
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 103(117) (2018), 191–198 DOI: https://doi.org/10.2298/PIM1817191P

RELATIONS BETWEEN KERNELS AND IMAGES OF

REDUCED POWERS FOR SOME RIGHT Ap-MODULES

Theodore Popelensky

Abstract. We investigate the right action of the mod p Steenrod algebra
Ap on the homology H∗(L∧s,Zp) where L = BZp is the lens space. Following
ideas of Ault and Singer we investigate the relation between intersection of ker-

nels of the reduced powers P pi
and Bockstein element β and the intersection of

images of P pi+1
−1 and of β. Namely one can check that

⋂k

i=0
im P pi+1

−1 ⊂
⋂k

i=0
ker P pi

and
⋂k

i=0
im P pi+1

−1 ∩ im β ⊂
⋂k

i=0
ker P pi

∩ ker β. We gen-
eralize Ault’s homotopy systems to p > 2 and examine when the reverse in-
clusions are true.

Introduction

Two natural questions arise when the action of the Steenrod algebra Ap on
the cohomology H∗(X,Zp) of a space X is considered. One is to describe the
annihilating ideal IX ⊂ Ap which is defined as IX = {φ ∈ Ap | φ(H∗(X,Zp)) = 0}.
The problem appeared to be difficult even for p = 2 and X = RP ∞, see [1].

The second question is to describe a minimal generating set of the Ap-module
H∗(X,Zp) and the set of elements of the form φx, where φ ∈ Ap, deg φ > 0,
x ∈ H∗(X,Zp) (or the space spanned by such elements, this is the so called hit
problem).

This question is far from being solved even for X =
∏k

i=1 RP ∞, though cases
k 6 4 are completely described in the papers [4, 5, 6, 7]

In this note we address the problem which is dual to the second question.
Consider the conjugate action of the Steenrod algebra Ap on the Zp-homology of a
space X . We say that x ∈ H∗(X,Zp) is P -annihilated iff xP m = 0 for all m > 0 and
βP -annihilated iff x is P -annihilated and xβ = 0. The problem is to describe the
subspace of all P -anihilated or βP -annihilated elements. Following ideas of Ault
and Singer [2, 3], we study subspaces of partially annihilated elements (∆M (k)

and ∆β
M (k), see below). It appears that there is a structure (homotopy system,

see Definitions 2.1 and 2.2) which relates these spaces with the spaces of so called
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spike images (IM (k) and Iβ
M (k), see below). The main results are Theorem 2.1 and

Corollary 2.1. Also we show that such homotopy systems exist for Λ̃ (see Section 3

and Theorem 4.1). Here Λ̃ is a bigraded space which is given by (1.2), see below.
Throughout the paper all the (co)homologies are considered with Zp coeffi-

cients.
The author is grateful to the referees for careful reading of the manuscript and

for finding inconsistencies in the preliminary version of it.

1. Lens space and the Ap-module Λ̃.

Denote by L the classifying space BZp. The cohomology ring structure is
described by the isomorphism H∗(L) ≡ Zp[x] ⊗ ΛZp

(y), where deg x = 2 and
deg y = 1. The action of the Steenrod algebra Ap on H∗(L) is given by the
following relations:

P kxm =
(m

k

)

xk(p−1)+m, βxm = 0,

P kxmy =
(m

k

)

xk(p−1)+my, βxmy = xm+1.

There is the conjugate right action of the algebra Ap on the reduced homology

of L. Denote by [a], a > 1, the generator of H̃2a(L) and by [â], a > 0, the generator
of H̃2a+1(L). The action of Ap on these elements is described by the formulas:

(1.1)
P k =

(a − (p − 1)k

k

)

[a − (p − 1)k], [a]β = [â − 1],

[â]P k =
(a − (p − 1)k

k

)

[ ̂a − (p − 1)k], [â]β = 0.

Here we write a homomorphism to the right from its argument.
Consider the bigraded algebra Λ̃ = {Λ̃∗,∗} which is defined by

(1.2) Λ̃n,k =











Zp, if n = k = 0;

H̃k(L∧n,Zp), if n > 1;

0, othervise.

This algebra is a very natural module on which the right action of Ap should be
studied.

2. Homotopy system

For a right Ap-module M define the following subspaces:

∆M (k) =

k
⋂

i=0

ker P pi

, IM (k) =

k
⋂

i=0

im P pi+1
−1,

∆β
M (k) = ∆M (k) ∩ ker β, Iβ

M (k) = IM (k) ∩ im β.

The subspaces ∆M (k) and ∆β
M (k) are subspaces of partially annihilated ele-

ments. The subspaces IM (k) and Iβ
M (k) are subspaces of simultaneous spike images.

For M = Λ̃, denote these modules by ∆(k), ∆β(k), I(k), Iβ(k).
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Lemma 2.1. For an Ap-module M and k > 0 one has IM (k) ⊂ ∆M (k) and

Iβ
M (k) ⊂ ∆β

M (k).

Remark 2.1. Generally IM (k) 6⊂ ∆β
M (k).

Proof. The statements easily follow from the relations P pm+1
−1P pm

= 0 and
ββ = 0. The last one is a particular case of the general relation P pm−1P m = 0. To
check it, note that the Adem relation applies to P pm−1P m:

P pm−1P m =

m−1
∑

j=0

(−1)pm−1+j
((p − 1)(m − j) − 1

pm − 1 − pj

)

P (p+1)m−1−jP j.

The inequality (p − 1)(m − j) − 1 < pm − 1 − pj follows easily from the restriction
j 6 m − 1. Hence all the binomial coefficients in the last sum vanish. �

In some cases one can prove the reverse inclusions ∆M (k) ⊂ IM (k) and ∆β
M (k)

⊂ Iβ
M (k). Now we describe an algebraic structure which is responsible for these

inclusions.

Definition 2.1. For a right Ap-module M define a k-th order homotopy system

to be a null space N ⊂ M and a collection of Zp-homomorphisms Qm : M → M
for 0 6 m 6 k such that

(i) Qm(N) ⊂ N for 0 6 m 6 k;
(ii) for 1 6 m 6 k and l < pm the following diagram comutes

N
P l

//

Qm

��

M

Qm

��

N
P l

// M

(iii) (x)(P pm

Qm − QmP pm

) = x for any x ∈ N .

Definition 2.2. For a right Ap-module M define a k-th order β-homotopy

system to be a k-th order homotopy system {Qm} with null space N ⊂ M , which
is equipped with a Zp-homomorphism α : M → M such that

(iv) α(N) ⊂ N and for any x ∈ N one has xαβ + xβα = x.

For a nonnegative integer s, denote by 0 6 dj(s) < p the coefficients of the
expansion s =

∑

dj(s)pj in the base p. Recall Lucas’s theorem which states that
for any nonnegative integers x and y one has

(x

y

)

≡
∏

j

(dj(x)

dj(x)

)

mod p.

Lemma 2.2. For 1 6 a 6 p − 1 one has

(P p0

)a(P p1

)a . . . (P pn−1

)a(P pn

)a = cP a(p0+p1+···+pn−1+pn),

for some nonzero c ∈ Zp.
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Proof. First of all we show that for any a such that 1 6 a 6 p − 1 one has
(P 1)a = cP a for some nonzero c ∈ Zp. For a = 1 the statement is trivial. Assume
the statement is true for a = b, where b < p−1. Then (P 1)b+1 = (P 1)bP 1 = cP bP 1,
where c 6= 0. Apply the Adem relation to P bP 1:

P bP 1 = (−1)b
(p − 2

b

)

P b+1,

hence (P 1)b+1 = c(−1)b
(

p−2
b

)

P b+1. One easily checks that the binomial coefficient
(

p−2
b

)

is nonzero in Zp.
Now we proceed by induction to prove that for any integers a and b such that

1 6 a 6 p − 1 and 0 6 b < a one has

P a(p0+p1+···+pm)+bpm+1

P pm+1

= dP a(p0+p1+···+pm)+(b+1)pm+1

for some nonzero d ∈ Zp.
Denote a(p0 + p1 + · · · + pm) + bpm+1 by N . Apply the Adem relation to the

product P N P pm+1

:

P N P pm+1

=

[N/p]
∑

t=0

(−1)N+t
( (p − 1)(pm+1 − t) − 1

N − pt

)

P N+pm+1
−tP t.

The coefficient for t = 0, by Lucas’s theorem, is equal to (−1)N
(

p−2
b

)(

p−1
a

)m+1
and

hence is not zero.
It is left to prove that for t > 0, the binomial coefficient vanishes. To apply

Lucas’s theorem, it is enough to find j such that dj((p − 1)(pm+1 − t) − 1) <
dj(N − pt). Fix 0 < t < [N/p]. For simplicity let aj = dj(t). Choose the smallest
j such that aj 6= 0.

Case 1. If 1 6 aj 6 a then dj(N−pt) = a while dj((p−1)(pm+1−t)−1) = aj−1.
But aj − 1 < a.

Case 2. If aj+1 > aj > a then dj+1(N − pt) = p + a − aj , while dj+1((p −
1)(pm+1 − t) − 1) = aj+1 − aj . Note that aj+1 − aj < p + a − aj .

Case 3. Assume for some k one has ak+1 > ak > a and ak 6 ak−1 6 · · · 6
aj+2 6 aj+1 < aj . Then dk+1(N − pt) = p − 1 + a − ak and dk+1((p − 1)(pm+1 −
t) − 1) = −1 + ak+1 − ak. Note that p − 1 + a − ak > −1 + ak+1 − ak.

Case 4. Assume for some k one has ak+1 < a 6 ak 6 ak−1 6 · · · 6 aj+2 6

aj+1 < aj. Then dk+1(N − pt) = p − 1 + a − ak and dk+1((p − 1)(pm+1 − t) − 1) =
p − 1 + ak+1 − ak. Note that p − 1 + a − ak > p − 1 + ak+1 − ak. �

Theorem 2.1. Suppose that for a right Ap-module M there exists a k-th order

homotopy system {Qm} with a null space N . Then ∆M (k) ∩ N = IM (k) ∩ N .

Moreover, if x ∈ ∆M (k)∩N then y = xQp−1
m Qp−1

m−1 . . . Qp−1
0 satisfies yP pm+1

−1 = cx
for some nonzero c ∈ Zp.

Proof. Denote for simplicity P pm

by Pm. Using standard technique for cal-
culations with commutators involving creation-annihilation operators we prove for
j = 0, . . . , m − 1 that

xQp−1
m Qp−1

m−1 . . . Qp−1
j P p−1

j = −xQp−1
m Qp−1

m−1 . . . Qp−1
j+1 .
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The relation

xQp−1
m P p−1

m = −x

is proved in the same way. Denote xQp−1
m Qp−1

m−1 . . . Qp−1
j+1 by W . Since all Qn’s left

the subspace N invariant and Pj commutes with Qm, . . . , Qj+1 on the subspace N
one has WPj = 0. Note that

[Qn
j , P n

j ] =
∑

s+t=n−1

P s
j [Qn

j , Pj ]P t
j .

Apply this relation, for n = p − 1, to the product W (Qj)p−1(Pj)p−1:

WQp−1
j P p−1

j = WP p−1
j Qp−1

j +
∑

s+t=p−2

WP s
j [Qp−1

j , Pj ]P t
j .

On the right-hand side, all the summands vanish except W [Qp−1
j , Pj ]P p−2

j . Now
use the equality

[Qp−1
j , Pj ] =

∑

s+t=p−2

Qs
j [Qj , Pj ]Qt

j

and rewrite the product W [Qp−1
j , Pj ]P p−2

j as

W [Qp−1
j , Pj ]P p−2

j =
∑

s+t=p−2

WQs
j [Qj , Pj ]Qt

jP p−2
j .

Since WQs
j ∈ N , one has WQs

j [Qj , Pj ] = −WQs
j . Finally,

W [Qp−1
j , Pj ]P p−2

j =
∑

s+t=p−2

−WQs
jQt

jP p−2
j = −(p − 1)WQp−2

j P p−2
j .

Proceeding in the same way, we obtain the equality

WQp−1
j P p−1

j = (−1)p−1(p − 1)!W = −W.

Here we use simple part of the Wilson theorem which states that for a prime p one
has (p − 1)! + 1 ≡ 0 mod p.

By Lemma 2.2, P pm+1
−1 = d P p−1

0 . . . P p−1
m for some nonzero d ∈ Zp. Then

yP pm+1
−1 = d xQp−1

m . . . Qp−1
1 Qp−1

0 P p−1
0 P p−1

1 . . . P p−1
m

= −d xQp−1
m . . . Qp−1

1 P p−1
1 . . . P p−1

m

= · · · = (−1)md xQp−1
m P p−1

m = (−1)m+1d x. �

Corollary 2.1. Suppose that for a right Ap-module M there exists a k-th

order β-homotopy system {Qm} with a null space N and a Zp-homomorphism α.

Then ∆β
M (k) ∩ N = Iβ

M (k) ∩ N . Moreover, if x ∈ ∆β
M (k) ∩ N , then y = xα belongs

to N and satisfies yβ = x.

Proof. From xβα + xαβ = x and x ∈ ker β it follows that yβ = xαβ = x.
From Definition 2.2 one has y ∈ N . �
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3. Shift maps in the homology

of the smash-product power of the lens space

In this section we consider examples of homotopy systems for certain Ap-
modules. The reduced homology of L∧s is a vector space with the basis which
consists of the elements [u1, . . . , us] of degree

∑

deg uj, where every uj is a, a > 1,
or â, a > 0, and deg a = 2a, deg â = 2a + 1. Now we describe homotopy systems
which appear naturally for H̃∗(L∧s).

Define the shift map Ψl
i : Λ̃s,∗ → Λ̃s,∗+l by formulas [u1, . . . , ui, . . . , us]Ψl

i =

[u1, . . . , ui+l, . . . , us]. Here uj+l denotes aj +l if uj = aj and âj + l if uj = âj . Also
define [u1, . . . , ai, . . . , us]αi = 0 and [u1, . . . , âi, . . . , us]αi = [u1, . . . , ai + 1, . . . , us].

Clearly (Ψpm

i )k = Ψkpm

i .
Hereinafter for s = 1 we denote Ψl = Ψl

1 and α = α1.

Lemma 3.1. We have

(a) [a]Ψkpm

P n = [a]P nΨkpm

for a > (p − 1)n, pm > n, 1 6 k 6 p − 1;

(b) [â]Ψkpm

P n = [â]P nΨkpm

for a > (p − 1)n, pm > n, 1 6 k 6 p − 1;

(c) [a]Ψkpm

β = [a]βΨkpm

6= 0;

(d) [â]Ψkpm

β = 0 = [â]βΨkpm

.

Proof. By formulas (1.1), one has

[a]Ψkpm

P n =
(a + kpm − (p − 1)n

n

)

[a + kpm − (p − 1)n],

[a]P nΨkpm

=
(a − (p − 1)n

n

)

[a + kpm − (p − 1)n].

Two binomial coefficients coincide under the assumptions of Lemma. Other state-
ments are proved in the same way. �

Lemma 3.2. We have

(a) [a]P pm

Ψ(p−1)pm

− [a]Ψ(p−1)pm

P pm

= [a] for m > 0 and a > (p − 1)pm;

(b) [â]P pm

Ψ(p−1)pm

− [â]Ψ(p−1)pm

P pm

= [â] for m > 0 and a > (p − 1)pm;

(c) [a]αβ + [a]βα = [a] for a > 1;

(d) [â]αβ + [â]βα = [â] for a > 0.

Proof. By straightforward computation, one can get

[a]P pm

Ψ(p−1)pm

=
(a − (p − 1)pm

pm

)

[a], [a]Ψ(p−1)pm

P pm

=
( a

pm

)

[a].

Assume a =
∑

bkpk, where 0 6 bk < p. If bm = p − 1 then
(

a
pm

)

= p − 1 and
(

a−(p−1)pm

pm

)

= 0. If bm < p − 1 then
(

a
pm

)

= bm and
(

a−(p−1)pm

pm

)

= bm + 1. The

proof of (b) is similar, and the statements (b) and (c) are clear. �

Lemma 3.3. Assume x = [u1, . . . , us], where each uj is aj or âj. If pm > n,

ai > (p − 1)n, 1 6 k 6 p − 1, then one has xΨkpm

i P n = xP nΨkpm

i .
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Proof. Without loss of generality one can assume i = 1. The case s = 1 was
considered in Lemma 3.1, so assume s > 1. Let y = [u2, . . . , us]. Then x = [u1]×y,
and by Lemma 3.1 one has

([u1] × y)P nΨkpm

1 =
∑

l

([u1]P l × yP n−l)Ψkpm

1

=
∑

l

(−1)k deg y(xP lΨkpm

1 × yP n−l) =
∑

l

(−1)k deg y([u1]Ψkpm

1 P l × yP n−l)

= (−1)k deg y([u1]Ψkpm

1 × y)P n = xΨkpm

1 P n.

Here we have used the standard sign convention. �

Lemma 3.4. Assume x = [u1, . . . , us], where each uj is aj or âj. If ai >

(p − 1)pm, then xP pm

Ψ
(p−1)pm

i − xΨ
(p−1)pm

i P pm

= x.

Proof. Again one can consider only i = 1. For s = 1 the statement coincides
with Lemma 3.2, so assume s > 1. Let y = [u2, . . . , us]; then x = [u1] × y. By
Lemma 3.1, one has

([u1] × y)P pm

Ψ
(p−1)pm

1(3.1)

=

pm
−1

∑

l=0

([u1]P l × yP pm
−l)Ψ

(p−1)pm

1 + ([u1]P pm

× y)Ψ
(p−1)pm

1

=

pm
−1

∑

l=0

([u1]P lΨ
(p−1)pm

1 × yP pm
−l) + ([u1]P pm

Ψ
(p−1)pm

1 × y);

([u1] × y)Ψ
(p−1)pm

1 P pm

(3.2)

=

pm
−1

∑

l=0

([u1]Ψ
(p−1)pm

1 P l × yP pm
−l) + ([u1]Ψ

(p−1)pm

1 P pm

× y).

Take the difference of (3.1) and (3.2) and note that the sums on the right-hand
sides cancel by Lemma 3.1. The difference of the last summands in (3.1) and (3.2)
is equal to x by Lemma 3.2. �

Lemma 3.5. Let x = [u1, . . . , us]. Then xβαi + xαiβ = x.

Proof. Again one can consider only i = 1. For s = 1 the statement coincides
with Lemma 3.2(b,c), so assume s > 1. Let y = [u2, . . . , us]. Then x = [u1] × y,
and by Lemma 3.1 one has

([u1] × y)βα1 = ((−1)deg y[u1]β × y + [u1] × yβ)α1(3.3)

= [u1]βα1 × y + (−1)deg yβ[u1]α1 × yβ.

([u1] × y)α1β = (−1)deg y([u1]α1 × y)β(3.4)

= [u1]α1β × y + (−1)deg y[u1]α1 × yβ.
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Summing (3.3) and (3.4), we obtain

(x)βα1 + (x)α1β = [u1]βα1 × y + [u1]α1β × y = ([u1]βα1 + [u1]α1β) × y

which by Lemma 3.2(b,c) is equal to [u1] × y = x. �

4. Examples

For some i = 1, . . . , s denote by Ns(i, k) the subspace in Λ̃s,∗ = H̃∗(L∧s)
spanned by [u1, . . . , us], where ui = ai or ui = âi and ai > (p − 1)pk.

Lemma 4.1. For s > 1 and k > 0 the collection of maps {Qm = Ψ
(p−1)pm

i | m 6

k} forms a k-th homotopy system for Λ̃s,∗ with the null space Ns(i, k).

Proof. The subspace Ns(i, k) is stable under the action of Qm. The properties
(ii) and (iii) from Definition 2.1 are checked in Lemmas 3.3 and 3.3. The property
(iv) from Definition 2.2 is checked in Lemma 3.5. �

Theorem 4.1. Fix s > 1 and k > 0. Assume x ∈ Ns(i, k) for all 1 6 i 6 s.

Then x ∈ ∆(k) iff x ∈ I(k) and x ∈ ∆β(k) iff x ∈ Iβ(k).

Proof. The statement follows immediately from Lemma 4.1, Theorem 2.1,
and Corollary 2.1. �
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