)

where P,Q,R1 and R2 are terms in a1, a2, t, g(t) and g′(t). Now QA2 + PB1 and
PA2 −QB1 lead to two new equations, which on their turn lead to two subcases,

(4.4) (a2
1 + a2

2)2
(

(t2 + g2(t))g′′(t) +
1 + g′2(t)

2
(g(t)(1 − g′2(t)) − 2tg′(t))

)

= 0,

(4.5) (a2
1 +a2

2)2
(

(t2 +g2(t))g′(t)g′′(t)+
1 + g′2(t)

2
(t(1−g′2(t))+2g(t)g′(t))

)

= 0.

Case 1 or 2A a1 = a2 = 0. Using this, one obtains that

A0 = c2(b2 + c2)(tg′(t) − g(t))
(

(t2 + g2(t))g′′(t) − (tg′(t) − g(t))(1 + g′2(t))
)

= 0.

If tg′(t) = g(t) then g(t) = pt with p ∈ R, hence one obtains a cone over the curve

(4.1). If (t2 + g2(t))g′′(t) = (tg′(t) − g(t))(1 + g′2(t)), then rewrite it and integrate

g′′(t)

1 + g′2(t)
=

(g(t)/t)
′

1 + (g(t)/t)2 so arctan g′(t) = arctan
g(t)

t
+ q with q ∈ R.



66 GOEMANS

If q = 0, then g(t) = pt for p ∈ R leads again to a cone over the curve (4.1). Else

g′(t) = tan
(

arctan
g(t)

t
+ q

)

=
tan

(

arctan(g(t)/t)
)

+ tan q

1 − tan
(

arctan(g(t)/t)
)

tan q
=

g(t)/t+ p

1 − pg(t)/t

with p = tan q. Using the substitution g(t) = tu(t) and integrating this leads to
the implicit expression (4.2) for g.

Case 1 or 2B a1 6= 0 6= a2. Combine the last terms of (4.4) and (4.5) to obtain
g(t)g′(t) = −t and derive a contradiction when used in the last term of (4.4).

Case 3 g′′(t) = 0. Use g(t) = pt+ q with p, q ∈ R and consider two subcases,

A1 = 2(p2 + 1)q
(

((a1p− a2)d2 + a1pb
2)c2 − a2b

2d2)

= 0,(4.6)

B0 = 2(p2 + 1)q
(

((a2p+ a1)d2 + a1b
2)c2 + a2pb

2d2)

= 0.(4.7)

Case 3A q = 0. If this is used, thenB1 = −2c2d2(1+p2)(a1p−a2)(a2p+a1) = 0.
If a2 = a1p, then A2 = a2

1c
2d2(1 + p2)3 = 0, hence a1 = a2 = 0 and we obtain a

cone over curve (4.1). Similarly if a1 = −a2p, then A2 = −a2
2c

2d2(1 + p2)3 = 0
implies a1 = a2 = 0 so again a cone over curve (4.1) is found.

Case 3B q 6= 0. Solve from the last term of (4.7) an expression for a1. Inserting
that in the last term of (4.6) one finds −(p2 +1)(b2 +c2)a2d

2 = 0. Hence a1 = a2 =
0, which leads to B1 = −2b2pq2(c2 − d2) = 0. The only case that is not treated yet
is the one where p = 0. But with that A0 = −(b2 + d2)c2q2 = 0 which only leads
to either a contradiction or a previous case.

Case 4 Pg′(t) + Q = 0 and −Qg′(t) + P = 0 where P = t3 − 3tg2(t) and

Q = 3t2g(t) − g3(t). Multiplying the first condition by Q and adding the second
condition times P leads to the contradiction t2 + f2(t) = 0.

Therefore, a flat double rotational surface is one of the surfaces in the statement
of the theorem. Vice versa it is calculated straightforwardly that the surfaces in
the statement of the theorem are flat. �

Remark that this classification result is not equivalent to the classification result
of flat twisted surfaces in E

3, see [3] and the references therein. Both classifications
contain similar cones, but those cones are the only flat twisted surfaces in E

3 when
excluding the surfaces of revolution, while there exist flat double rotational surfaces
parameterized by (3.1) with f(t) = t and g implicitly defined by (4.2).

Theorem 4.2 (Flat double rotational surfaces in E
4
1). Excluding the twisted

surfaces in E
3
1 and the rotational surfaces in E

4
1, a double rotational surface in E

4
1

parameterized by (3.2) is flat if and only if it is either, up to transformation,

• a cone over the curve (here is p ∈ R)

(cosh(cs) (cosh(bs) + p sinh(bs)) , cos(ds) (sinh(bs) + p cosh(bs)) ,(4.8)

sin(ds) (sinh(bs) + p cosh(bs)) , sinh(cs) (cosh(bs) + p sinh(bs))
)

,

• parameterized by (3.2) with f(t) = t and g(t) = ±t,
• parameterized by (3.2) with a2 = 0, d = ±b, f(t) = t and g(t) = pt + q

with p2 = 1 + b2+c2

a2

1
c2
q2 where q ∈ R,

and one parameterized by (3.3) is flat if and only if it is either, up to transformation,
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• a cone over the curve (here is p ∈ R)
(

sinh(cs) (sin(bs) + p cos(bs)) , cos(ds) (cos(bs) − p sin(bs)) ,(4.9)

sin(ds) (cos(bs) − p sin(bs)) , cosh(cs) (sin(bs) + p cos(bs))
)

,

• parameterized by (3.3) with a2 = 0, c = ±b, f(t) = t, g(t) = pt + q and

a1 = ± q

d

√

b2+d2

1+p2 where p, q ∈ R.

Proof. For a surface parameterized by (3.2) the vanishing of the Gaussian
curvature leads to an equation of the form (4.3) but with the trigonometric func-
tions replaced by their hyperbolic counterparts. Since the hyperbolic sine and the
hyperbolic cosine functions are linearly independent, all coefficients Ai and Bj for
i ∈ {0, 1, 2, 3, 4} and j ∈ {0, 1, 2, 3} must be zero, leading in this case to

A4 = (c2 + d2)2g′′(t)((t3 + 3tg(t)2)g′(t) + 3t2g(t) + g(t)3) = 0,

B3 = (c2 + d2)2g′′(t)((3t2g(t) + g(t)3)g′(t) + t3 + 3tg(t)2) = 0.

Hence only two cases must be considered. The rest of the proof as well as that
for a flat surface parameterized by (3.3) is carried out similarly to the Euclidean
case. �

Remark that also this classification differs from the result on flat twisted sur-
faces in E

3
1, see [3] and the references therein. Moreover, it also deviates from the

result in E
4 and there is a difference between the results for the two possible pa-

rameterizations of double rotational surfaces in E
4
1. These last differences are due

to the fact that the roles of c and d are not interchangeable in E
4
1 but are in E

4.

4.1. Clelia curves. In E
3, a Clelia curve is a spherical curve which is charac-

terized by the linear dependency of its coordinates when it is parameterized using
spherical coordinates. Although Clelia curves were studied already in the 18th cen-
tury, they have more or less been forgotten about, except for the special cases of
Viviani’s curve and Pappus’ spiral. Surprisingly, Clelia curves turned out to be the
curves determining cones which are flat twisted surfaces in E

3 and E
3
1, see [3, 4].

Analogously to a Clelia curve in E
3, a Clelia curve in E

4 can be defined.

Definition 4.1. A Clelia curve in E
4 is a curve on the hypersphere with lin-

early dependent coordinates when parameterized using hyperspherical coordinates.

The hypersphere S
3(r) = {x ∈ E

4 | 〈x, x〉 = r2} of radius r is parameterized
using hyperspherical coordinates, which are called Hopf coordinates, as

x(θ, ν, ϕ) = r (cosϕ cos θ, cosϕ sin θ, sinϕ cos ν, sinϕ sin ν) .

In order to infer that it is a Clelia curve, rewrite parameterization (4.1) as shown
in [3]. Remark that if c = ±d in parameterization (4.1), then the Clelia curve lies
on a flat torus, which lies itself on a hypersphere.

The previous definition can be extended to one of the Clelia curves in E
4
1.

Definition 4.2. A Clelia curve in E
4
1 is a curve that lies either on the pseudo-

sphere S
3
1(r) = {p ∈ E

4
1 | 〈p, p〉1 = r2} or on the hyperbolic space H

3(r) = {p ∈ E
4
1 |
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〈p, p〉1 = −r2} and has linearly dependent coordinates when parameterized using
coordinates adapted to the surrounding hypersurface.

Use Hopf-like coordinates to parameterize S
3
1(r) and for H

3(r). Parameteri-
zations (4.8) and (4.9) can be rewritten, as shown in [3], to see that it are Clelia
curves.

5. Conclusion and acknowledgments

In this work double rotational surfaces are introduced as a new kind of surfaces
in the 4-space. Classifications of flat double rotational surfaces are proved and
turn out to differ from equivalent results on flat twisted surfaces in 3-space. This
advertises double rotational surfaces as interesting subjects for further research.

The author wishes to thank the referees for their valuable comments and en-
couragements which improved the first version of this manuscript significantly. Also
a word of thanks must go to B. Dioos for his help in solving and discussing on the
differential equation that leads to the implicit expression (4.2) for g.
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