RELATIONS BETWEEN KERNELS AND IMAGES OF REDUCED POWERS FOR SOME RIGHT \mathcal{A}_{p}-MODULES

Theodore Popelensky

Abstract

We investigate the right action of the mod p Steenrod algebra \mathcal{A}_{p} on the homology $H_{*}\left(L^{\wedge s}, \mathbb{Z}_{p}\right)$ where $L=B \mathbb{Z}_{p}$ is the lens space. Following ideas of Ault and Singer we investigate the relation between intersection of kernels of the reduced powers $P^{p^{i}}$ and Bockstein element β and the intersection of images of $P^{p^{i+1}-1}$ and of β. Namely one can check that $\bigcap_{i=0}^{k} \operatorname{im} P^{p^{i+1}-1} \subset$ $\bigcap_{i=0}^{k} \operatorname{ker} P^{p^{i}}$ and $\bigcap_{i=0}^{k} \operatorname{im} P^{p^{i+1}-1} \cap \operatorname{im} \beta \subset \bigcap_{i=0}^{k} \operatorname{ker} P^{p^{i}} \cap \operatorname{ker} \beta$. We generalize Ault's homotopy systems to $p>2$ and examine when the reverse inclusions are true.

Introduction

Two natural questions arise when the action of the Steenrod algebra \mathcal{A}_{p} on the cohomology $H^{*}\left(X, \mathbb{Z}_{p}\right)$ of a space X is considered. One is to describe the annihilating ideal $I_{X} \subset \mathcal{A}_{p}$ which is defined as $I_{X}=\left\{\phi \in \mathcal{A}_{p} \mid \phi\left(H^{*}\left(X, \mathbb{Z}_{p}\right)\right)=0\right\}$. The problem appeared to be difficult even for $p=2$ and $X=\mathbb{R} P^{\infty}$, see [1].

The second question is to describe a minimal generating set of the \mathcal{A}_{p}-module $H^{*}\left(X, \mathbb{Z}_{p}\right)$ and the set of elements of the form ϕx, where $\phi \in \mathcal{A}_{p}, \operatorname{deg} \phi>0$, $x \in H^{*}\left(X, \mathbb{Z}_{p}\right)$ (or the space spanned by such elements, this is the so called hit problem).

This question is far from being solved even for $X=\prod_{i=1}^{k} \mathbb{R} P^{\infty}$, though cases $k \leqslant 4$ are completely described in the papers [4, [5, 6, $\mathbf{7}$,

In this note we address the problem which is dual to the second question. Consider the conjugate action of the Steenrod algebra \mathcal{A}_{p} on the \mathbb{Z}_{p}-homology of a space X. We say that $x \in H_{*}\left(X, \mathbb{Z}_{p}\right)$ is P-annihilated iff $x P^{m}=0$ for all $m>0$ and βP-annihilated iff x is P-annihilated and $x \beta=0$. The problem is to describe the subspace of all P-anihilated or βP-annihilated elements. Following ideas of Ault and Singer [2, 3, we study subspaces of partially annihilated elements $\left(\Delta_{M}(k)\right.$ and $\Delta_{M}^{\beta}(k)$, see below). It appears that there is a structure (homotopy system, see Definitions 2.1 and 2.2) which relates these spaces with the spaces of so called

[^0]spike images $\left(I_{M}(k)\right.$ and $I_{M}^{\beta}(k)$, see below). The main results are Theorem 2.1 and Corollary 2.1. Also we show that such homotopy systems exist for $\tilde{\Lambda}$ (see Section 3 and Theorem 4.1). Here $\tilde{\Lambda}$ is a bigraded space which is given by (1.2), see below.

Throughout the paper all the (co)homologies are considered with \mathbb{Z}_{p} coefficients.

The author is grateful to the referees for careful reading of the manuscript and for finding inconsistencies in the preliminary version of it.

1. Lens space and the \mathcal{A}_{p}-module $\tilde{\Lambda}$.

Denote by L the classifying space $B \mathbb{Z}_{p}$. The cohomology ring structure is described by the isomorphism $H^{*}(L) \equiv \mathbb{Z}_{p}[x] \otimes \Lambda_{\mathbb{Z}_{p}}(y)$, where $\operatorname{deg} x=2$ and $\operatorname{deg} y=1$. The action of the Steenrod algebra \mathcal{A}_{p} on $H^{*}(L)$ is given by the following relations:

$$
\begin{aligned}
P^{k} x^{m} & =\binom{m}{k} x^{k(p-1)+m}, \\
P^{k} x^{m} y & =\binom{m}{k} x^{k(p-1)+m} y,
\end{aligned} \quad \beta x^{m} y=x^{m+1} .
$$

There is the conjugate right action of the algebra \mathcal{A}_{p} on the reduced homology of L. Denote by $[a], a \geqslant 1$, the generator of $\tilde{H}_{2 a}(L)$ and by $[\hat{a}], a \geqslant 0$, the generator of $\tilde{H}_{2 a+1}(L)$. The action of \mathcal{A}_{p} on these elements is described by the formulas:

$$
\begin{align*}
P^{k} & =\binom{a-(p-1) k}{k}[a-(p-1) k], & & {[a] \beta=[\widehat{a-1}], } \\
{[\hat{a}] P^{k} } & =\binom{a-(p-1) k}{k}[a-\widehat{(p-1) k],} & & {[\hat{a}] \beta=0 . } \tag{1.1}
\end{align*}
$$

Here we write a homomorphism to the right from its argument.
Consider the bigraded algebra $\tilde{\Lambda}=\left\{\tilde{\Lambda}_{*, *}\right\}$ which is defined by

$$
\tilde{\Lambda}_{n, k}= \begin{cases}\mathbb{Z}_{p}, & \text { if } n=k=0 \tag{1.2}\\ \tilde{H}_{k}\left(L^{\wedge n}, \mathbb{Z}_{p}\right), & \text { if } n \geqslant 1 \\ 0, & \text { othervise }\end{cases}
$$

This algebra is a very natural module on which the right action of \mathcal{A}_{p} should be studied.

2. Homotopy system

For a right \mathcal{A}_{p}-module M define the following subspaces:

$$
\begin{array}{ll}
\Delta_{M}(k)=\bigcap_{i=0}^{k} \operatorname{ker} P^{p^{i}}, & I_{M}(k)=\bigcap_{i=0}^{k} \operatorname{im} P^{p^{i+1}-1}, \\
\Delta_{M}^{\beta}(k)=\Delta_{M}(k) \cap \operatorname{ker} \beta, & I_{M}^{\beta}(k)=I_{M}(k) \cap \operatorname{im} \beta
\end{array}
$$

The subspaces $\Delta_{M}(k)$ and $\Delta_{M}^{\beta}(k)$ are subspaces of partially annihilated elements. The subspaces $I_{M}(k)$ and $I_{M}^{\beta}(k)$ are subspaces of simultaneous spike images. For $M=\tilde{\Lambda}$, denote these modules by $\Delta(k), \Delta^{\beta}(k), I(k), I^{\beta}(k)$.

Lemma 2.1. For an \mathcal{A}_{p}-module M and $k \geqslant 0$ one has $I_{M}(k) \subset \Delta_{M}(k)$ and $I_{M}^{\beta}(k) \subset \Delta_{M}^{\beta}(k)$.

Remark 2.1. Generally $I_{M}(k) \not \subset \Delta_{M}^{\beta}(k)$.
Proof. The statements easily follow from the relations $P^{p^{m+1}-1} P^{p^{m}}=0$ and $\beta \beta=0$. The last one is a particular case of the general relation $P^{p m-1} P^{m}=0$. To check it, note that the Adem relation applies to $P^{p m-1} P^{m}$:

$$
P^{p m-1} P^{m}=\sum_{j=0}^{m-1}(-1)^{p m-1+j}\binom{(p-1)(m-j)-1}{p m-1-p j} P^{(p+1) m-1-j} P^{j}
$$

The inequality $(p-1)(m-j)-1<p m-1-p j$ follows easily from the restriction $j \leqslant m-1$. Hence all the binomial coefficients in the last sum vanish.

In some cases one can prove the reverse inclusions $\Delta_{M}(k) \subset I_{M}(k)$ and $\Delta_{M}^{\beta}(k)$ $\subset I_{M}^{\beta}(k)$. Now we describe an algebraic structure which is responsible for these inclusions.

Definition 2.1. For a right \mathcal{A}_{p}-module M define a k-th order homotopy system to be a null space $N \subset M$ and a collection of \mathbb{Z}_{p}-homomorphisms $Q_{m}: M \rightarrow M$ for $0 \leqslant m \leqslant k$ such that
(i) $Q_{m}(N) \subset N$ for $0 \leqslant m \leqslant k$;
(ii) for $1 \leqslant m \leqslant k$ and $l<p^{m}$ the following diagram comutes

(iii) $(x)\left(P^{p^{m}} Q_{m}-Q_{m} P^{p^{m}}\right)=x$ for any $x \in N$.

Definition 2.2. For a right \mathcal{A}_{p}-module M define a k-th order β-homotopy system to be a k-th order homotopy system $\left\{Q_{m}\right\}$ with null space $N \subset M$, which is equipped with a \mathbb{Z}_{p}-homomorphism $\alpha: M \rightarrow M$ such that
(iv) $\alpha(N) \subset N$ and for any $x \in N$ one has $x \alpha \beta+x \beta \alpha=x$.

For a nonnegative integer s, denote by $0 \leqslant d_{j}(s)<p$ the coefficients of the expansion $s=\sum d_{j}(s) p^{j}$ in the base p. Recall Lucas's theorem which states that for any nonnegative integers x and y one has

$$
\binom{x}{y} \equiv \prod_{j}\binom{d_{j}(x)}{d_{j}(x)} \quad \bmod p
$$

Lemma 2.2. For $1 \leqslant a \leqslant p-1$ one has

$$
\left.\left(P^{p^{0}}\right)^{a}\left(P^{p^{1}}\right)^{a} \ldots\left(P^{p^{n-1}}\right)^{a}\left(P^{p^{n}}\right)^{a}=c P^{a\left(p^{0}+p^{1}+\cdots+p^{n-1}+p^{n}\right.}\right)
$$

for some nonzero $c \in \mathbb{Z}_{p}$.

Proof. First of all we show that for any a such that $1 \leqslant a \leqslant p-1$ one has $\left(P^{1}\right)^{a}=c P^{a}$ for some nonzero $c \in \mathbb{Z}_{p}$. For $a=1$ the statement is trivial. Assume the statement is true for $a=b$, where $b<p-1$. Then $\left(P^{1}\right)^{b+1}=\left(P^{1}\right)^{b} P^{1}=c P^{b} P^{1}$, where $c \neq 0$. Apply the Adem relation to $P^{b} P^{1}$:

$$
P^{b} P^{1}=(-1)^{b}\binom{p-2}{b} P^{b+1}
$$

hence $\left(P^{1}\right)^{b+1}=c(-1)^{b}\binom{p-2}{b} P^{b+1}$. One easily checks that the binomial coefficient $\binom{p-2}{b}$ is nonzero in \mathbb{Z}_{p}.

Now we proceed by induction to prove that for any integers a and b such that $1 \leqslant a \leqslant p-1$ and $0 \leqslant b<a$ one has

$$
P^{a\left(p^{0}+p^{1}+\cdots+p^{m}\right)+b p^{m+1}} P^{p^{m+1}}=d P^{a\left(p^{0}+p^{1}+\cdots+p^{m}\right)+(b+1) p^{m+1}}
$$

for some nonzero $d \in \mathbb{Z}_{p}$.
Denote $a\left(p^{0}+p^{1}+\cdots+p^{m}\right)+b p^{m+1}$ by N. Apply the Adem relation to the product $P^{N} P^{p^{m+1}}$:

$$
P^{N} P^{p^{m+1}}=\sum_{t=0}^{[N / p]}(-1)^{N+t}\binom{(p-1)\left(p^{m+1}-t\right)-1}{N-p t} P^{N+p^{m+1}-t} P^{t}
$$

The coefficient for $t=0$, by Lucas's theorem, is equal to $(-1)^{N}\binom{p-2}{b}\binom{p-1}{a}^{m+1}$ and hence is not zero.

It is left to prove that for $t>0$, the binomial coefficient vanishes. To apply Lucas's theorem, it is enough to find j such that $d_{j}\left((p-1)\left(p^{m+1}-t\right)-1\right)<$ $d_{j}(N-p t)$. Fix $0<t<[N / p]$. For simplicity let $a_{j}=d_{j}(t)$. Choose the smallest j such that $a_{j} \neq 0$.

Case 1. If $1 \leqslant a_{j} \leqslant a$ then $d_{j}(N-p t)=a$ while $d_{j}\left((p-1)\left(p^{m+1}-t\right)-1\right)=a_{j}-1$. But $a_{j}-1<a$.

Case 2. If $a_{j+1} \geqslant a_{j}>a$ then $d_{j+1}(N-p t)=p+a-a_{j}$, while $d_{j+1}((p-$ 1) $\left.\left(p^{m+1}-t\right)-1\right)=a_{j+1}-a_{j}$. Note that $a_{j+1}-a_{j}<p+a-a_{j}$.

Case 3. Assume for some k one has $a_{k+1}>a_{k} \geqslant a$ and $a_{k} \leqslant a_{k-1} \leqslant \cdots \leqslant$ $a_{j+2} \leqslant a_{j+1}<a_{j}$. Then $d_{k+1}(N-p t)=p-1+a-a_{k}$ and $d_{k+1}\left((p-1)\left(p^{m+1}-\right.\right.$ $t)-1)=-1+a_{k+1}-a_{k}$. Note that $p-1+a-a_{k}>-1+a_{k+1}-a_{k}$.

Case 4. Assume for some k one has $a_{k+1}<a \leqslant a_{k} \leqslant a_{k-1} \leqslant \cdots \leqslant a_{j+2} \leqslant$ $a_{j+1}<a_{j}$. Then $d_{k+1}(N-p t)=p-1+a-a_{k}$ and $d_{k+1}\left((p-1)\left(p^{m+1}-t\right)-1\right)=$ $p-1+a_{k+1}-a_{k}$. Note that $p-1+a-a_{k}>p-1+a_{k+1}-a_{k}$.

Theorem 2.1. Suppose that for a right \mathcal{A}_{p}-module M there exists a k-th order homotopy system $\left\{Q_{m}\right\}$ with a null space N. Then $\Delta_{M}(k) \cap N=I_{M}(k) \cap N$. Moreover, if $x \in \Delta_{M}(k) \cap N$ then $y=x Q_{m}^{p-1} Q_{m-1}^{p-1} \ldots Q_{0}^{p-1}$ satisfies $y P^{p^{m+1}-1}=c x$ for some nonzero $c \in \mathbb{Z}_{p}$.

Proof. Denote for simplicity $P^{p^{m}}$ by P_{m}. Using standard technique for calculations with commutators involving creation-annihilation operators we prove for $j=0, \ldots, m-1$ that

$$
x Q_{m}^{p-1} Q_{m-1}^{p-1} \ldots Q_{j}^{p-1} P_{j}^{p-1}=-x Q_{m}^{p-1} Q_{m-1}^{p-1} \ldots Q_{j+1}^{p-1} .
$$

The relation

$$
x Q_{m}^{p-1} P_{m}^{p-1}=-x
$$

is proved in the same way. Denote $x Q_{m}^{p-1} Q_{m-1}^{p-1} \ldots Q_{j+1}^{p-1}$ by W. Since all Q_{n} 's left the subspace N invariant and P_{j} commutes with Q_{m}, \ldots, Q_{j+1} on the subspace N one has $W P_{j}=0$. Note that

$$
\left[Q_{j}^{n}, P_{j}^{n}\right]=\sum_{s+t=n-1} P_{j}^{s}\left[Q_{j}^{n}, P_{j}\right] P_{j}^{t}
$$

Apply this relation, for $n=p-1$, to the product $W\left(Q_{j}\right)^{p-1}\left(P_{j}\right)^{p-1}$:

$$
W Q_{j}^{p-1} P_{j}^{p-1}=W P_{j}^{p-1} Q_{j}^{p-1}+\sum_{s+t=p-2} W P_{j}^{s}\left[Q_{j}^{p-1}, P_{j}\right] P_{j}^{t} .
$$

On the right-hand side, all the summands vanish except $W\left[Q_{j}^{p-1}, P_{j}\right] P_{j}^{p-2}$. Now use the equality

$$
\left[Q_{j}^{p-1}, P_{j}\right]=\sum_{s+t=p-2} Q_{j}^{s}\left[Q_{j}, P_{j}\right] Q_{j}^{t}
$$

and rewrite the product $W\left[Q_{j}^{p-1}, P_{j}\right] P_{j}^{p-2}$ as

$$
W\left[Q_{j}^{p-1}, P_{j}\right] P_{j}^{p-2}=\sum_{s+t=p-2} W Q_{j}^{s}\left[Q_{j}, P_{j}\right] Q_{j}^{t} P_{j}^{p-2}
$$

Since $W Q_{j}^{s} \in N$, one has $W Q_{j}^{s}\left[Q_{j}, P_{j}\right]=-W Q_{j}^{s}$. Finally,

$$
W\left[Q_{j}^{p-1}, P_{j}\right] P_{j}^{p-2}=\sum_{s+t=p-2}-W Q_{j}^{s} Q_{j}^{t} P_{j}^{p-2}=-(p-1) W Q_{j}^{p-2} P_{j}^{p-2} .
$$

Proceeding in the same way, we obtain the equality

$$
W Q_{j}^{p-1} P_{j}^{p-1}=(-1)^{p-1}(p-1)!W=-W .
$$

Here we use simple part of the Wilson theorem which states that for a prime p one has $(p-1)!+1 \equiv 0 \bmod p$.

By Lemma 2.2, $P^{p^{m+1}-1}=d P_{0}^{p-1} \ldots P_{m}^{p-1}$ for some nonzero $d \in \mathbb{Z}_{p}$. Then

$$
\begin{aligned}
y P^{p^{m+1}-1} & =d x Q_{m}^{p-1} \ldots Q_{1}^{p-1} Q_{0}^{p-1} P_{0}^{p-1} P_{1}^{p-1} \ldots P_{m}^{p-1} \\
& =-d x Q_{m}^{p-1} \ldots Q_{1}^{p-1} P_{1}^{p-1} \ldots P_{m}^{p-1} \\
& =\cdots=(-1)^{m} d x Q_{m}^{p-1} P_{m}^{p-1}=(-1)^{m+1} d x .
\end{aligned}
$$

Corollary 2.1. Suppose that for a right \mathcal{A}_{p}-module M there exists a k-th order β-homotopy system $\left\{Q_{m}\right\}$ with a null space N and a \mathbb{Z}_{p}-homomorphism α. Then $\Delta_{M}^{\beta}(k) \cap N=I_{M}^{\beta}(k) \cap N$. Moreover, if $x \in \Delta_{M}^{\beta}(k) \cap N$, then $y=x \alpha$ belongs to N and satisfies $y \beta=x$.

Proof. From $x \beta \alpha+x \alpha \beta=x$ and $x \in \operatorname{ker} \beta$ it follows that $y \beta=x \alpha \beta=x$. From Definition 2.2 one has $y \in N$.

3. Shift maps in the homology of the smash-product power of the lens space

In this section we consider examples of homotopy systems for certain $\mathcal{A}_{p^{-}}$ modules. The reduced homology of $L^{\wedge s}$ is a vector space with the basis which consists of the elements $\left[u_{1}, \ldots, u_{s}\right]$ of degree $\sum \operatorname{deg} u_{j}$, where every u_{j} is $a, a \geqslant 1$, or $\hat{a}, a \geqslant 0$, and $\operatorname{deg} a=2 a$, $\operatorname{deg} \hat{a}=2 a+1$. Now we describe homotopy systems which appear naturally for $\tilde{H}_{*}\left(\tilde{\sim}^{\wedge s}\right)$.

Define the shift map $\Psi_{i}^{l}: \tilde{\Lambda}_{s, *} \rightarrow \tilde{\Lambda}_{s, *+l}$ by formulas $\left[u_{1}, \ldots, u_{i}, \ldots, u_{s}\right] \Psi_{i}^{l}=$ $\left[u_{1}, \ldots, u_{i}+l, \ldots, u_{s}\right]$. Here $u_{j}+l$ denotes $a_{j}+l$ if $u_{j}=a_{j}$ and $\widehat{a_{j}+l}$ if $u_{j}=\hat{a}_{j}$. Also define $\left[u_{1}, \ldots, a_{i}, \ldots, u_{s}\right] \alpha_{i}=0$ and $\left[u_{1}, \ldots, \hat{a}_{i}, \ldots, u_{s}\right] \alpha_{i}=\left[u_{1}, \ldots, a_{i}+1, \ldots, u_{s}\right]$. Clearly $\left(\Psi_{i}^{p^{m}}\right)^{k}=\Psi_{i}^{k p^{m}}$.

Hereinafter for $s=1$ we denote $\Psi^{l}=\Psi_{1}^{l}$ and $\alpha=\alpha_{1}$.
Lemma 3.1. We have
(a) $[a] \Psi^{k p^{m}} P^{n}=[a] P^{n} \Psi^{k p^{m}}$ for $a \geqslant(p-1) n, p^{m}>n, 1 \leqslant k \leqslant p-1$;
(b) $[\hat{a}] \Psi^{k p^{m}} P^{n}=[\hat{a}] P^{n} \Psi^{k p^{m}}$ for $a \geqslant(p-1) n, p^{m}>n, 1 \leqslant k \leqslant p-1$;
(c) $[a] \Psi^{k p^{m}} \beta=[a] \beta \Psi^{k p^{m}} \neq 0$;
(d) $[\hat{a}] \Psi^{k p^{m}} \beta=0=[\hat{a}] \beta \Psi^{k p^{m}}$.

Proof. By formulas (1.1), one has

$$
\begin{aligned}
& {[a] \Psi^{k p^{m}} P^{n}=\binom{a+k p^{m}-(p-1) n}{n}\left[a+k p^{m}-(p-1) n\right]} \\
& {[a] P^{n} \Psi^{k p^{m}}=\binom{a-(p-1) n}{n}\left[a+k p^{m}-(p-1) n\right]}
\end{aligned}
$$

Two binomial coefficients coincide under the assumptions of Lemma. Other statements are proved in the same way.

Lemma 3.2. We have
(a) $[a] P^{p^{m}} \Psi^{(p-1) p^{m}}-[a] \Psi^{(p-1) p^{m}} P^{p^{m}}=[a]$ for $m \geqslant 0$ and $a \geqslant(p-1) p^{m}$;
(b) $[\hat{a}] P^{p^{m}} \Psi^{(p-1) p^{m}}-[\hat{a}] \Psi^{(p-1) p^{m}} P^{p^{m}}=[\hat{a}]$ for $m \geqslant 0$ and $a \geqslant(p-1) p^{m}$;
(c) $[a] \alpha \beta+[a] \beta \alpha=[a]$ for $a \geqslant 1$;
(d) $[\hat{a}] \alpha \beta+[\hat{a}] \beta \alpha=[\hat{a}]$ for $a \geqslant 0$.

Proof. By straightforward computation, one can get

$$
[a] P^{p^{m}} \Psi^{(p-1) p^{m}}=\binom{a-(p-1) p^{m}}{p^{m}}[a], \quad[a] \Psi^{(p-1) p^{m}} P^{p^{m}}=\binom{a}{p^{m}}[a]
$$

Assume $a=\sum b_{k} p^{k}$, where $0 \leqslant b_{k}<p$. If $b_{m}=p-1$ then $\binom{a}{p^{m}}=p-1$ and $\binom{a-(p-1) p^{m}}{p^{m}}=0$. If $b_{m}<p-1$ then $\binom{a}{p^{m}}=b_{m}$ and $\binom{a-(p-1) p^{m}}{p^{m}}=b_{m}+1$. The proof of (b) is similar, and the statements (b) and (c) are clear.

Lemma 3.3. Assume $x=\left[u_{1}, \ldots, u_{s}\right]$, where each u_{j} is a_{j} or \hat{a}_{j}. If $p^{m}>n$, $a_{i} \geqslant(p-1) n, 1 \leqslant k \leqslant p-1$, then one has $x \Psi_{i}^{k p^{m}} P^{n}=x P^{n} \Psi_{i}^{k p^{m}}$.

Proof. Without loss of generality one can assume $i=1$. The case $s=1$ was considered in Lemma 3.1 so assume $s>1$. Let $y=\left[u_{2}, \ldots, u_{s}\right]$. Then $x=\left[u_{1}\right] \times y$, and by Lemma 3.1 one has

$$
\begin{aligned}
& \left(\left[u_{1}\right] \times y\right) P^{n} \Psi_{1}^{k p^{m}}=\sum_{l}\left(\left[u_{1}\right] P^{l} \times y P^{n-l}\right) \Psi_{1}^{k p^{m}} \\
& =\sum_{l}(-1)^{k \operatorname{deg} y}\left(x P^{l} \Psi_{1}^{k p^{m}} \times y P^{n-l}\right)=\sum_{l}(-1)^{k \operatorname{deg} y}\left(\left[u_{1}\right] \Psi_{1}^{k p^{m}} P^{l} \times y P^{n-l}\right) \\
& \quad=(-1)^{k \operatorname{deg} y}\left(\left[u_{1}\right] \Psi_{1}^{k p^{m}} \times y\right) P^{n}=x \Psi_{1}^{k p^{m}} P^{n} .
\end{aligned}
$$

Here we have used the standard sign convention.
Lemma 3.4. Assume $x=\left[u_{1}, \ldots, u_{s}\right]$, where each u_{j} is a_{j} or \hat{a}_{j}. If $a_{i} \geqslant$ $(p-1) p^{m}$, then $x P^{p^{m}} \Psi_{i}^{(p-1) p^{m}}-x \Psi_{i}^{(p-1) p^{m}} P^{p^{m}}=x$.

Proof. Again one can consider only $i=1$. For $s=1$ the statement coincides with Lemma [3.2] so assume $s>1$. Let $y=\left[u_{2}, \ldots, u_{s}\right]$; then $x=\left[u_{1}\right] \times y$. By Lemma 3.1 one has

$$
\begin{align*}
& \left(\left[u_{1}\right] \times y\right) P^{p^{m}} \Psi_{1}^{(p-1) p^{m}} \tag{3.1}\\
& \quad=\sum_{l=0}^{p_{1}^{m}-1}\left(\left[u_{1}\right] P^{l} \times y P^{p^{m}-l}\right) \Psi_{1}^{(p-1) p^{m}}+\left(\left[u_{1}\right] P^{p^{m}} \times y\right) \Psi_{1}^{(p-1) p^{m}} \\
& \quad=\sum_{l=0}^{p^{m}-1}\left(\left[u_{1}\right] P^{l} \Psi_{1}^{(p-1) p^{m}} \times y P^{p^{m}-l}\right)+\left(\left[u_{1}\right] P^{p^{m}} \Psi_{1}^{(p-1) p^{m}} \times y\right) ; \\
& \left(\left[u_{1}\right] \times y\right) \Psi_{1}^{(p-1) p^{m}} P^{p^{m}} \tag{3.2}\\
& \quad=\sum_{l=0}^{p^{m}-1}\left(\left[u_{1}\right] \Psi_{1}^{(p-1) p^{m}} P^{l} \times y P^{p^{m}-l}\right)+\left(\left[u_{1}\right] \Psi_{1}^{(p-1) p^{m}} P^{p^{m}} \times y\right) .
\end{align*}
$$

Take the difference of (3.1) and (3.2) and note that the sums on the right-hand sides cancel by Lemma 3.1. The difference of the last summands in (3.1) and (3.2) is equal to x by Lemma 3.2.

Lemma 3.5. Let $x=\left[u_{1}, \ldots, u_{s}\right]$. Then $x \beta \alpha_{i}+x \alpha_{i} \beta=x$.
Proof. Again one can consider only $i=1$. For $s=1$ the statement coincides with Lemma 3.2(b,c), so assume $s>1$. Let $y=\left[u_{2}, \ldots, u_{s}\right]$. Then $x=\left[u_{1}\right] \times y$, and by Lemma 3.1 one has

$$
\begin{align*}
\left(\left[u_{1}\right] \times y\right) \beta \alpha_{1} & =\left((-1)^{\operatorname{deg} y}\left[u_{1}\right] \beta \times y+\left[u_{1}\right] \times y \beta\right) \alpha_{1} \tag{3.3}\\
& =\left[u_{1}\right] \beta \alpha_{1} \times y+(-1)^{\operatorname{deg} y \beta}\left[u_{1}\right] \alpha_{1} \times y \beta . \\
\left(\left[u_{1}\right] \times y\right) \alpha_{1} \beta & =(-1)^{\operatorname{deg} y}\left(\left[u_{1}\right] \alpha_{1} \times y\right) \beta \tag{3.4}\\
& =\left[u_{1}\right] \alpha_{1} \beta \times y+(-1)^{\operatorname{deg} y}\left[u_{1}\right] \alpha_{1} \times y \beta .
\end{align*}
$$

Summing (3.3) and (3.4), we obtain

$$
(x) \beta \alpha_{1}+(x) \alpha_{1} \beta=\left[u_{1}\right] \beta \alpha_{1} \times y+\left[u_{1}\right] \alpha_{1} \beta \times y=\left(\left[u_{1}\right] \beta \alpha_{1}+\left[u_{1}\right] \alpha_{1} \beta\right) \times y
$$

which by Lemma 3.2(b,c) is equal to $\left[u_{1}\right] \times y=x$.

4. Examples

For some $i=1, \ldots, s$ denote by $N_{s}(i, k)$ the subspace in $\tilde{\Lambda}_{s, *}=\tilde{H}_{*}\left(L^{\wedge s}\right)$ spanned by $\left[u_{1}, \ldots, u_{s}\right]$, where $u_{i}=a_{i}$ or $u_{i}=\hat{a}_{i}$ and $a_{i} \geqslant(p-1) p^{k}$.

LEMmA 4.1. For $s \geqslant 1$ and $k \geqslant 0$ the collection of maps $\left\{Q_{m}=\Psi_{i}^{(p-1) p^{m}} \mid m \leqslant\right.$ $k\}$ forms a k-th homotopy system for $\tilde{\Lambda}_{s, *}$ with the null space $N_{s}(i, k)$.

Proof. The subspace $N_{s}(i, k)$ is stable under the action of Q_{m}. The properties (ii) and (iii) from Definition 2.1 are checked in Lemmas 3.3 and 3.3. The property (iv) from Definition 2.2 is checked in Lemma 3.5

Theorem 4.1. Fix $s \geqslant 1$ and $k \geqslant 0$. Assume $x \in N_{s}(i, k)$ for all $1 \leqslant i \leqslant s$. Then $x \in \Delta(k)$ iff $x \in I(k)$ and $x \in \Delta^{\beta}(k)$ iff $x \in I^{\beta}(k)$.

Proof. The statement follows immediately from Lemma 4.1, Theorem 2.1, and Corollary 2.1

References

1. V. Giambalvo, F. P. Peterson, The annihilator ideal of the action of the Steenrod algebra on $H^{*}\left(\mathbb{R} P^{\infty}\right)$, Topology Appl. 65 (1995), 105-122
2. S. Ault, Relations among the kernels and images of Steenrod squares acting on right \mathcal{A}-modules, J. Pure Appl. Algebra 216 (2012), 1428-1437.
3. S. V. Ault, W. M. Singer, On the homology of elementary abelian groups as modules over the Steenrod algebra J. Pure Appl. Algebra 215 (2011), 2847-2852
4. J. M. Boardman, Modular representations on the homology of powers of real projective space; in: M. C. Tangora (Ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math. 146 (1993), pp. 49-70
5. M. Kameko, Generators of the cohomology of $B V_{3}$, J. Math. Kyoto Univ. 38 (3) (1998), 587593
6. \qquad , Generators of the cohomology of $B V_{4}$, Toyama University, 2003 (preprint).
7. N. Sum, On the hit problem for the polynomial algebra in four variables, University of Quynhon, Vietnam, 2007 (preprint).

Moscow State Lomonosov University
Department of Mechanics and Mathematics
Moscow, Russia
popelens@mech.math.msu.su

[^0]: 2010 Mathematics Subject Classification: 55S10; 55R40; 57T25.
 Key words and phrases: Steenrod algebra, reduced powers.
 This work was funded by Russian Science Foundation 16-11-10069.

