RELATIONS BETWEEN KERNELS AND IMAGES OF REDUCED POWERS FOR SOME RIGHT A_p -MODULES

Theodore Popelensky

ABSTRACT. We investigate the right action of the mod p Steenrod algebra \mathcal{A}_p on the homology $H_*(L^{\wedge s}, \mathbb{Z}_p)$ where $L = B\mathbb{Z}_p$ is the lens space. Following ideas of Ault and Singer we investigate the relation between intersection of kernels of the reduced powers P^{p^i} and Bockstein element β and the intersection of images of $P^{p^{i+1}-1}$ and of β . Namely one can check that $\bigcap_{i=0}^k \operatorname{im} P^{p^{i+1}-1} \subset \bigcap_{i=0}^k \ker P^{p^i}$ and $\bigcap_{i=0}^k \operatorname{im} P^{p^{i+1}-1} \cap \operatorname{im} \beta \subset \bigcap_{i=0}^k \ker P^{p^i} \cap \ker \beta$. We generalize Ault's homotopy systems to p > 2 and examine when the reverse inclusions are true.

Introduction

Two natural questions arise when the action of the Steenrod algebra \mathcal{A}_p on the cohomology $H^*(X, \mathbb{Z}_p)$ of a space X is considered. One is to describe the annihilating ideal $I_X \subset \mathcal{A}_p$ which is defined as $I_X = \{\phi \in \mathcal{A}_p \mid \phi(H^*(X, \mathbb{Z}_p)) = 0\}$. The problem appeared to be difficult even for p = 2 and $X = \mathbb{R}P^{\infty}$, see [1].

The second question is to describe a minimal generating set of the \mathcal{A}_p -module $H^*(X, \mathbb{Z}_p)$ and the set of elements of the form ϕx , where $\phi \in \mathcal{A}_p$, deg $\phi > 0$, $x \in H^*(X, \mathbb{Z}_p)$ (or the space spanned by such elements, this is the so called hit problem).

This question is far from being solved even for $X = \prod_{i=1}^{k} \mathbb{R}P^{\infty}$, though cases $k \leq 4$ are completely described in the papers [4, 5, 6, 7]

In this note we address the problem which is dual to the second question. Consider the conjugate action of the Steenrod algebra \mathcal{A}_p on the \mathbb{Z}_p -homology of a space X. We say that $x \in H_*(X, \mathbb{Z}_p)$ is P-annihilated iff $xP^m = 0$ for all m > 0 and βP -annihilated iff x is P-annihilated and $x\beta = 0$. The problem is to describe the subspace of all P-annihilated or βP -annihilated elements. Following ideas of Ault and Singer [2, 3], we study subspaces of partially annihilated elements ($\Delta_M(k)$) and $\Delta_M^\beta(k)$, see below). It appears that there is a structure (homotopy system, see Definitions 2.1 and 2.2) which relates these spaces with the spaces of so called

191

 $^{2010\} Mathematics\ Subject\ Classification:\ 55S10;\ 55R40;\ 57T25.$

Key words and phrases: Steenrod algebra, reduced powers.

This work was funded by Russian Science Foundation 16-11-10069.

POPELENSKY

spike images $(I_M(k) \text{ and } I_M^\beta(k), \text{ see below})$. The main results are Theorem 2.1 and Corollary 2.1. Also we show that such homotopy systems exist for $\tilde{\Lambda}$ (see Section 3 and Theorem 4.1). Here $\tilde{\Lambda}$ is a bigraded space which is given by (1.2), see below.

Throughout the paper all the (co)homologies are considered with \mathbb{Z}_p coefficients.

The author is grateful to the referees for careful reading of the manuscript and for finding inconsistencies in the preliminary version of it.

1. Lens space and the \mathcal{A}_p -module Λ .

Denote by L the classifying space $B\mathbb{Z}_p$. The cohomology ring structure is described by the isomorphism $H^*(L) \equiv \mathbb{Z}_p[x] \otimes \Lambda_{\mathbb{Z}_p}(y)$, where deg x = 2 and deg y = 1. The action of the Steenrod algebra \mathcal{A}_p on $H^*(L)$ is given by the following relations:

$$P^{k}x^{m} = \binom{m}{k}x^{k(p-1)+m}, \qquad \beta x^{m} = 0,$$

$$P^{k}x^{m}y = \binom{m}{k}x^{k(p-1)+m}y, \quad \beta x^{m}y = x^{m+1}$$

There is the conjugate right action of the algebra \mathcal{A}_p on the reduced homology of L. Denote by $[a], a \ge 1$, the generator of $\tilde{H}_{2a}(L)$ and by $[\hat{a}], a \ge 0$, the generator of $\tilde{H}_{2a+1}(L)$. The action of \mathcal{A}_p on these elements is described by the formulas:

(1.1)
$$P^{k} = {\binom{a - (p-1)k}{k}} [a - (p-1)k], \qquad [a]\beta = \widehat{[a-1]}, \\ \widehat{[a]}P^{k} = {\binom{a - (p-1)k}{k}} \widehat{[a - (p-1)k]}, \qquad \widehat{[a]}\beta = 0.$$

Here we write a homomorphism to the right from its argument.

Consider the bigraded algebra $\Lambda = {\Lambda_{*,*}}$ which is defined by

(1.2)
$$\tilde{\Lambda}_{n,k} = \begin{cases} \mathbb{Z}_p, & \text{if } n = k = 0\\ \tilde{H}_k(L^{\wedge n}, \mathbb{Z}_p), & \text{if } n \ge 1;\\ 0, & \text{otherwise.} \end{cases}$$

This algebra is a very natural module on which the right action of \mathcal{A}_p should be studied.

2. Homotopy system

For a right \mathcal{A}_p -module *M* define the following subspaces:

$$\Delta_M(k) = \bigcap_{i=0}^k \ker P^{p^i}, \qquad I_M(k) = \bigcap_{i=0}^k \operatorname{im} P^{p^{i+1}-1},$$

$$\Delta_M^\beta(k) = \Delta_M(k) \cap \ker \beta, \quad I_M^\beta(k) = I_M(k) \cap \operatorname{im} \beta.$$

The subspaces $\Delta_M(k)$ and $\Delta_M^\beta(k)$ are subspaces of partially annihilated elements. The subspaces $I_M(k)$ and $I_M^\beta(k)$ are subspaces of simultaneous spike images. For $M = \tilde{\Lambda}$, denote these modules by $\Delta(k)$, $\Delta^\beta(k)$, I(k), $I^\beta(k)$.

192

LEMMA 2.1. For an \mathcal{A}_p -module M and $k \ge 0$ one has $I_M(k) \subset \Delta_M(k)$ and $I_M^\beta(k) \subset \Delta_M^\beta(k)$.

REMARK 2.1. Generally $I_M(k) \not\subset \Delta_M^\beta(k)$.

PROOF. The statements easily follow from the relations $P^{p^{m+1}-1}P^{p^m} = 0$ and $\beta\beta = 0$. The last one is a particular case of the general relation $P^{pm-1}P^m = 0$. To check it, note that the Adem relation applies to $P^{pm-1}P^m$:

$$P^{pm-1}P^m = \sum_{j=0}^{m-1} (-1)^{pm-1+j} {\binom{(p-1)(m-j)-1}{pm-1-pj}} P^{(p+1)m-1-j}P^j.$$

The inequality (p-1)(m-j) - 1 < pm - 1 - pj follows easily from the restriction $j \leq m-1$. Hence all the binomial coefficients in the last sum vanish.

In some cases one can prove the reverse inclusions $\Delta_M(k) \subset I_M(k)$ and $\Delta_M^\beta(k) \subset I_M^\beta(k)$. Now we describe an algebraic structure which is responsible for these inclusions.

DEFINITION 2.1. For a right \mathcal{A}_p -module M define a k-th order homotopy system to be a null space $N \subset M$ and a collection of \mathbb{Z}_p -homomorphisms $Q_m : M \to M$ for $0 \leq m \leq k$ such that

- (i) $Q_m(N) \subset N$ for $0 \leq m \leq k$;
- (ii) for $1 \leqslant m \leqslant k$ and $l < p^m$ the following diagram comutes

$$(\text{iii}) \quad (x)(P^{p^m}Q_m - Q_mP^{p^m}) = x \text{ for any } x \in N$$

DEFINITION 2.2. For a right \mathcal{A}_p -module M define a k-th order β -homotopy system to be a k-th order homotopy system $\{Q_m\}$ with null space $N \subset M$, which is equipped with a \mathbb{Z}_p -homomorphism $\alpha : M \to M$ such that

(iv) $\alpha(N) \subset N$ and for any $x \in N$ one has $x\alpha\beta + x\beta\alpha = x$.

For a nonnegative integer s, denote by $0 \leq d_j(s) < p$ the coefficients of the expansion $s = \sum d_j(s)p^j$ in the base p. Recall Lucas's theorem which states that for any nonnegative integers x and y one has

$$\binom{x}{y} \equiv \prod_{j} \binom{d_j(x)}{d_j(x)} \mod p.$$

LEMMA 2.2. For $1 \leq a \leq p-1$ one has

$$(P^{p^0})^a (P^{p^1})^a \dots (P^{p^{n-1}})^a (P^{p^n})^a = cP^{a(p^0+p^1+\dots+p^{n-1}+p^n)},$$

for some nonzero $c \in \mathbb{Z}_p$.

PROOF. First of all we show that for any a such that $1 \leq a \leq p-1$ one has $(P^1)^a = cP^a$ for some nonzero $c \in \mathbb{Z}_p$. For a = 1 the statement is trivial. Assume the statement is true for a = b, where b < p-1. Then $(P^1)^{b+1} = (P^1)^b P^1 = cP^b P^1$, where $c \neq 0$. Apply the Adem relation to $P^b P^1$:

$$P^{b}P^{1} = (-1)^{b} {p-2 \choose b} P^{b+1},$$

hence $(P^1)^{b+1} = c(-1)^b {p-2 \choose b} P^{b+1}$. One easily checks that the binomial coefficient ${p-2 \choose b}$ is nonzero in \mathbb{Z}_p .

Now we proceed by induction to prove that for any integers a and b such that $1 \leq a \leq p-1$ and $0 \leq b < a$ one has

$$P^{a(p^{0}+p^{1}+\dots+p^{m})+bp^{m+1}}P^{p^{m+1}} = dP^{a(p^{0}+p^{1}+\dots+p^{m})+(b+1)p^{m+1}}$$

for some nonzero $d \in \mathbb{Z}_p$.

Denote $a(p^0 + p^1 + \cdots + p^m) + bp^{m+1}$ by N. Apply the Adem relation to the product $P^N P^{p^{m+1}}$:

$$P^{N}P^{p^{m+1}} = \sum_{t=0}^{[N/p]} (-1)^{N+t} {\binom{(p-1)(p^{m+1}-t)-1}{N-pt}} P^{N+p^{m+1}-t}P^{t}.$$

The coefficient for t = 0, by Lucas's theorem, is equal to $(-1)^N {\binom{p-2}{b}} {\binom{p-1}{a}}^{m+1}$ and hence is not zero.

It is left to prove that for t > 0, the binomial coefficient vanishes. To apply Lucas's theorem, it is enough to find j such that $d_j((p-1)(p^{m+1}-t)-1) < d_j(N-pt)$. Fix 0 < t < [N/p]. For simplicity let $a_j = d_j(t)$. Choose the smallest j such that $a_j \neq 0$.

Case 1. If $1 \leq a_j \leq a$ then $d_j(N-pt) = a$ while $d_j((p-1)(p^{m+1}-t)-1) = a_j-1$. But $a_j - 1 < a$.

Case 2. If $a_{j+1} \ge a_j > a$ then $d_{j+1}(N - pt) = p + a - a_j$, while $d_{j+1}((p - 1)(p^{m+1} - t) - 1) = a_{j+1} - a_j$. Note that $a_{j+1} - a_j .$

Case 3. Assume for some k one has $a_{k+1} > a_k \ge a$ and $a_k \le a_{k-1} \le \cdots \le a_{j+2} \le a_{j+1} < a_j$. Then $d_{k+1}(N - pt) = p - 1 + a - a_k$ and $d_{k+1}((p-1)(p^{m+1} - t) - 1) = -1 + a_{k+1} - a_k$. Note that $p - 1 + a - a_k > -1 + a_{k+1} - a_k$.

Case 4. Assume for some k one has $a_{k+1} < a \leq a_k \leq a_{k-1} \leq \cdots \leq a_{j+2} \leq a_{j+1} < a_j$. Then $d_{k+1}(N - pt) = p - 1 + a - a_k$ and $d_{k+1}((p-1)(p^{m+1} - t) - 1) = p - 1 + a_{k+1} - a_k$. Note that $p - 1 + a - a_k > p - 1 + a_{k+1} - a_k$.

THEOREM 2.1. Suppose that for a right \mathcal{A}_p -module M there exists a k-th order homotopy system $\{Q_m\}$ with a null space N. Then $\Delta_M(k) \cap N = I_M(k) \cap N$. Moreover, if $x \in \Delta_M(k) \cap N$ then $y = xQ_m^{p-1}Q_{m-1}^{p-1} \dots Q_0^{p-1}$ satisfies $yP^{p^{m+1}-1} = cx$ for some nonzero $c \in \mathbb{Z}_p$.

PROOF. Denote for simplicity P^{p^m} by P_m . Using standard technique for calculations with commutators involving creation-annihilation operators we prove for $j = 0, \ldots, m-1$ that

$$xQ_m^{p-1}Q_{m-1}^{p-1}\dots Q_j^{p-1}P_j^{p-1} = -xQ_m^{p-1}Q_{m-1}^{p-1}\dots Q_{j+1}^{p-1}.$$

The relation

$$xQ_m^{p-1}P_m^{p-1} = -x$$

is proved in the same way. Denote $xQ_m^{p-1}Q_{m-1}^{p-1}\ldots Q_{j+1}^{p-1}$ by W. Since all Q_n 's left the subspace N invariant and P_j commutes with Q_m, \ldots, Q_{j+1} on the subspace N one has $WP_j = 0$. Note that

$$[Q_{j}^{n}, P_{j}^{n}] = \sum_{s+t=n-1} P_{j}^{s}[Q_{j}^{n}, P_{j}]P_{j}^{t}.$$

Apply this relation, for n = p - 1, to the product $W(Q_j)^{p-1}(P_j)^{p-1}$:

$$WQ_j^{p-1}P_j^{p-1} = WP_j^{p-1}Q_j^{p-1} + \sum_{s+t=p-2} WP_j^s[Q_j^{p-1}, P_j]P_j^t.$$

On the right-hand side, all the summands vanish except $W[Q_j^{p-1}, P_j]P_j^{p-2}$. Now use the equality

$$[Q_j^{p-1}, P_j] = \sum_{s+t=p-2} Q_j^s [Q_j, P_j] Q_j^t$$

and rewrite the product $W[Q_j^{p-1}, P_j]P_j^{p-2}$ as

$$W[Q_j^{p-1}, P_j]P_j^{p-2} = \sum_{s+t=p-2} WQ_j^s[Q_j, P_j]Q_j^t P_j^{p-2}.$$

Since $WQ_j^s \in N$, one has $WQ_j^s[Q_j, P_j] = -WQ_j^s$. Finally,

$$W[Q_j^{p-1}, P_j]P_j^{p-2} = \sum_{s+t=p-2} -WQ_j^s Q_j^t P_j^{p-2} = -(p-1)WQ_j^{p-2}P_j^{p-2}.$$

Proceeding in the same way, we obtain the equality

$$WQ_j^{p-1}P_j^{p-1} = (-1)^{p-1}(p-1)!W = -W.$$

Here we use simple part of the Wilson theorem which states that for a prime p one has $(p-1)! + 1 \equiv 0 \mod p$.

By Lemma 2.2,
$$P^{p^{m+1}-1} = d P_0^{p-1} \dots P_m^{p-1}$$
 for some nonzero $d \in \mathbb{Z}_p$. Then
 $yP^{p^{m+1}-1} = d x Q_m^{p-1} \dots Q_1^{p-1} Q_0^{p-1} P_0^{p-1} P_1^{p-1} \dots P_m^{p-1}$
 $= -d x Q_m^{p-1} \dots Q_1^{p-1} P_1^{p-1} \dots P_m^{p-1}$
 $= \dots = (-1)^m d x Q_m^{p-1} P_m^{p-1} = (-1)^{m+1} d x.$

COROLLARY 2.1. Suppose that for a right \mathcal{A}_p -module M there exists a k-th order β -homotopy system $\{Q_m\}$ with a null space N and a \mathbb{Z}_p -homomorphism α . Then $\Delta^{\beta}_M(k) \cap N = I^{\beta}_M(k) \cap N$. Moreover, if $x \in \Delta^{\beta}_M(k) \cap N$, then $y = x\alpha$ belongs to N and satisfies $y\beta = x$.

PROOF. From $x\beta\alpha + x\alpha\beta = x$ and $x \in \ker \beta$ it follows that $y\beta = x\alpha\beta = x$. From Definition 2.2 one has $y \in N$.

POPELENSKY

3. Shift maps in the homology of the smash-product power of the lens space

In this section we consider examples of homotopy systems for certain \mathcal{A}_p modules. The reduced homology of $L^{\wedge s}$ is a vector space with the basis which consists of the elements $[u_1, \ldots, u_s]$ of degree $\sum \deg u_j$, where every u_j is $a, a \ge 1$, or $\hat{a}, a \ge 0$, and deg a = 2a, deg $\hat{a} = 2a + 1$. Now we describe homotopy systems which appear naturally for $\tilde{H}_*(L^{\wedge s})$.

Define the shift map $\Psi_i^l : \tilde{\Lambda}_{s,*} \to \tilde{\Lambda}_{s,*+l}$ by formulas $[u_1, \ldots, u_i, \ldots, u_s]\Psi_i^l = [u_1, \ldots, u_i+l, \ldots, u_s]$. Here u_j+l denotes a_j+l if $u_j = a_j$ and a_j+l if $u_j = \hat{a}_j$. Also define $[u_1, \ldots, a_i, \ldots, u_s]\alpha_i = 0$ and $[u_1, \ldots, \hat{a}_i, \ldots, u_s]\alpha_i = [u_1, \ldots, a_i+1, \ldots, u_s]$. Clearly $(\Psi_i^{p^m})^k = \Psi_i^{kp^m}$.

Hereinafter for s = 1 we denote $\Psi^l = \Psi_1^l$ and $\alpha = \alpha_1$.

LEMMA 3.1. We have

(a) $[a]\Psi^{kp^m}P^n = [a]P^n\Psi^{kp^m}$ for $a \ge (p-1)n$, $p^m > n$, $1 \le k \le p-1$; (b) $[\hat{a}]\Psi^{kp^m}P^n = [\hat{a}]P^n\Psi^{kp^m}$ for $a \ge (p-1)n$, $p^m > n$, $1 \le k \le p-1$; (c) $[a]\Psi^{kp^m}\beta = [a]\beta\Psi^{kp^m} \ne 0$; (d) $[\hat{a}]\Psi^{kp^m}\beta = 0 = [\hat{a}]\beta\Psi^{kp^m}$.

PROOF. By formulas (1.1), one has

$$[a]\Psi^{kp^m}P^n = \binom{a+kp^m-(p-1)n}{n}[a+kp^m-(p-1)n]$$
$$[a]P^n\Psi^{kp^m} = \binom{a-(p-1)n}{n}[a+kp^m-(p-1)n].$$

Two binomial coefficients coincide under the assumptions of Lemma. Other statements are proved in the same way. $\hfill \Box$

LEMMA 3.2. We have (a) $[a]P^{p^m}\Psi^{(p-1)p^m} - [a]\Psi^{(p-1)p^m}P^{p^m} = [a]$ for $m \ge 0$ and $a \ge (p-1)p^m$; (b) $[\hat{a}]P^{p^m}\Psi^{(p-1)p^m} - [\hat{a}]\Psi^{(p-1)p^m}P^{p^m} = [\hat{a}]$ for $m \ge 0$ and $a \ge (p-1)p^m$; (c) $[a]\alpha\beta + [a]\beta\alpha = [a]$ for $a \ge 1$; (d) $[\hat{a}]\alpha\beta + [\hat{a}]\beta\alpha = [\hat{a}]$ for $a \ge 0$.

PROOF. By straightforward computation, one can get

$$[a]P^{p^m}\Psi^{(p-1)p^m} = \binom{a - (p-1)p^m}{p^m}[a], \quad [a]\Psi^{(p-1)p^m}P^{p^m} = \binom{a}{p^m}[a].$$

Assume $a = \sum b_k p^k$, where $0 \leq b_k < p$. If $b_m = p - 1$ then $\binom{a}{p^m} = p - 1$ and $\binom{a^{-(p-1)p^m}}{p^m} = 0$. If $b_m then <math>\binom{a}{p^m} = b_m$ and $\binom{a^{-(p-1)p^m}}{p^m} = b_m + 1$. The proof of (b) is similar, and the statements (b) and (c) are clear.

LEMMA 3.3. Assume $x = [u_1, \ldots, u_s]$, where each u_j is a_j or \hat{a}_j . If $p^m > n$, $a_i \ge (p-1)n$, $1 \le k \le p-1$, then one has $x \Psi_i^{kp^m} P^n = x P^n \Psi_i^{kp^m}$.

PROOF. Without loss of generality one can assume i = 1. The case s = 1 was considered in Lemma 3.1, so assume s > 1. Let $y = [u_2, \ldots, u_s]$. Then $x = [u_1] \times y$, and by Lemma 3.1 one has

$$\begin{split} ([u_1] \times y) P^n \Psi_1^{kp^m} &= \sum_l ([u_1] P^l \times y P^{n-l}) \Psi_1^{kp^m} \\ &= \sum_l (-1)^{k \deg y} (x P^l \Psi_1^{kp^m} \times y P^{n-l}) = \sum_l (-1)^{k \deg y} ([u_1] \Psi_1^{kp^m} P^l \times y P^{n-l}) \\ &= (-1)^{k \deg y} ([u_1] \Psi_1^{kp^m} \times y) P^n = x \Psi_1^{kp^m} P^n. \end{split}$$

Here we have used the standard sign convention.

LEMMA 3.4. Assume $x = [u_1, \ldots, u_s]$, where each u_j is a_j or \hat{a}_j . If $a_i \ge (p-1)p^m$, then $xP^{p^m}\Psi_i^{(p-1)p^m} - x\Psi_i^{(p-1)p^m}P^{p^m} = x$.

PROOF. Again one can consider only i = 1. For s = 1 the statement coincides with Lemma 3.2, so assume s > 1. Let $y = [u_2, \ldots, u_s]$; then $x = [u_1] \times y$. By Lemma 3.1, one has

$$(3.1) \quad ([u_1] \times y) P^{p^m} \Psi_1^{(p-1)p^m} \\ = \sum_{l=0}^{p^m-1} ([u_1] P^l \times y P^{p^m-l}) \Psi_1^{(p-1)p^m} + ([u_1] P^{p^m} \times y) \Psi_1^{(p-1)p^m} \\ = \sum_{l=0}^{p^m-1} ([u_1] P^l \Psi_1^{(p-1)p^m} \times y P^{p^m-l}) + ([u_1] P^{p^m} \Psi_1^{(p-1)p^m} \times y);$$

(3.2)
$$([u_1] \times y) \Psi_1^{(p-1)p^m} P^{p^m}$$
$$= \sum_{l=0}^{p^m-1} ([u_1] \Psi_1^{(p-1)p^m} P^l \times y P^{p^m-l}) + ([u_1] \Psi_1^{(p-1)p^m} P^{p^m} \times y).$$

Take the difference of (3.1) and (3.2) and note that the sums on the right-hand sides cancel by Lemma 3.1. The difference of the last summands in (3.1) and (3.2) is equal to x by Lemma 3.2.

LEMMA 3.5. Let $x = [u_1, \ldots, u_s]$. Then $x\beta\alpha_i + x\alpha_i\beta = x$.

PROOF. Again one can consider only i = 1. For s = 1 the statement coincides with Lemma 3.2(b,c), so assume s > 1. Let $y = [u_2, \ldots, u_s]$. Then $x = [u_1] \times y$, and by Lemma 3.1 one has

(3.3)
$$([u_1] \times y)\beta\alpha_1 = ((-1)^{\deg y}[u_1]\beta \times y + [u_1] \times y\beta)\alpha_1$$

$$= [u_1]\beta\alpha_1 \times y + (-1)^{\deg y\beta}[u_1]\alpha_1 \times y\beta.$$

(3.4)
$$([u_1] \times y)\alpha_1\beta = (-1)^{\deg y}([u_1]\alpha_1 \times y)\beta$$
$$= [u_1]\alpha_1\beta \times y + (-1)^{\deg y}[u_1]\alpha_1 \times y\beta$$

Summing (3.3) and (3.4), we obtain

 $(x)\beta\alpha_1 + (x)\alpha_1\beta = [u_1]\beta\alpha_1 \times y + [u_1]\alpha_1\beta \times y = ([u_1]\beta\alpha_1 + [u_1]\alpha_1\beta) \times y$ which by Lemma 3.2(b,c) is equal to $[u_1] \times y = x$. \Box

4. Examples

For some i = 1, ..., s denote by $N_s(i, k)$ the subspace in $\tilde{\Lambda}_{s,*} = \tilde{H}_*(L^{\wedge s})$ spanned by $[u_1, ..., u_s]$, where $u_i = a_i$ or $u_i = \hat{a}_i$ and $a_i \ge (p-1)p^k$.

LEMMA 4.1. For $s \ge 1$ and $k \ge 0$ the collection of maps $\{Q_m = \Psi_i^{(p-1)p^m} \mid m \le k\}$ forms a k-th homotopy system for $\tilde{\Lambda}_{s,*}$ with the null space $N_s(i,k)$.

PROOF. The subspace $N_s(i, k)$ is stable under the action of Q_m . The properties (ii) and (iii) from Definition 2.1 are checked in Lemmas 3.3 and 3.3. The property (iv) from Definition 2.2 is checked in Lemma 3.5.

THEOREM 4.1. Fix $s \ge 1$ and $k \ge 0$. Assume $x \in N_s(i,k)$ for all $1 \le i \le s$. Then $x \in \Delta(k)$ iff $x \in I(k)$ and $x \in \Delta^{\beta}(k)$ iff $x \in I^{\beta}(k)$.

PROOF. The statement follows immediately from Lemma 4.1, Theorem 2.1, and Corollary 2.1. $\hfill \Box$

References

- V. Giambalvo, F.P. Peterson, The annihilator ideal of the action of the Steenrod algebra on H^{*}(ℝP[∞]), Topology Appl. 65 (1995), 105–122
- S. Ault, Relations among the kernels and images of Steenrod squares acting on right A-modules, J. Pure Appl. Algebra 216 (2012), 1428–1437.
- S. V. Ault, W. M. Singer, On the homology of elementary abelian groups as modules over the Steenrod algebra J. Pure Appl. Algebra 215 (2011), 2847–2852
- J. M. Boardman, Modular representations on the homology of powers of real projective space; in: M. C. Tangora (Ed.), Algebraic Topology: Oaxtepec 1991, Contemp. Math. 146 (1993), pp. 49–70
- M. Kameko, Generators of the cohomology of BV₃, J. Math. Kyoto Univ. 38 (3) (1998), 587– 593
- 6. _____, Generators of the cohomology of BV₄, Toyama University, 2003 (preprint).
- 7. N. Sum, On the hit problem for the polynomial algebra in four variables, University of Quynhon, Vietnam, 2007 (preprint).

Moscow State Lomonosov University Department of Mechanics and Mathematics Moscow, Russia popelens@mech.math.msu.su

198