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Presented by J.L. Lions

Summary: Let us consider the wave equation for an operator with coefficients

aij(x, t) dependent of x ∈ Ω and t ∈ [0, T ]. We study the problem of exact control-

lability with control fixed on the boundary. Under certain restrictions on aij(x, t), we

prove that the Method HUM (Hilbert Uniqueness Method) can be applied to obtain the

stabilization at a large time T .

1 – Introduction

In the present work we study the exact controllability of the system:

(∗)































∂2u

∂t2
−

n
∑

i,j=1

∂

∂xi

(

aij(x, t)
∂u

∂xj

)

= 0 on Q,

u = 0 on Σ,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x) on Ω .

By Ω we denote on open bounded set of IRn with smooth boundary Γ; Q =
Ω×[0, T [ the cylinder, which lateral boundary we represent by Σ. The coefficients
aij(x, t) satisfy certain conditions of regularity fixed in Section 1, (1) and (2).

The exact controllability for (∗) is formulated as follows:

Given T > 0, find a Hilbert space H, such that for every set of initial data
{u0, u1} ∈ H, there exists a corresponding control v ∈ L2(Σ) such that the
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solution u = u(x, t) of (∗) satisfies the stabilization condition:

(∗∗) u(x, T ) = 0,
∂u

∂t
(x, T ) = 0 on Ω .

We solve the problem, using the method HUM (Hilbert Uniqueness Method)
idealized by J.L. Lions in 1986, [4]. He studied, initially, the system (∗) for
the case aij(x, t) = 1 if i = j and zero if i 6= j, that is, the case of −∆. In
[4] he studied the case with a coefficient a(t), that is, the operator is −a(t)∆,
with a(t), a′(t) ∈ L∞(IR) and a(t) ≥ a0 > 0, a

′(t) ≥ 0 for t > 0. In this case
Lions [4] proved that we have exact controllability. In Rivera [7] he obtained a
weakest condition, that is, it is sufficient that a(t) is monotonous on some interval
T0 ≤ t ≤ T1 such that

T − T0 >
R
√

‖a‖∞
a0

, R constant .

In the general case aij(x), depending only on x ∈ Ω, Komornik [2] obtained
exact controllability of (∗) with certain regularity on aij(x), plus the following
technical condition:

Exists 0 < δ < 1 such that

(1− δ) aij(x) ξi ξj −
1

2

∂

∂xk
(aij(x))mk ξi ξj ≥ 0

for all ξ ∈ IRn and x ∈ Ω. For mk look Section 1 in the present work.

Our objective in this work, is to solve the problem of exact controllability for
(∗), in the general temporally case, that is, aij(x, t), x ∈ Ω, t ∈ [0, T ].

We divide the work in four sections. In Section 1 we fix the notation and
do the assumptions. In Section 2 we prove that under convenient hypothesis on
aij(x, t), the method HUM works very well for (∗). The Sections 3, 4 contains
the proofs of the results on the existence and regularity used in the Section 2.

1 – Notations and terminology

By IRn we represent the real Euclidean space of dimension n. Fix x0, any
point of IRn, and consider the vector

m(x) = x− x0 = (xk − x
0
k) = (mk)1≤k≤n .

Let be

R(x0) = ‖x− x0‖L∞(Ω)
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the radius of the smallest ball, with center in x0, containing Ω. Represent by
ν(x) the unit normal vector of Γ directed towards the exterior of Ω. We denote
by:

Γ(x0) =
{

x ∈ Γ | m(x) · ν(x) > 0
}

,

Γ∗(x
0) =

{

x ∈ Γ | m(x) · ν(x) ≤ 0
}

.

Note thatm(x)·ν(x) represent the inner product in IRn of the vectorsm(x), ν(x).
We also represent:

Σ(x0) = Γ(x0)× ]0, T [ ,

Σ∗(x
0) = Γ∗(x

0)× ]0, T [ .

Throughout this work, we use the summation convention for repeated indexs.
Let A(t) be the linear operator defined by:

A(t)φ = −
∂

∂xj

(

aij(x, t)
∂φ

∂xi

)

.

Note that A(t) is a temporally second order operator. We suppose that

(1)































aij ∈ L
∞(0, T ;W 1,∞(Ω)),

aij(x, t) = aji(x, t), for all (x, t) ∈ Q, 1 ≤ i, j ≤ n.

There exists a constant α > 0 such that

aij(x, t) ξi ξj ≥ α‖ξ‖2, for all ξ ∈ IRn and (x, t) ∈ Q .

With respect to the variable t ∈ [0, T ] assume:

(2)



































a′ij =
∂

∂t
aij ∈ L

1(0,+∞;L∞(Ω)),

aij(·, t) ∈ C
1(Ω) a.e. in [0, T ],

a′′ij ∈ L
∞(Q),

∂

∂xk
(a′ij) ∈ L

1(0,+∞;L∞(Ω)) .

For technical reasons we also suppose, as Komornik [2], the existence of 0 < δ < 1
such that

(3) (1− δ) aij(x, t) ξi ξj −
1

2

∂

∂xk
aij(x, t)mk ξi ξj ≥ 0

for all ξ ∈ IRn, (x, t) ∈ Q.
Now we define a′(t, φ, ψ) as the bilinear form:

(4) a′(t, φ, ψ) =

∫

Ω
a′ij

∂φ

∂xi

∂ψ

∂xj
dx for φ, ψ ∈ H1

0 (Ω) .
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Denote by

(5)



































β(t) = ‖a′ij(x, t)‖L∞(Ω) ∈ L
1(0,+∞),

P (t) =
1

2

∫

Ω
aij

∂φ

∂xi

∂φ

∂xj
dx , φ ∈ H1

0 (Ω),

T0 =
2

δ
R(x0)CαC

2
1 ; Cα = max{1, 1/α} .

Note that the constant C1 will be fixed in Section 3, (23).

2 – The main result and application of HUM

The answer to the question of exact controllability for (∗) is given by Theo-
rem 2.1 in below. The proof will be given by method HUM.

Theorem 2.1. For T0 given by (5)3. Let be T > T0. Then, for each
{y0, y1} ∈ L2(Ω) × H−1(Ω), exists control v ∈ L2(Σ), such that the solution
y = y(x, t) of the system:

(6)















y′′ +A(t) y = 0 on Q,

y = v on Σ,

y(0) = y0, y′(0) = y1 on Ω ,

satisfies

(7) y(x, T ) = 0, y′(x, T ) = 0 in Ω .

Proof: It will be given by steps. We use certain results of existence and
regularity of ultraweak solutions proved later in the Section 3.

Step 1. We consider a regular problem. In fact, let be ϕ0, ϕ1 ∈ D(Ω) and solve
the homogeneous system:

(8)















ϕ′′ +A(t)ϕ = 0 on Q,

ϕ = 0 on Σ,

ϕ(0) = ϕ0, ϕ′(0) = ϕ1 on Ω .

The unique solution ϕ = ϕ(x, t) of (8) satisfies:

(9)
∂ϕ

∂ν
∈ L2(Σ) , cf. Section 3.
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Step 2. Using the solution ϕ of (8) we formulate the following backward prob-
lem:

(10)



































ψ′′ +A(t)ψ = 0 on Q,

ψ =







aij νi νj
∂ϕ

∂ν
on Σ(x0),

0 on Σ∗(x
0),

ψ(T ) = 0 , ψ′(T ) = 0 .

The system (10) has a unique ultraweak solution ψ = ψ(x, t) defined by transpo-
sition. The Theorem 4.3 Section 4 gives the following regularity:

(11) ψ ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) .

The operator Λ

Given ϕ0, ϕ1 in D(Ω) we solve (8), obtaining a solution ϕ = ϕ(x, t) satisfy-
ing (9). Then we solve the backward problem (10), obtaining y = y(x, t) with
regularity (11). Therefore is well defined the map

Λ: D(Ω)×D(Ω) −→ H−1(Ω)× L2(Ω) ,

given by

(12) Λ{ϕ0, ϕ1} = {ψ
′(0),−ψ(0)} .

Step 3. Multiplying the equation (8)1 by ψ, solution of (10), and integrating
on Q, we get:

(13) 〈ψ′(0), ϕ0〉 − (ψ(0), ϕ1) =

∫

Σ(x0)
aij νi νj

(

∂ϕ

∂ν

)2

dΣ .

From (12) and (13) we obtain:

(14) 〈Λ{ϕ0, ϕ1}, {ϕ0, ϕ1}〉 =

∫

Σ(x0)
aij νi νj

(

∂ϕ

∂ν

)2

dΣ .

Let consider in D(Ω)×D(Ω) the quadratic from:

(15) ‖{ϕ0, ϕ1}‖
2
F =

∫

Σ(x0)
aij νi νj

(

∂ϕ

∂ν

)2

dΣ .
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This is a seminorm on D(Ω)×D(Ω). In this Section 3 we will prove the following
inequality:

(16)
r1 ‖{ϕ0, ϕ1}‖

2
H1

0
(Ω)×L2(Ω) ≤

∫

Σ(x0)
aij νi νj

(

∂ϕ

∂ν

)2

dΣ

≤ r2 ‖{ϕ0, ϕ1}‖
2
H1

0
(Ω)×L2(Ω)

for all {ϕ0, ϕ1} ∈ D(Ω)×D(Ω). The first inequality implies that ‖{ϕ0, ϕ1}‖F is
in fact a norm on D(Ω)×D(Ω) and the both inequality (16) imply that the norm
‖{ϕ0, ϕ1}‖F is equivalent to the norm in H

1
0 (Ω)× L

2(Ω), given by:

(17) ‖{ϕ0, ϕ1}‖
2
H1

0
(Ω)×L2(Ω) =

∫

Ω
|∇ϕ0(x)|

2 dx+

∫

Ω
|ϕ1(x)|

2 dx .

To prove the first part of inequality (16) we need to fix T > T0, that is, for
large T .
Let F the closure of D(Ω) × D(Ω) with respect to ‖ ‖F . Then, for T > T0,

the inequality (16) shows that

(18) F = H1
0 (Ω)× L

2(Ω)

which dual F ′ is H−1(Ω)× L2(Ω).
The operator Λ is continuous with respect to ‖ ‖F . Then is has a unique

continuous extentions to the closure of D(Ω) × D(Ω), which is F given by (18).
We have

(19) Λ: F → F ′

is coercive, then it is an isomorphism between F and its dual F ′. It follows
that given {y1,−y0} ∈ F ′ = H−1(Ω) × L2(Ω) exists a unique {ϕ0, ϕ1} ∈ F =
H1

0 (Ω)× L
2(Ω) such that:

(20) Λ{ϕ0, ϕ1} = {y1,−y0} .

Then (12) and (20) says that the solution ψ = ψ(x, t) of the backward system
(20) satisfies:

ψ(0) = y0 , ψ′(0) = y1 .

Then, the unique solution ψ of (10), with control v = aij νi νj
∂ϕ
∂ν , is equal to y

solution of (6), then y satisfies the stabilization condition (7).
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3 – Inequalities

To prove the inequality (16), we need the following identity, which proof was
given by J.L. Lions [4].

Lemma 3.1. For the weak solution φ = φ(x, t) of (8), it is true the identity:

(21)
1

2

∫

Σ
aij νi νj

(

∂φ

∂ν

)2

hk νk dΣ =

(

φ′,
∂φ

∂xk
hk

)∣

∣

∣

∣

T

0
+
1

2

∫

Q
|φ′|2

∂hk
∂xk

−

−
1

2

∫

Q
aij

∂φ

∂xi

∂φ

∂xj

∂hk
∂xk

+

∫

Q
aij

∂φ

∂xj

∂φ

∂xk

∂hk
∂xi

−
1

2

∫

Q

∂

∂xk
(aij)

∂φ

∂xi

∂φ

∂xj
hk ,

where (hk) is a vector field in C1(Ω).

Lemma 3.2 Let φ = φ(x, t) be weak solution of (8), then we have

∫

Σ(x0)
aij νi νj

(

∂φ

∂ν

)2

dΣ ≤ C ‖{ϕ0, ϕ1}‖
2
H1

0
(Ω)×L2(Ω) .

Proof: We define the energy associated to the system (8) as the quadratic
form:

(22) E(t) =
1

2

∫

Ω

(

|φ′(t)|2 + aij(x, t)
∂φ

∂xi

∂φ

∂xj

)

dx .

We used the equality (for the proof cf. J.L. Lions–E. Magenes [5])

2E(t) = 2E0 +

∫ t

0
a′(s, φ(s), φ(s)) ds .

By the coerciveness hypothesis of [aij ], we now find the basic estimate:

n
∑

i,j=1

|a′ij |

∣

∣

∣

∣

∂φ

∂xi

∣

∣

∣

∣

∣

∣

∣

∣

∂φ

∂xj

∣

∣

∣

∣

≤
β(t)

α
aij

∂φ

∂xi

∂φ

∂xj
.

Integrating in Ω, we get:

∫

Ω
|a′ij |

∣

∣

∣

∣

∂φ

∂xi

∣

∣

∣

∣

∣

∣

∣

∣

∂φ

∂xj

∣

∣

∣

∣

dx ≤
2β(t)

α
P (t) ≤

2β(t)

α
E(t) ,

whence,

E(t) ≤ E0 +

∫ t

0

β(t)

α
E(s) ds .
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From the Gronwall’s Lemma, we obtain

(23) E(t) ≤ C1E0 , ∀ t ∈ [0, T ], E0 = E(0) ,

i.e.,

E(t) ≤ C ‖{φ0, φ1}‖
2
H1

0
(Ω)×L2(Ω) , ∀ t ∈ [0, T ] .

In the identity (21), we consider a vector field (hk) such as hk νk = 1. We estimate
each term in the right side member of (21). From the definition of Σ(x0) and
(23), we obtain

∫

Σ(x0)
aij νi νj

(

∂φ

∂ν

)2

dΣ ≤ C E(t) ≤ C ‖{φ0, φ1}‖
2
H1

0
(Ω)×L2(Ω) .

Remark 1. By a similar argument used in (23), we prove:

C0E0 ≤ E(t) , ∀ t ∈ [0, T ], C0 = C−11 .

Lemma 3.3 (Inverse inequality). Let φ = φ(x, t) be weak solution of the
homogeneous problem (8) and T > T0. Then,

(T − T0)E0 ≤ C

∫

Σ(x0)
aij νi νj

(

∂φ

∂ν

)2

dΣ ,

where

C =
R(x0)C1

δ
.

Proof: We consider the vector field hk = mk ∈ C
1(Ω), and we observe that

(24)
∂mk

∂xj
=

∂

∂xj
(xk − x

0
k) = δjk .

We write

X =

(

φ′,
∂φ

∂xk
mk

)∣

∣

∣

∣

T

0
,(25)

Y =

∫

Q

(

|φ′|2 − aij
∂φ

∂xi

∂φ

∂xj

)

,(26)

I =
1

2

∫

Σ
aij νi νj

(

∂φ

∂ν

)2

mk νk dΣ .(27)
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Substituting (24), (25), (26) and (27) in the identity (21), we obtain the equality

X +
n

2
Y +

∫

Q
aij

∂φ

∂xi

∂φ

∂xj
−
1

2

∫

Q

∂

∂xk
(aij)mk

∂φ

∂xi

∂φ

∂xj
= I .

We apply the technical hypothesis (3), of Komornik, and obtain:

X +
n

2
Y + δ

∫

Q
aij

∂φ

∂xi

∂φ

∂xj
≤ I .

Using the equation (8)1, we have:

Y = (φ′, φ) |T0 .

From the above inequality and definition of E(t) we get:

X +

(

n− δ

2

)

Y + δ

∫ T

0
E(t) dt ≤ I .

From (25) and (26), we deduce the inequality (cf. [4])

∣

∣

∣

∣

X +

(

n− δ

2

)

Y

∣

∣

∣

∣

≤
R(x0)

2
(|φ′|2 + |∇φ|2) .

Applying the coerciveness of [aij ] and (23), we obtain:

(28)

∣

∣

∣

∣

X +

(

n− δ

2

)

Y

∣

∣

∣

∣

≤ CαR(x
0)C1E0 .

From (28) and Remark 1, it follows:

(29) δ C0 T E0 − 2R(x
0)CαC1E0 ≤ I .

As an immediate consequence of the definition of Σ(x0) and R(x0), from (29) it
follows that

δ C0 T E0 − 2R(x
0)CαC1E0 ≤

R(x0)

2

∫

Σ(x0)
aij νi νj

(

∂φ

∂ν

)2

dΣ .

Finally, we obtain

(T − T0)E0 ≤
R(x0)C1

2δ

∫

Σ(x0)
aij νi νj

(

∂φ

∂ν

)2

dΣ .
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4 – Concept of ultraweak solutions

In this section we study the concept of ultraweak solution by the transposition
method, J.L. Lions [4] and J.L. Lions–E. Magenes [5]. First of all we proceed
heuristically in order to obtain the natural definition. In fact, let us consider the
nonhomogeneous problem

(30)















z′′ +A(t) z = 0 on Q,

z = v on Σ,

z(0) = z0, z′(0) = z1 in Ω ,

for

(31) v ∈ L2(Σ) , z0 ∈ L
2(Ω) , z1 ∈ H

−1(Ω) .

Suppose f ∈ L1(0, T ;L2(Ω)) and consider the homogeneous backward prob-
lem:

(32)















θ′′ +A(t) θ = f on Q,

θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 on Ω .

Multiply both sides of (32) by z, solution of (30), assuming that exists and
integrate on Q. We obtain, formally:

(33)

∫

Q
f z dx dt =

∫

Ω
θ(0) z1 dx−

∫

Ω
θ′(0) z0 dx−

∫

Σ
aij νi νj

∂θ

∂ν
v dΣ .

The solution θ = θ(x, t) of (32) has the regularity

(34) θ ∈ C0([0, T ];H1
0 (Ω)) ∩ C

1([0, T ];L2(Ω)) .

Then, (33), obtained formally, can be written:

(35)

∫

Q
f z dx dt = 〈z1, θ(0)〉 − (z0, θ

′(0))−

∫

Σ
aij νi νj

∂θ

∂ν
v dΣ .

Given f ∈ L1(0, T ;L2(Ω)) we obtain θ = θ(x, t) solution of the backward prob-
lem (32), with regularity (34), and then we obtain the right-hand side of (35).
Therefore, we have well defined the mapping S by:

S : L1(0, T ;L2(Ω))→ IR

〈S, f〉 = 〈z1, θ(0)〉 − (z0, θ
′(0))−

∫

Σ
aij νi νj

∂θ

∂ν
v dΣ ,(36)
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whence

(37) |〈S, f〉| ≤ C
(

‖z1‖H−1(Ω) + |z0|L2(Ω) + ‖v‖L2(Σ)

)

‖f‖L1(0,T ;L2(Ω)) .

Then S is a linear continuous form on L1(0,T ;L2(Ω)), that is, S∈L∞(0,T ;L2(Ω)),
the topological dual of L1(0, T ;L2(Ω)). By Riesz’s representation theorem, exists
unique z ∈ L∞(0, T ;L2(Ω)) such that

(38) 〈S, f〉 =

∫

Q
f z dx dt .

Whence by (38) we obtain a unique z, solution of (35) for each f ∈ L1(0, T ;L2(Ω)).
This is called transposition method.

Definition 1. We call ultraweak solution of (30), with boundary and initial
data given by (31), a function z ∈ L∞(0, T ;L2(Ω)) satisfying:

(39)

∫

Q
f z dx dt = 〈z1, θ(0)〉 − (z0, θ

′(0))−

∫

Σ
aij νi νj

∂θ

∂ν
v dΣ

for all f ∈ L1(0, T ;L2(Ω)).

Lemma 4.1. The system (30) has only one ultraweak solution z, verifying:

(40) ‖z‖L∞(0,T ;L2(Ω)) ≤ C
(

‖z1‖H−1(Ω) + |z0|L2(Ω) + ‖v‖L2(Σ)

)

.

Proof: It follows from (36), (37), (38). The uniqueness comes from Du Bois
Raymond’s Lemma.
In the following we obtain regularity of ultraweak solutions. The method

consists in obtaining regularity of ultraweak solution with regular initial and
boundary conditions. By density we obtain the regularity for the non regular
case.

Lemma 4.2 Given {z0, z1, v} ∈ H
1
0 (Ω) × L2(Ω) ×H2

0 (0, T ;H
3/2(Γ)), exists

a ultraweak solution z of the system (30), with the regularity:

(41) z ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) .

Proof: Let v ∈ H2
0 (0, T ;H

2(Ω)) be such that γ0 v = v, where γ0 is the trace
operator. Represent by u the solution of the system:

(42)















u′′ +A(t)u = −(v′′ +A(t) v) ∈ L2(Q) on Q,

u = 0 on Σ,

u(0) = z0, u′(0) = z1 on Ω .
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We know that u has the regularity:

u ∈ C([0, T ];H1
0 (Ω)) ∩ C

1([0, T ];L2(Ω)) .

Then,
z = u+ v ∈ C([0, T ];H1(Ω)) ∩ C1([0, T ];L2(Ω)) .

Theorem 4.3. The system (30) has ultraweak solution z for all {z0, z1, v} ∈
L2(Ω)×H−1(Ω)× L2(Σ), such that:

(43) z ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω))

and

(44) ‖z‖L∞(0,T ;L2(Ω)) + ‖z
′‖L∞(0,T ;H−1(Ω)) ≤

≤ C
(

|z0|L2(Ω) + ‖z1‖H−1(Ω) + ‖v‖L2(Σ)

)

.

Proof: We will prove by density. In fact, let us consider {z0µ, z1µ, vµ} ∈
H1

0 (Ω)× L
2(Ω)×H2

0 (0, T ;H
3/2(Γ)) such that

(45)















z0µ → z0 in L2(Ω),

z1µ → z1 in H−1(Ω),

vµ → v in L2(Σ) .

Denote by vµ ∈ H2
0 (0, T ;H

2(Ω)) the function that vµ = γ0 vµ. We have the
problem

(46)















z′′µ +A(t) zµ = 0 on Q,

zµ = vµ on Σ,

zµ(0) = z0µ, z′µ(0) = z1µ on Ω .

We have, from (41) the regularity for zµ ultraweak solution of (46):

zµ ∈ C([0, T ];H
1(Ω)) ∩ C1([0, T ];L2(Ω)) .

From the linearity of the system (30), it follows that zµ− z is ultraweak solution
of (30), for the initial condition z0µ−z0, z1µ−z1, and boundary conditions vµ−v.
Applying the estimate (40) zµ − z and let µ→∞, we obtain

zµ → z in L∞(0, T ;L2(Ω)) .

We obtain z ∈ C([0, T ];L2(Ω)) because zµ ∈ C([0, T ];L
2(Ω)).
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Let us now prove that z′ ∈ C([0, T ];H−1(Ω)). In this step of the proof we
have some difficulty motivated by the dependence of the time t. We know that:

(47) 〈z′, f〉 = −

∫

Q
z f ′ dx dt , f ∈ D(Q) .

By hypothesis, z is ultraweak solution of (30), defined by (39). Then z ′ satisfies:

(48) 〈z′, f〉 = (z0, θ
′(0))− 〈z1, θ(0)〉+

∫

Σ
aij νi νj

∂θ

∂ν
v dΣ ,

where θ is solution of the system:

(49)















θ′′ +A(t) θ = f ′ on Q,

θ = 0 on Σ,

θ(T ) = 0, θ′(T ) = 0 on Ω .

If we prove the inequality

|θ′(0)|L2(Ω) + ‖θ(0)‖H1

0
(Ω) +

∣

∣

∣

∣

∂θ

∂ν

∣

∣

∣

∣

L2(Σ)
≤ C ‖f‖L1(0,T ;H1

0
(Ω)) ,

where θ is solution of (49) and f ∈ L1(0, T ;H1
0 (Ω)), we obtain:

|〈z′, f〉| ≤ C
(

|z0|L2(Ω) + ‖z1‖H−1(Ω) + ‖v‖L2(Σ)

)

‖f‖L1(0,T ;H1

0
(Ω))

that is, z′ ∈ L∞(0, T ;H−1(Ω)) and

(50) ‖z′‖L∞(0,T ;H−1(Ω)) ≤ C
(

|z0|L2(Ω) + ‖z1‖H−1(Ω) + ‖v‖L2(Σ)

)

.

From this inequality we use the same argument used to prove the regularity
z ∈ C([0, T ];L2(Ω)) in order to obtain z′ ∈ C([0, T ];H−1(Ω)).
We consider first, f ∈D(Q) and by density we obtain the case f ∈L1(0,T ;H1

0 (Ω)).
We consider the system:

(51)



















y′′ +A(t) y −

∫ T

t
A′(s) y(s) ds = f on Q,

y = 0 on Σ,

y(T ) = y′(T ) = 0 on Ω .

It follows that (51) has strong solution, i.e., almost everywhere in Q. The deriva-
tive of the solution is equal to the solution of (49), then y′(t)∈H1

0 (Ω)∩H
2(Ω).

Whence y ∈ C([0, T ];H1
0 (Ω)∩H

2(Ω)). Multiply (51), by A(t) y′ and integrate on
Q. We obtain:

(52) ‖y′(0)‖+ |y′′(0)| ≤ C‖f‖L1(0,T ;H1

0
(Ω)) .
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By the identity (21) for the solution of (49) with appropriate estimates and the
hypothesis on aij , we obtain

(53)

∥

∥

∥

∥

∂θ

∂ν

∥

∥

∥

∥

L2(Σ)
≤ C ‖f‖L1(0,T ;H1

0
(Ω)) .

From (52) and (53) we obtain the proof of z ′ ∈ C([0, T ];H−1(Ω)).
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