DOI: https://doi.org/10.2298/PIM1817175P

ISOTHERMIC SURFACES OBTAINED FROM HARMONIC MAPS IN S⁶

Rui Pacheco

ABSTRACT. The harmonicity of a smooth map from a Riemann surface into the 6-dimensional sphere S^6 amounts to the closeness of a certain 1-form that can be written in terms of the nearly Kähler structure of S^6 . We will prove that the immersions F in \mathbb{R}^7 obtained from superconformal harmonic maps in $S^3 \subset S^6$ by integration of the corresponding closed 1-forms are isothermic. The isothermic surfaces so obtained include a certain class of constant mean curvature surfaces in \mathbb{R}^3 that can be deformed isometrically through isothermic surfaces into non-spherical pseudo-umbilical surfaces in \mathbb{R}^7 .

1. Introduction

It is a well-known fact that any non-conformal harmonic map φ from a simplyconnected Riemann surface Σ into the round 2-sphere S^2 is the Gauss map of a constant Gauss curvature surface, $F : \Sigma \to \mathbb{R}^3$, and of two parallel constant mean curvature surfaces, $F^{\pm} = F \pm \varphi : \Sigma \to \mathbb{R}^3$; the surface F integrates the closed 1-form $\omega = \varphi \times *d\varphi$, where \times denotes the standard cross product of \mathbb{R}^3 .

Again, the harmonicity of a smooth map $\varphi : \Sigma \to S^6$ amounts to the closeness of the differential 1-form $\omega = \varphi \times *d\varphi$, where \times stands now for the 7-dimensional cross product. This means that we can integrate on simply-connected domains in order to obtain a map $F : \Sigma \to \mathbb{R}^7$. If φ is a conformal harmonic immersion, then Fis a conformal immersion; and, in contrast with the 3-dimensional case, where F is necessarily a totally umbilical surface, F can exhibit a wide variety of geometrical behaviors in the 7-dimensional case [3].

Recall [4] that a surface in \mathbb{R}^n is *isothermic* if, away from umbilic points, it admits *conformal curvature line* (CCL) coordinates, that is, conformal coordinates with respect to which each second fundamental form is diagonal. In this short note, we prove that the immersions F in \mathbb{R}^7 obtained from *superconformal* [1, 3] harmonic maps in $S^3 = S^6 \cap W$ by integration of the corresponding 1-forms ω , with W a 4-dimensional subspace of \mathbb{R}^7 , are isothermic. We will also see that the

175

²⁰¹⁰ Mathematics Subject Classification: 53C43,53C42, 53A10,53A07.

Key words and phrases: Harmonic maps, isothermic surfaces, parallel mean curvature, pseudo-umbilical surfaces, seven dimensional cross product.

This work was supported by CMA-UBI through the project UID/MAT/00212/2013.

PACHECO

isothermic surfaces so obtained include a certain class of constant mean curvature surfaces in \mathbb{R}^3 that can be deformed isometrically through isothermic surfaces into non-spherical pseudo-umbilical surfaces in \mathbb{R}^7 .

2. Harmonic maps from Riemann surfaces into S^6

Let \cdot be the standard inner product on \mathbb{R}^7 and $\mathbf{e}_1, \ldots, \mathbf{e}_7$ be the canonical basis of \mathbb{R}^7 . Fix the 7-dimensional cross product \times defined by the multiplication table

×	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3	\mathbf{e}_4	\mathbf{e}_5	\mathbf{e}_6	\mathbf{e}_7
\mathbf{e}_1	0	\mathbf{e}_3	$-\mathbf{e}_2$	\mathbf{e}_5	$-\mathbf{e}_4$	$-\mathbf{e}_7$	\mathbf{e}_6
\mathbf{e}_2	$-\mathbf{e}_3$	0	\mathbf{e}_1	\mathbf{e}_6	\mathbf{e}_7	$-\mathbf{e}_4$	$-\mathbf{e}_5$
\mathbf{e}_3	\mathbf{e}_2	$-\mathbf{e}_1$	0	\mathbf{e}_7	$-\mathbf{e}_6$	\mathbf{e}_5	$-\mathbf{e}_4$
\mathbf{e}_4	$-\mathbf{e}_5$	$-\mathbf{e}_6$	$-\mathbf{e}_7$	0	\mathbf{e}_1	\mathbf{e}_2	\mathbf{e}_3
\mathbf{e}_5	\mathbf{e}_4	$-\mathbf{e}_7$	\mathbf{e}_6	$-\mathbf{e}_1$	0	$-\mathbf{e}_3$	\mathbf{e}_2
\mathbf{e}_6	\mathbf{e}_7	\mathbf{e}_4	$-\mathbf{e}_5$	$-\mathbf{e}_2$	\mathbf{e}_3	0	$-\mathbf{e}_1$
\mathbf{e}_7	$-\mathbf{e}_6$	\mathbf{e}_5	\mathbf{e}_4	$-\mathbf{e}_3$	$-\mathbf{e}_2$	\mathbf{e}_1	0

The cross product \times satisfies the following identities, for all $\mathbf{x},\mathbf{y}\in\mathbb{R}^{7}:$

- (P1) $\mathbf{x} \cdot (\mathbf{x} \times \mathbf{y}) = (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{y} = 0;$
- (P2) $(\mathbf{x} \times \mathbf{y}) \cdot (\mathbf{x} \times \mathbf{y}) = (\mathbf{x} \cdot \mathbf{x})(\mathbf{y} \cdot \mathbf{y}) (\mathbf{x} \cdot \mathbf{y})^2;$
- (P3) $\mathbf{x} \times \mathbf{y} = -\mathbf{y} \times \mathbf{x};$
- (P4) $\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z}) = \mathbf{y} \cdot (\mathbf{z} \times \mathbf{x}) = \mathbf{z} \cdot (\mathbf{x} \times \mathbf{y});$
- $(P5) (\mathbf{x} \times \mathbf{y}) \times (\mathbf{x} \times \mathbf{z}) = ((\mathbf{x} \times \mathbf{y}) \times \mathbf{z}) \times \mathbf{x} + ((\mathbf{y} \times \mathbf{z}) \times \mathbf{x}) \times \mathbf{x} + ((\mathbf{z} \times \mathbf{x}) \times \mathbf{x}) \times \mathbf{y};$
- (P6) $\mathbf{x} \times (\mathbf{x} \times \mathbf{y}) = -(\mathbf{x} \cdot \mathbf{x})\mathbf{y} + (\mathbf{x} \cdot \mathbf{y})\mathbf{x};$

(P7) $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) + (\mathbf{x} \times \mathbf{y}) \times \mathbf{z} = 2(\mathbf{x} \cdot \mathbf{z})\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{z} - (\mathbf{y} \cdot \mathbf{z})\mathbf{x}$. Extend the inner product \cdot and the cross product \times by complex bilinearity to

 $\mathbb{C}^7 = \mathbb{R}^7 \otimes \mathbb{C}$. We also denote these complex bilinear extensions by \cdot and \times , respectively.

The standard nearly Kähler structure J on the 6-dimensional unit sphere S^6 can be written in terms of the cross product × as follows: for each $\mathbf{x} \in S^6$, $J\mathbf{u} = \mathbf{x} \times \mathbf{u}$, for all $\mathbf{u} \in T_{\mathbf{x}}S^6$. Let Σ be a Riemann surface with local conformal coordinate z = x + iy, and let $\varphi : \Sigma \to S^{n-1}$ be a harmonic map, that is, $\Delta \varphi \perp T_{\varphi}S^{n-1} = {\mathbf{u} \in \mathbb{R}^n | \varphi \cdot \mathbf{u} = 0}$. For n = 7, this means that $\varphi \times \Delta \varphi = 0$, which is equivalent to the closeness of the one form $\omega = \varphi \times *d\varphi = J * d\varphi$.

3. Isothermic surfaces from harmonic maps into S^6

If $\varphi : \Sigma \to S^6$ is a harmonic immersion and Σ is simply-connected, we can integrate to obtain an immersion $F : \Sigma \to \mathbb{R}^7$ such that $dF = \varphi \times *d\varphi$. In local conformal coordinates z = x + iy of Σ , this can be written in the form

$$F_z = i\varphi \times \varphi_z, \quad F_{\bar{z}} = -i\varphi \times \varphi_{\bar{z}}.$$

Making use of the properties for the cross product, we obtain the following formulae for the first and second fundamental forms of the immersion F in terms of φ and its derivatives.

176

(2.1)

PROPOSITION 3.1. [3] Let \mathbf{I}_F and \mathbf{I}_F be the first and the second fundamental forms of $F : \Sigma \to \mathbb{R}^7$, respectively. Let N be a vector field of the normal bundle TF^{\perp} . Then, with respect to the local conformal coordinates z = x + iy of Σ , we have

(3.1)
$$\mathbf{I}_F = \begin{pmatrix} |\varphi_y|^2 & -\varphi_x \cdot \varphi_y \\ -\varphi_x \cdot \varphi_y & |\varphi_x|^2 \end{pmatrix}$$

(3.2)

$$\mathbf{I}_{F}^{N} := \mathbf{I}_{F} \cdot N = \begin{pmatrix} (\varphi_{x} \times \varphi_{y}) \cdot N + (\varphi \times \varphi_{xy}) \cdot N & (\varphi \times \varphi_{yy}) \cdot N \\ (\varphi \times \varphi_{yy}) \cdot N & (\varphi_{x} \times \varphi_{y}) \cdot N - (\varphi \times \varphi_{xy}) \cdot N \end{pmatrix}.$$

If φ is conformal, F is also conformal. Let $e^{2\alpha}$ be the common conformal factor of φ and F. One can check [3] that the mean curvature vector of F is given by

(3.3)
$$\mathbf{h}_F = \frac{1}{2} \operatorname{tr} \mathbf{I}_F^{-1} \mathbf{I}_F = \frac{e^{-2\alpha}}{2} \left\{ \mathbf{I}_F(F_x, F_x) + \mathbf{I}_F(F_y, F_y) \right\} = e^{-2\alpha} \varphi_x \times \varphi_y.$$

Next we establish our main result. Recall that a harmonic map in S^3 is superconformal if it has finite isotropy r = 3 [1, 2, 3].

THEOREM 3.1. If $\varphi : \Sigma \to S^6 \cap W$ is a superconformal harmonic immersion, where W is a 4-dimensional subspace of \mathbb{R}^7 , then F is isothermic.

PROOF. Let z = x + iy be local conformal coordinates on Σ and consider the harmonic sequence $\{\varphi_j\}_{j\in\mathbb{Z}}$ associated to φ (see [1, 2, 3]). For each j, $\varphi_{-j} = \overline{\varphi}_j$ and there exists a local meromorphic section f_j of φ_j (with respect to the Koszul-Malgrange holomorphic structure) such that [2]:

$$\frac{\partial f_j}{\partial z} = f_{j+1} + \frac{\partial}{\partial z} \log |f_j|^2 f_j; \quad \frac{\partial f_{j+1}}{\partial \bar{z}} = -\frac{|f_{j+1}|^2}{|f_j|^2} f_j; \quad |f_j| |f_{-j}| = 1 \text{ (if } f_j \neq 0).$$

Since φ is superconformal in $S^3 = S^6 \cap W$, we have: the harmonic line bundles $\varphi_{-1}, \varphi, \varphi_1, \varphi_2$ are mutually orthogonal; φ_2 is real, that is, $\varphi_{-2} = \varphi_2$; and

$$f_{-2} = \frac{P_{\varphi_2}(\varphi_{\bar{z}\bar{z}})}{|P_{\varphi_2}(\varphi_{zz})|^2}, \quad f_2 = P_{\varphi_2}(\varphi_{zz}),$$

where P_{φ_2} denotes the orthogonal projection onto φ_2 . Both f_{-2} and f_2 are local meromorphic sections of φ_2 . Hence there exists a meromorphic function g on Σ such that $f_{-2} = gf_2$. Equivalently,

(3.4)
$$\frac{P_{\varphi_2}(\varphi_{\bar{z}\bar{z}})}{|P_{\varphi_2}(\varphi_{zz})|^2} = gP_{\varphi_2}(\varphi_{zz}), \quad \frac{P_{\varphi_2}(\varphi_{zz})}{|P_{\varphi_2}(\varphi_{zz})|^2} = \bar{g}P_{\varphi_2}(\varphi_{\bar{z}\bar{z}}).$$

Locally, away from the isolated zeros of $P_{\varphi_2}(\varphi_{zz})$, we can consider the holomorphic non-vanishing function $q = \sqrt{g}$ and rewrite (3.4) as

$$\overline{q}P_{\varphi_2}(\varphi_{\bar{z}\bar{z}}) = qP_{\varphi_2}(\varphi_{zz}).$$

Define new local conformal coordinates w = u + iv by $\frac{dw}{dz} = \frac{e^{\pi i/4}}{\sqrt{q}}$. With respect to these coordinates, we have $P_{\varphi_2}(\varphi_{\bar{w}\bar{w}}) = -P_{\varphi_2}(\varphi_{ww})$. Then,

$$F_{\bar{w}\bar{w}}^{\perp} = -i\varphi \times P_{\varphi_2}(\varphi_{\bar{w}\bar{w}}) = i\varphi \times P_{\varphi_2}(\varphi_{ww}) = F_{ww}^{\perp},$$

which implies $F_{uv}^{\perp} = 0$, where \perp denotes the component in the normal bundle. Then $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial v}$ diagonalize \mathbf{I}_{F}^{N} for any normal vector field N to F.

In view of (3.2), the umbilic points of \mathbf{I}_F^N , for each normal section N, are precisely the points where $P_{\varphi_2}(\varphi_{zz}) = 0$.

4. Isometric deformations of CMC into pseudo-umbilical surfaces

A 4-dimensional subspace W of \mathbb{R}^7 is *coassociative* if $V = W^{\perp}$ is closed with respect to \times . It can be shown [3] that, if W is a coassociative 4-space, then $V \times W = W$ and $W \times W = V$.

If φ is superconformal in some 3-dimensional sphere $S^3 = S^6 \cap W$, where W is a coassociative 4-space, then, up to translation, F is a constant mean curvature surface in the 3-space $V = W^{\perp}$. This is a consequence of the following result.

THEOREM 4.1. [3] Let $\varphi : \Sigma \to S^6$ be a conformal harmonic immersion. Then $F : \Sigma \to \mathbb{R}^7$ has a parallel mean curvature vector field and it is not pseudo-umbilical if, and only if, φ is superconformal in some 3-dimensional sphere $S^3 = S^6 \cap W$, where W is a coassociative 4-space.

EXAMPLE 4.1. Let $W = \operatorname{span}\{\mathbf{e}_4, \mathbf{e}_5, \mathbf{e}_6, \mathbf{e}_7\}$ and $\varphi : \mathbb{C} \to S^3 = S^6 \cap W$ be defined by $\varphi(x, y) = \frac{1}{\sqrt{2}} (\cos x \, \mathbf{e}_4 + \sin x \, \mathbf{e}_5 + \cos y \, \mathbf{e}_6 + \sin y \, \mathbf{e}_7)$, which is a superconformal harmonic map and parameterizes a Clifford torus. Taking into account multiplication table (2.1), one can check that the associated surface $F : \mathbb{C} \to V \subset \mathbb{R}^7$ is the cylinder given by

(4.1)
$$F(x,y) = \frac{1}{2} (-(x+y)\mathbf{e}_1 - \cos(x-y)\mathbf{e}_2 + \sin(x-y)\mathbf{e}_3).$$

REMARK 4.1. Since the Gauss map of a CMC surface without umbilical points is a non-conformal harmonic map, we see that theorem 4.1 also gives a procedure to obtain non-conformal harmonic maps into S^2 from superconformal harmonic maps into S^3 : starting with a superconformal harmonic map $\varphi : \Sigma \to S^3 = S^6 \cap W$, where W is a coassociative 4-space, the Gauss map of F is precisely the mean curvature vector field $\mathbf{h}_F : \Sigma \to S^2$ given by (3.3); this is a non-conformal harmonic map.

Given a 4-dimensional subspace W of \mathbb{R}^7 , an orthogonal direct sum decomposition $W = W_1 \oplus W_2$, with dim $W_1 = \dim W_2 = 2$, is said to be \times -compatible if $W_1 \times W_1 \perp W_2 \times W_2$. For example, $W = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ admits \times -compatible decompositions.

Recall that an immersion F is said to be *pseudo-umbilical* if $\mathbf{I}_F \cdot \mathbf{h}_F = \lambda \mathbf{I}_F$ for some smooth function λ on Σ .

THEOREM 4.2. [3] If φ is a superconformal harmonic map in $S^3 = S^6 \cap W$, for some 4-space W admitting a \times -compatible decomposition, then F is pseudoumbilical with non-parallel mean curvature vector field.

For a general dimension, a pseudo-umbilical submanifold M^n of \mathbb{R}^m has mean curvature vector field parallel in the normal bundle if, and only if, M^n is either a minimal submanifold of \mathbb{R}^m or a minimal submanifold of a hypersphere of \mathbb{R}^m [6]. Hence, the pseudo-umbilical surfaces of theorem 4.2 are neither minimal in \mathbb{R}^7 nor

178

minimal in hyperspheres of \mathbb{R}^7 . By exploiting the notion of \mathbf{III} -deformation, Vlachos [5] established a method that gives examples of full pseudo-umbilical surfaces in \mathbb{R}^4 in the same conditions. Next we apply theorem 4.2 in order to obtain an example of a full pseudo-umbilical surface in \mathbb{R}^5 .

EXAMPLE 4.2. Let $W = \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ and $\varphi : \mathbb{C} \to S^3 = S^6 \cap W$ be the Clifford torus $\varphi(x, y) = \frac{1}{\sqrt{2}} (\cos x \, \mathbf{e}_1 + \sin x \, \mathbf{e}_2 + \cos y \, \mathbf{e}_3 + \sin y \, \mathbf{e}_4)$. The corresponding immersion $F : \mathbb{C} \to \mathbb{R}^7$ is given by

(4.2)
$$F(x,y) = \frac{1}{2}(\cos x \sin y \mathbf{e}_1 + \sin x \sin y \mathbf{e}_2 - y \mathbf{e}_3 + \sin x \cos y \mathbf{e}_5 - \cos x \cos y \mathbf{e}_6 + x \mathbf{e}_7).$$

By theorem 4.2, since W admits \times -compatible decompositions and φ is superconformal in $S^3 = S^6 \cap W$, the immersion F is pseudo-umbilical with a non-parallel mean curvature vector field. It can be shown (by straightforward computation of the derivatives) that F is full in some 5-dimensional subspace of \mathbb{R}^7 .

Taking theorem 4.1 and theorem 4.2 into account, we also can obtain examples of isometric deformations of CMC surfaces into pseudo-umbilical surfaces as follows. Let φ be a superconformal harmonic map from Σ into $S^3 = S^6 \cap W$, where W is a coassociative 4-space. Let $g : [0, a] \to SO(7)$ be a smooth map with g(0) the identity of SO(7) and $g(a)W = \tilde{W}$, where W is a coassociative 4-space and \tilde{W} is a 4-space admitting \times -compatible decompositions. Then we have a one-parameter family of congruent superconformal harmonic maps: for each $\lambda \in [0, a], \varphi_{\lambda} =$ $g(\lambda)\varphi : \Sigma \to g(\lambda)W$. We can integrate in order to obtain a smooth one-parameter family of conformal immersions F_{λ} (with $\mathbf{I}_{F_0} = \mathbf{I}_{F_{\lambda}}$ for all λ , because $\{\varphi_{\lambda}\}$ is a one-parameter family of congruent harmonic maps), where F_0 is a CMC surface and F_a is a pseudo-umbilical surface with non-parallel mean curvature vector field.

EXAMPLE 4.3. Let $g: [0, \frac{\pi}{2}] \to SO(7)$ be the smooth map defined as follows: for each $\lambda \in [0, \frac{\pi}{2}]$, $g(\lambda) = [\mathbf{v}_1(\lambda), \dots, \mathbf{v}_7(\lambda)]$ is the matrix (written with respect to the canonical basis of \mathbb{R}^7) whose columns are the vectors

$$\mathbf{v}_{1}(\lambda) = \cos \lambda \, \mathbf{e}_{1} + \sin \lambda \, \mathbf{e}_{7}, \qquad \mathbf{v}_{2}(\lambda) = \cos \lambda \, \mathbf{e}_{2} - \sin \lambda \, \mathbf{e}_{5}, \\ \mathbf{v}_{3}(\lambda) = \cos \lambda \, \mathbf{e}_{3} - \sin \lambda \, \mathbf{e}_{6}, \qquad \mathbf{v}_{4}(\lambda) = \sin^{2} \lambda \, \mathbf{e}_{1} + \cos \lambda \, \mathbf{e}_{4} - \sin \lambda \cos \lambda \, \mathbf{e}_{7}, \\ \mathbf{v}_{5}(\lambda) = \cos \lambda \, \mathbf{e}_{5} + \sin \lambda \, \mathbf{e}_{2}, \qquad \mathbf{v}_{6}(\lambda) = \cos \lambda \, \mathbf{e}_{6} + \sin \lambda \, \mathbf{e}_{3}, \\ \mathbf{v}_{7}(\lambda) = -\sin \lambda \cos \lambda \, \mathbf{e}_{1} + \sin \lambda \, \mathbf{e}_{4} + \cos^{2} \lambda \, \mathbf{e}_{7}.$$

It is clear that g(0) is the identity of SO(7) and $g(\frac{\pi}{2})W = \tilde{W}$, with

$$W = \text{span}\{\mathbf{e}_4, \mathbf{e}_5, \mathbf{e}_6, \mathbf{e}_7\}, \quad W = \text{span}\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}.$$

Hence, after integration, we obtain the following isometric deformation of the cylinder (4.1) into the pseudo-umbilical surface (4.2):

PACHECO

$$F_{\lambda}(x,y) = \frac{1}{2} \Big(-\cos x \sin y \mathbf{v}_{4}(\lambda) \times \mathbf{v}_{6}(\lambda) + \cos x \cos y \mathbf{v}_{4}(\lambda) \times \mathbf{v}_{7}(\lambda) \\ -\sin x \sin y \mathbf{v}_{5}(\lambda) \times \mathbf{v}_{6}(\lambda) + \sin x \cos y \mathbf{v}_{5}(\lambda) \times \mathbf{v}_{7}(\lambda) \\ + x \mathbf{v}_{6}(\lambda) \times \mathbf{v}_{7}(\lambda) - y \mathbf{v}_{4}(\lambda) \times \mathbf{v}_{5}(\lambda) \Big).$$

References

- J. Bolton, F. Pedit, L. Woodward, Minimal surfaces and the affine Toda field model, J. Reine Angew. Math. 459 (1995), 119–150.
- J. Bolton, L. Vrancken, L. Woodward, On almost complex curves in the nearly Kähler 6-sphere, Quart. J. Math. Oxford Ser.(2) 45 (1994), 407–427.
- P. Morais, R. Pacheco, Surfaces in ℝ⁷ obtained from harmonic maps in S⁶, Geom Dedicata (2017), https://doi.org/10.1007/s10711-017-0266-5.
- 4. B. Palmer, *Isothermic surfaces and the Gauss map*, Proc. Amer. Math. Soc. **104**, (1988), 876–884.
- T. Vlachos, Isometric deformations of surfaces preserving the third fundamental form, Annali di Matematica (2008) 187, 137–155.
- K. Yano, B.-y. Chen, Minimal submanifolds of a higher dimensional sphere, Tensor, N.S. 22 (1971), 369–373.

Centro de Matemática e Aplicações (CMA-UBI) Universidade da Beira Interior Covilhã Portugal rpacheco@ubi.pt

180