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AN INVERSE PROBLEM FOR A GENERAL DOUBLY-
-CONNECTED BOUNDED DOMAIN WITH
IMPEDANCE BOUNDARY CONDITIONS

E.M.E. ZAYED

Abstract: The spectral function 6(t) = Y 02, exp(—t\,), where {)\,}32, are the

eigenvalues of the negative Laplacian —A = — 21221 (22:)? in the (2!, 2%)-plane, is studied

for a general doubly-connected bounded domain € in R? together with its smooth inner
boundary 92; and its smooth outer boundary 9022, where piecewise smooth impedance
boundary conditions on the two parts 'y, I's of 927 and on the two parts I's, 'y of 0€s
are considered, such that 97 =T'1 UT'y and 99y =T'3 UTy.

1 — Introduction

The underlying inverse problem is to determine some geometric quantities
associated with a bounded domain, from a complete knowledge of the eigenvalues
{A}52, for the negative Laplacian —A = — 22:1(82@' )2 in the (2!, 2?)-plane.

Let Q C IR? be a simply connected bounded domain with a smooth boundary

0f). Consider the impedance problem

(1.1) —Au=Au in Q,
(1.2) (i+7>u20 on 09,

where % denotes differentiation along the inward pointing normal to 02 and ~

is a positive constant, with u € C?(2) N C(Q).
Denote its eigenvalues, counted according to multiplicity, by

(1.3) D<A < <. <AN\<... - 00 as v—oo.
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The problem of determining some geometric quantities associated with the bound-
ed domain 2 has been discussed recently by Sleeman and Zayed [5], using the
asymptotic expansion of the spectral function

(1.4) 0(t) = i exp(—t),) as t—0".
v=1

Problem (1.1)—(1.2) has been investigated by many authors (see for example the
articles [1-4, 6, 7]) in the following special cases:

Case 1. v =0 (The Neumann problem)

(15) o) = 124 10 =(

1/2
Bl N 9 .
T Art 8(7rt)1/2+a + ) /aaK (0)do+O(t) ast — 07" .

s

0" 256
Case 2. v — oo (The Dirichlet problem)

1/2
) K2(0)do+O(t) ast— 0" .
o0

(1.6) o(t) = 1219 ! (t

Tt 8@ 2 a5

T

In these formulae, || is the area of €2, |0€2| is the total length of its boundary
012, o is the arc length of the counter clockwise oriented boundary 02 and K (o)
is the curvature of 9€). The constant term ag has geometric significance, e.g., if 2
is smooth and convex, then ag = % and if € is permitted to have a finite number
“H” of smooth convex holes, then ag = (1 — H)/6.

Case 3. (The mixed problem)

If Ly is the length of a part I'; of the boundary 02 with the Neumann bound-
ary condition, and if Lo is the length of the remaining part I'y = 9Q\I'; of 92 with
the Dirichlet boundary condition, such that 92 = I'y UT'9, then with reference to
[1, 8, 9] we get

Q] Ly — Lo 1 (t)l/Q{ )
= — (= K
60 = 4t T3z T  ass\x) T, K0

(1.7)
+/r KQ(a)da}—i—O(t) as t — 0" .

Zayed [8] has recently discussed the equation (1.1) together with the piecewise
smooth impedance boundary conditions:

0 0
(1.8) (8—m+’yl>u:0 on T, <a—n2+'yg>u:0 on I'y
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where % and ai denote differentiations along the inward-pointing normals to
1 mn2

I’y and T'e respectively, in which I'y is a part of 9 and T's = 9Q\I'; is the
remaining part of 92, while the impedances 1 and =9 are positive constants.
The author calculates only the first three terms of the asymptotics of the heat
kernel of this problem, and shows that how the lengths of I'y and I'y and the
impedances 71, 2 enter into the asymptotic expansions of §(t) for small positive
t.

Now, let  be a general doubly-connected domain in IR? consisting of a simply
connected bounded inner domain €2; with a smooth boundary 9€; and a simply
connected bounded outer domain Qs O € with a smooth boundary 9, where
Q1 = Q1 UOQ;. Suppose that the eigenvalues (1.3) are given for the eigenvalue
equation

(1.9) —Au=Au in Q,

together with the impedance boundary conditions

(1.10) (i—i—’h)u—O on €, <i+72>u—0 on 0y ,
ony Ona

where v; and v, are positive constants.

Zayed [10] has recently discussed the problem (1.9), (1.10) and has determined
only the first three terms of the asymptotic expansions of the spectral function
O(t) for small positive . The author has determined some geometric quantities
associated with the problem (1.9)—(1.10) by using (1.4).

The object of this paper is to discuss a more general inverse problem consisting
of the eigenvalue equation (1.9) together with the piecewise smooth impedance
boundary conditions:

(1.11) (aii +%)u:o on T (i=1,2,34),
where I'; is a part of the inner boundary 99Q; of Q and I'y = 9Q\I'; is the
remaining part of 9€)y such that 90y = I'y UT's, while I's is a part of the outer
boundary 09 of Q and I'y = 0Q\I'3 is the remaining part of 0y such that
009 =T'3UTy, and the impedances ~; (1 = 1,2,3,4) are positive constants.

The basic problem is to determine some geometric quantities associated with
the general doubly connected domain €2 from the complete knowledge of the
eigenvalues {\,} for the impedance problem (1.9), (1.11) using the asymptotic
expansions of the spectral function 0(t) for small positive ¢.

Note that our main problem (1.9)—(1.11) can be considered as a generalization
of those obtained by Zayed [8, 9, 10].
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2 — Statement of results

Suppose that the inner boundary 92y of €2 is given locally by the equations
2" = y'(o1) (i = 1,2), in which oy is the arc length of the counterclock-wise
oriented inner boundary 9 and y‘(o1) € C°°(9£2;). Suppose also that the
outer boundary 995 of €2 is given locally by the equations z¢ = y(09) (i = 1,2),
in which o9 is the arc length of the counterclock-wise oriented outer boundary
00y and y(o2) € C®(002).

Let k1(01) and ka(o2) be the curvatures of 92 and 9 respectively. Let Lq
and Lo be the lengths of the parts I'y and I's of 0€2; respectively and let L3 and
L4 be the lengths of the parts I's and I'y of 02, respectively. Then, the results
of our main problem (1.9), (1.11) can be summarized in the following cases:

Casel. 0< <L, 2>1,0<y<K],w»y>1)

o(t) = % + W{ 21— (Lo 495! /m (o) dor )|

+ {L?) — (L4 —|—fy4_1 /p4 kQ(O’Q) dO'Q)jl } + % (’YlLl - VSLS)

en (&) - $( )
+ /F 2 {k%(m) —(Z)gwﬂdal s {k%(az) - 674(23 —7§>] do
f oo () e} o e

Case 2. (< <L2>1L13>1,0<ukl)
In this case, the asymptotic expansion of #(t) has the same form (2.1) with
the interchanges 3 < 4, I's <= I'y and Lg < Ly4.
Case 3. (71,72 > 1,0 < 3,14 < 1)
€

o) =4+ MW{ZL Z[Li+7i1/.k1(01)d01”

=1

(2.2) —%Z%Li 256( )1/2{2/ {;g o1) (27T) 1]dgl
+7Z/ {kzz 02) 64(Lz —%)]dog}—FO(t) as t— 0.
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Case 4. (0 <71, 2 <1, 73,74>1)

In this case, the asymptotic expansion of 6(¢) has the same form (2.2) with
the interchanges v1 < 3, 72 <> Y4, L1 < L3, Ly < L4, 'y & I's, 'y <« I'y and
ki(o1) < kao(o2).

Case 5. (11> 1,0< <, 13>1,0<1ukl)

In this case, the asymptotic expansion of #(t) has the same form (2.1) with
the interchanges v <> o2, v3 <> v4, L1 <> Lo, L3 <> Ly, 'y <> T's and I's < T'y.

Case 6. (11 >1,0<12<],0< <], »y>1)

In this case, the asymptotic expansion of 6(¢) has the same form (2.1) with
the interchanges 1 <> 9, L1 <> Lo and I'; <= I's.

Case 7. (0<v <1,7%>1, 93,7 >1)

o(t) = ﬁt + 8(W1)1/2{[L1 - (L2 4yl /m /ﬁ(al)dal)]

4
_ Al il
;;(Lz +; /r k2(02)d02>} 5
(2.3) 1 (t)l/Q{ / [2 64(m1 2)}
+ 506 \ 7 s ki(o1) 7\ L, i | |do1

v [ [ - () 55 aor + z [ B - (3) ) ama)

+0() as t—0".

Case 8. (11> 1,0< <1, 93,74 >1)

In this case, the asymptotic expansion of #(t) has the same form (2.3) with
the interchanges 1 < 9, L1 <> Lo and I'y < I's.

Case 9. (11,72 > 1,0< 13 <1, 4> 1)

In this case, the asymptotic expansion of #(t) has the same form (2.3) with
the interchanges v1 < 3, v2 <> Y4, L1 < L3, Ly < Ly, I'1 < I's, 'y <« I'y and
ki(o1) < ka(o2).

Case 10. (71,72>> 1, 13>> 1,0 < 4 < 1)

In this case, the asymptotic expansion of 6(¢) has the same form (2.3) with
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the interchanges v1 < Y4, ¥2 <> ¥3, L1 < Ly, Ly < L3, 'y & T'y, 'y <> '3 and
ki(o1) < ka(o2).

Case 11. (71 > 1,0< < 1,0< 3,11 < 1)

00 = o+ it (B2 = (it [ lean)] + 3L

1 4
tor (72L2 - Z%‘Li)

) (e (el
+7/ {kl o ——(—7— g)]dal

L
+7§ | [#te) = 5 (2

Case 12. (0<m1 <1, %2>1,0<y3,11<K1)

—’y?)]dag}-&—O(t) as t— 0" .

In this case, the asymptotic expansion of 6(t) has the same form (2.4) with
the interchanges v <> 72, L1 <> Lo and I'; < T's.

Case 13. (0< 7,72 <1, 13>1,0< 1<)

2] 1

2
1
R AL I Ry

I's

1 /& 1 (2 E
+§(;'ﬂ 3 ’)/4L4)+%(—> {7;[_‘1{%%(01)

64 Ty 2 2 (2”)3 1}
7<Li %‘)}dfflﬂL Fs[k2(02) s V3| do

+7 [k%(ag)——<7r—%—7§)]d02}+O(t) as t— 0T .

0(t) = talow) do)| |

Case 14. (0< 7,12 <L, 0< 3 <1, 74> 1)

In this case, the asymptotic expansion of #(t) has the same form (2.5) with
the interchanges v3 < v4, L3 <> L4 and I's < T'y.
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Case 15. (0<vi<1,i=1,2,3,4)

1
o HMa e !
0(t) = Py 8012 + %(;%‘Li - ;7iLi)

B O R AL (G

4
64 i
+Z/F[k§(02)—7(ﬂg —’73)]6[0’2}—!—0(15) as t— 07 .
i=37"1 t

Case 16. (v; > 1,i=1,2,3,4)

2

=1

4
+§(Li +;7! /F kz(ffz)d02)}
) (oo (5

2

i zi:g/r {kg(‘”) - (Li)gvfl]d@} +O(t) as t—0".

With reference to the formulas (1.5)—(1.7) and to the articles [8], [10] [11] the
asymptotic expansions (2.1)—(2.7) may be interpreted as:

i) Q is a general doubly connected bounded domain in IR? and we have the
piecewise smooth impedance boundary conditions (1.11) with small/large
impedances v; (1 = 1,2,3,4) as indicated in the specifications of the six-
teen respective cases, where we notice that ~; small approaches Neumann
boundary conditions, while ~; large approaches Dirichlet boundary condi-
tions.

ii) For the first four terms, €2 is a general doubly connected bounded domain
in R? of area ||

In (2.1), it has H = 1 — %('ylLl — 73L3) holes, the part I'y of 9 is of

length L; and of curvature [k?(o7) — %(WL—? — 4})]Y/? together with the Neu-

mann boundary condition, while the remaining part I'y = 9Q;\I'1 of 9 is of
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length (Lo + 75 " I, k1(o1) do) and of curvature [kf(o1) — (%—2)3 v5 ']Y/? together
with the Dirichlet boundary condition. Similarly, the part I's of 9€)s is of length
Ls and of curvature [k3(02) — % (- 73)]*/? together with the Neumann bound-
ary condition, while the remaining part I'y = 9Q3\I's of 990y is of length
(Ly 4+t Jr, k2(02) do2) and of curvature [k3(02) — (%—2)3 v5']'/? together with
the Dirichlet boundary condition, provided H is an integer.

In (2.2), it has H = 1 + %Z;l:g ~;L; holes, the part I'1 of 92 is of length
(L1 47t Jr, k1(o1) dor) and of curvature [kf(o1) — (%’:)3 v 1Y/2, while the re-
maining part I's = 9Q1\I'1 of 98 is of length (Lo + Vz_l fFQ ki(o1)do1) and
of curvature [k3(c1) — (3£ ) v51]1/2 together with the Dirichlet boundary condi-
tions on I'y and I's. Simllarly, the part I's of 9§25 is of length Ls and of curvature
[k3(o2) — %(7%3 — 43)]Y/? while the remaining part Ty = 9Qy\I'3 of 9y is of
length Ly and curvature [k3(o2) — 6—74(%744 — ~v3)]"/? together with the Neumann
boundary conditions on I's and T'y, provided H is an integer.

n (2.3), it has H = 1 + %’ylLl holes, the part I'y of 9 is of length
Ly and of curvature [k?(oq) — %(WL—?
boundary condition, while the remaining part I's = 9Q;\I'; of 9€Q; is of length
(Ly + 75" Jr, k1(o1) doy) and of curvature [k3(o1) — (%)3 75 1]1/? together with
the Dirichlet boundary condition. Similarly, the parts I's and I'y of 0Qs are
respectively of lengths (L3 + 73! Jr, k2(02) doz), (La + it Jr, k2(02) dog) and
of curvatures [k3(o2) — (%—7;)3 3 V2, (k3 (o) — (%)3 72 112 together with the
Dirichlet boundary conditions on I's and I'y, provided H is an integer.

In (2.4), it has H = 1 — %('yng — 221:3 ~viL;) holes, the part I's of 9
is of length Lo and of curvature [k?(oq) — 674(7r72 72)]1/2 together with the
Neumann boundary condition, while the remaining part I'y = 9Q\I'y of 9O
is of length (L1 4 ;! Jr, k1(o1) dor) and of curvatures [kf (o) — (%’{)3 2
together with the Dirichlet boundary condition. Similarly, the parts I's and I'y of
00y are respectively of lengths L3, Ly and curvatures [k2(o2) — 674 (ﬂwg B2,

— 4)]Y/2 together with the Neumann

[k3(o2) — 674(”74 $)]Y/? together with the Neumann boundary conditions on

I's and T'y, provided H is an integer.
In (2.5), it has H = 1 — %( ?:1 ~viLi — ~v4L4) holes, the parts I'; and 'y
of 9y are of lengths Li, Ly and of curvatures [k}(oy) — %(Wﬂ W2,

[k3(01) — 674(7T72 73)]Y/? together with the Neumann boundary conditions on

I'; and Ty. Similarly, the part I'y of 995 is of length L4 and curvature [k3(co2) —

674(7”’4 $)]Y/? together with the Neumann boundary condition, while the re-

maining part I's = 0Q22\I'y of 0y is of length (L3 + 5 ! f% ka(o2) doy) and of

1/2

curvature [k3(o9) — (%—7;)3 v3 1112 together with the Dirichlet boundary condition,

provided H is an integer.
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In (2.6), it has H = 1— 2( 2 1 viLi = 54 L;) holes, the parts I'y and Ty of
99y are respectively of lengths Ly, Lo and of curvatures [k? (o) — 6—74 (WL—Z1 -2,
[k2(o1) — %(’%2 —2)]"/? together with the Neumann boundary conditions on I'y
and I's. Similarly, the parts I's and I'y of 92y are respectively of lengths L3, Ly
and of curvatures [k3(o3) — %(WL—V;’ — V2, [k3(02) — %(WL—Z‘I — ]2 together
with the Neumann boundary conditions on I's and I'y, provided H is an integer.

In (2.7), it has only one hole (i.e., H = 1), the parts I'y and I'y of 0§; are
respectively of lengths (L + 77! Jr, k1(o1) doy), (L2 + vyt Jr, k1(o1) doy) and
of curvatures [k?(oy) — (%—7:)3 Y2, (K3 (o) — (%—:)3 75 ']Y/2, together with the
Dirichlet boundary conditions on I'y and I's. Similarly, the parts I's and I'y of
99y are respectively of lengths (L3473 " Jr, k2(o2) doz), (La+ryg ! Jr, k2(02) doz)
and of curvatures [k3(oy) — (%—’;)3 v3 Y2, (k3 (o) — (%—1)3 75 ']/? together with
the Dirichlet boundary conditions on I's and T'y.

3 — Formulation of the mathematical problem

With reference to [2], [5], [7] one can show that the spectral function 6(t)
associated with the problem (1.9), (1.11) is given by the formula

(3.1) 0(t) = //Q G(x,x;t)dx ,

where G(x1,x2;t) is the Green’s function for the heat equation

ou

subject to the piecewise smooth impedance boundary conditions

(3.3) <8i —l—w)G(beg;t) =0 for 1€l (1=1,2,3,4),

and the initial condition

(3.4) lim G(x1,x2;t) = d(x1 — X2) ,

t—0t+

where §(x; — x2) is the Dirac delta function located at the source point xs.
Let us write

(3.5) G(x1,x2;t) = Go(x1,%2;t) + x(x1,%231) ,
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where

)
(3.6) Golxi, %0 1) = (47 1)~ exp{%} ,

is the “fundamental solution” of the heat equation (3.2), while x(x1, X2;t) is the
“regular solution” chosen in such a way that G(x1,x2;t) satisfies the piecewise
smooth impedance boundary conditions (3.3).

On setting x; = xo = x we find that

(3.7) 0(t) = ﬂ + R(1) ,

where
(3.8) R(t) = [[ xtxxit)dx.

The problem now is to determine the asymptotic expansion of R(t) as t — 07.

In what follows, we shall use Laplace transforms with respect to ¢, and use s as

the Laplace transform parameter; thus we define

400
(3.9) G(x1,X9;8%) = / e*SQtG(xl,xQ;t) dt .
0

An application of the Laplace transform to the heat equation (3.2) shows that
G (x1,Xo; 5%) satisfies the membrane equation

(3.10) (A — 5%) G(x1,x9; %) = —6(x1 —x3) in Q,
together with the piecewise smooth impedance boundary conditions

0 _
(3.11) <an + %’) G(Xl,XQ;SQ) =0, for x1 €T} (Z = 1,2,3,4) .

The asymptotic expansion of R(t) as t — 07 may then be deduced directly from
the asymptotic expansion of R(s?) as s — oo, where

(3.12) R(s?) = / /Q Y(x, x; 57) dx .
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4 — Construction of the Green’s function

It is well known (see [4, 5, 7]) that the membrane equation (3.10) has the
fundamental solution

1
(41) Go(Xl,X2;52) = % KO(STX1X2) )

where 7x,x, = |X1 — X3/ is the distance between the points x; = (z},2?), xo =
(23, 23) of the region Q and K is the modified Bessel function of the second kind
and of zero order. The existence of this solution enables us to construct integral
equations for G(x1,xs; s?) satisfying the piecewise smooth impedance boundary
conditions (3.11) for small/large impedances 7; (i = 1,2, 3,4) as indicated in the
specifications of the sixteen respective cases. Therefore, Green’s theorem gives:

Casel. 0< <L, 2>1,0<y<K],wy>1)

In this case, we have the integral equation

1
G(xl,x2;s2) =5 Ko(srx,xy) +

T
+ l/ G(Xh}ﬁ 32){LK0(37’yX2) —i—fleO(srny)}dy
mJr, On1y
1 0
T r, Onay
1

— 0
—_— — . 2 J—
7 I, G(Xh y:s ){8n3y KO(S TyX2) + '73K0(5TyXQ)} dy

— 40
G(Xb y; 32){K0(5 74yxz) + 79 ! %KO(STyXQ)} dy
y

1
+ —
™ F4 8n4y

_ 0
G(x1,y; 32){K0(37“y>(2) + Yy ! %KO(STsz)} dy .
Yy

Similarly, the integral equations of G(x1, x2; s2) for the other fifteen cases can be
found easily.

On applying the iteration methods (see [8], [9]) to the integral equation (4.2),
we obtain the Green’s function G(x1,Xs2;s?) which has a regular part in the
following form:

_ 1 0
(4.3)  x(x1,x2; 32) = o2 /1“1 KO(erly){%KO(S Tsz) + fleo(srny)} dy —

1 0

4 0
o2 ., Ong KO(erl}’){KU(S TYXQ) + Y2 ! KU(STYX2)} dy —
2 Yy

angy
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1 0
22 /1,3 O(S Txly){an3y o(STyX2) + 73 0(3 rny)} y

1

1
1 K M !
272 /1“1 T O(STXD’) 71(}’7}’){

4 0
KO(STle){KO(S Pyxa) + 71 MKo(sryxg)} dy
y

+ KO(STY’X2) +’71K0(87"y'x2)}dydy,

Bnly/
1 o 9
27 Dy M2 (y,y') Kolsry 71 % Ko(sry }dd’

i 2m? /rz T, Onay 0(smxay) Wzl(y’y){ o(s7yx,) + 72 Dniny o(sryx,) ¢ dy dy

1

+ ﬁ/l“ r Ko(srx,y) Ly (Y»y,){ Ko(s Ty’xz) + '73K0(57"y’xQ)} dy dy'
3 3

Froy
+5 / K L WK
ﬁ T4 F4M O(STXQ’) 74—1(3’7}’) O(STy/X2)

_ 5]
+ Yy ! MKO(STYIXQ)} dy dy/

! 0 C e 9
_ ﬁ /Fl{ Ty an2y KO(S'r'le) M’y;1 (y, Yy ) dy}{anl

+ ’YlK()(ST’y/XQ)} dy/

) K()(S Ty’XQ)
y

7’7‘(’ T r Yy .V yl d k T~/ 1 _ , } ’
2 /2{ L (S 1 ) ,-Yl( ) ) y}{ O(S ny ) ,-y / B:(ST ) l

% 0
2x2 /Fl{ F3KO(STX1Y) L, (y,¥) dy} { Dy Ko(sryrx,)+71Ko(s Ty'x2)} dy’

1 0
— K, L / d K , K , J ,
272 /1,3{ I, o(srx,y) L, (v, Y') y}{@ngy/ 0(s7ryrx,) +13 K0 (s Ty XQ)} y

+ 2—;{ F4%Ko(87“xly) M (y,y") dy}{ariy, Ko(s ry’xQ)‘F'VlKO(S?"y’xQ)} dy’
oz [ Folsraay) 15, 9" dy Y Bosrys) +077 O Ko(srys )} ay
27-‘-2 Iy I, 1 Y1 Y X2 4 an4y/ Y X2
L { Ko(sray) M: <y,y'>dy}{f<o<sr )5 =0 Ko(sry )}dy’
2ﬂ-2 Iy T's 1 Y3 Y'X2 2 8n2y/ Y X2

L 6 e 0
"o /Fg{ r, Ongy Kolsrxay) ngl(y'? y) dy}{@ng,y/ Ko(sryrx,)

+ ’}’3[(0(87’},/}(2 ) } dy/
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1 3,
2n? /1“2{ ry Onay Ko(srx,y) Mmfl(y’y/) dy}{KO(S""y’m)

_ 0
+7; " 8n—4y/K0(S Ty’)@)} dy’

1 0 N , 0
o2 /rs { r, Ongy Kolsrxy) L%fl .y dy} { Ongyr Folsrys,)
+ 73Ko(sry/xQ)} dy’
1
- 272 /1“4{ - KO(STmy) L% (y, y ) dY}{KO(STy'xQ)
_ 0
+ V4 ! 8Tl4yl KO(STYIX2)} dy/ )
where
(44) "/1 Y) Z K(V
(4.5) K (y y) = iy ——Ko(sryy) + 71 Ko(sryy) ¢,
(46) M72—1(Y7y/) = Z(_l)VKP(y?l (yIﬁY) )
v=0
© , s 1 { 0 1 0? }
4. K = —K y —— K /
( 7) ,Y;l (y )y) T 8n2y/ O(STYY ) + 72 6n2y an2y/ O(STY}’ ) 9y
(4.8)  Ly(y.y) =Y. ()" KMy y),
v=0

where K%)) (y',y) has the same form (4.5) with the interchanges v; < ~3 and
ny < ng,

(4.9) Ly, y)=)_ Ki:)l ',y)
v=0

where Ki?l (y',y) has the same form (4.7) with the interchanges v < 74 and
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Ng < Ny,
(410)  Mi(y,y) = Z*K%)l ¥y,
v=0
(4.11) KO y.,y) = l{Ko(sr R iKo(sr ,)}
Y 7T 4 2 Onay Yo
(412) M (y,y) =D (1)KL (y.y)
v=0
1 0* 9,
* 0 _
(4.13) Oy'y) = 7T{6nly37,L2y/K0(57"yy’) +n %KO(STyy’)} ;
(414) Ly (y,y)=> "KM (y),
v=0
1 0* 0
* 0 _
(4.15) Oy',y) = 7T{67,L3y37,L1y/K0(57"yy’) + s %KO(STyy’)} ;
(416) Ly, (v,¥) = > (-1)" KV ,y)
v=0

where Ké?) (y',y) has the same form (4.5),

(4.17) M*

no__ = x7-(V) o1
,\/4—1(y7y)_z Ky;l(yvy)a

v=0

where *K (0_)1( ’,y) has the same form (4.11) with the interchanges v2 < 4 and

Y4
ng <> Ny,
o0
4.18) L3 (y,y)=> "KW y),
v=0

1 0?2 0
(419) KOy y) = {Ko(sryy/) + %Ko(sryy/)} ,
Yy

7 | On1y Onay:
(4200 M (y.y) = (-)""KW(y.y),
v=0

where **KSS) (y',y) has the same form (4.15) with the interchanges n; < ng,

[e.9]

(4.21) Lalyy) = X ()" KAy
v=0
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where *K’(YO,)1 (y',y) has the same form (4.11)
2

o0

(4.22) Ma(y.y) = Y (D) K y)
v=0 4

where Kio_)l (y',y) has the same form (4.7) with the interchanges v2 < 74,
N2 < Ny, !

(4.23) vyt (v,y) ZK

where KS)_)I (y',y) has the same form (4.7),
2

[e.o]

(4.24) L aly,y) = ;)(—1)”1(5:)1 y)

where *Ki?l (y',y) has the same form (4.11) with the interchanges 75 < 4,
ng <> Ny,

(4.25) LI (y,y) = Z*K(”)(y y)
v=0

where +K§g) (y',y) has the same form (4.19) with the interchanges v < 73,
ny < ns.

In these formulae, we note that K,
K&.)(y ,¥) (i =1,2,3,4) respectively.

Similarly, we can find X(x1,Xso; s?) for the other fifteen cases.

On the basis of (4.3), the function ¥ (x1, x2; s%) will be estimated for s — oo
together with small/large impedances ~; (i = 1,2,3,4). The case when x; and
X9 lie in the neighbourhood of the parts I'y, I's of the inner boundary 0€2; of Q
or in the neighbourhood of the parts I's, I'y of the outer boundary 0€2 of € is
particularly interesting. In what follows, we shall use coordinates similar to those
obtained in Pleijel [4], Sleeman and Zayed [5] and Zayed [8, 9, 10] to examine
this case.

(v )(y’ ,¥) being the iterates of the kernels

5 — Coordinates in the neighbourhood of the boundary

Let h; > 0 (1 = 1,2,3,4) be sufficiently small. Let n; (i = 1,2,3,4) be the

minimum distances from a point x = (z',22) of the region Q to the parts I';
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(1 = 1,2,3,4) respectively. Let n;(o1) (i = 1,2) denote the inward drawn unit
normals to the parts T'; (i = 1,2) of the inner boundary 9y of  respectively,
while n;(o2) (i = 3,4) denote the inward drawn unit normals to the parts I';
(i = 3,4) of the outer boundary 92y of €2 respectively. Then, we note that the
coordinates in the neighbourhood of the parts I'y, I's of 02 and its diagrams
(see [9]) are in the same form as in Section 5.2 of Zayed [9] with the interchanges
niy < ng, h1 — hi, Il — Ii7 D(Il) — 'D(IZ) and (51 — 51 (Z = 1,2). Thus, we
have the same formulae (5.2.1)—(5.2.5) of Section 5.2 in [9] with the interchanges
ny < ng, ni(o1) < ni(o1), ti(oy) < t;(o1) (i =1,2).

Similarly, the coordinates in the neighbourhood of the parts I's, I'y of 029
and its diagrams (see [9]) are in the same form as in Section 5.1 of Zayed [9]
with the interchanges no < n;, ho < h;, Iy < I;, D(I3) < D(I;) and 02 < J;
(¢ = 3,4). Thus, we have the same formulae (5.1.1)—(5.1.5) of Section 5.1 in [9]
with the interchanges no < n;, na(o2) < n;(02), ta(o2) « ti(o2) (i = 3,4).

6 — Some local expansions

It now follows that the local expansions of the functions

8niy

when the distance between x and y is small, are very similar to those obtained in
Sections 4 and 5 of [5] (see, also Section 6 in [9]). Consequently, for small/large
impedances 7; (1 = 1,2,3,4) the local behaviour of the kernels

6.2) KOy, KOy, KP4y (=13, *KDy.y),

7

and

(6.3) KN y), KOy (=24),

k3

when the distance between y and y’ is small, follows directly from the knowledge
of the local expansions of the functions (6.1).

Definition 1. Let £, and &, be points in the upper half-plane £2 > 0 of the
(€1, €?)-plane, then we define

p2= /(€ -+ (& +8)? .
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An e? (&, €5; 5)-function is defined for points &, and &, belong to sufficiently small
domains D(I;) (i = 1,2,3,4) except when &, =&, € I; (i =1,2,3,4), where A is
called the degree of this function. For every positive integer A, it has the local
expansion (see [4], [5], [8], [9]):

e Ers) = 3 FE) @ (@) ( 0 )Zl (a)EQKo(SPm)

(6.4) oct) \og
+ RA(£1752§ s)

where >"* denotes a sum of a finite number of terms in which f(£}) is an infinitely
differentiable function. In this expansion p1, po, ¢1, £2 are integers where p; > 0,
p2 >0, 41 > 0, A\ = min(p; + p2 — q), ¢ = {1 + f2 and the minimum is taken
over all terms which occur in the summation Y°*. The remainder R*(&;,&,; )
has continuous derivatives of all order d < A satisfying

(6.5) DIRM&),€y38) = O(s M e 1) as s — o0,

where A is a positive constant.

Thus, using methods similar to those obtained in Sections 6-10 of [5], we
can show that the functions (6.1) are e*-functions with degree A = 0,—1 re-
spectively. Consequently, for small impedances «; (i = 1,3) the functions (6.2)
are e*-functions with degrees A = 0,—1,—1, —1, respectively while, for large
impedances 7; (i = 2,4) the functions (6.3) are e*-functions with degrees A = 0,1
respectively (see also [8]).

Definition 2. If x; and x3 are points in large domains Q+1T'; (i = 1,2, 3,4),
then we define

rig = Hgn(rxly +ryy) if yel'y,
Rip = m}in(T‘le + szy) if yerls,

and

RTQ - H;in(rxly + Tny) lf Yy S F4 .

An E*(x1,%2; s)-function is defined and infinitely differentiable with respect
to x; and xy when these points belong to large domains Q +T'; (i = 1,2,3,4)
except when x; = xo € I; (i = 1,2,3,4). Thus, the F*function has a similar
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local expansion of the e*-function (see [4], [5], [8]). With the help of Sections 8
and 9 in [15], it is easily seen that the formula (4.3) is an E%(x1,x2; s)-function
and consequently we get

G(x1,%x9;8%) = O{ [1 + |log srlgﬂ e_AIS”Q}
+ O{ {1 + \log 8R12‘} €7A23R12}

(6.6) .

+ O{ {1 + |log STTQ\} e_ASSTH}

+ O{ {1 + |log sR’{z\} e_A‘*SRT?} ,
which is valid for s — oo and for small/large impedances 7; (i = 1,2,3,4)
as indicated in the specification of case 1, where A; (i = 1,2,3,4) are posi-

tive constants. Formula (6.6) shows that G(x1,x2;s%) is exponentially small for
s — 0o. Similar statements are true in the other fifteen cases.

With reference to Section 10 in [5], if the e*-expansions of the functions (6.1)-
(6.3) are introduced into (4.3) and if we use formulae similar to (6.4), (6.9) of
Section 6 in [5], we obtain the following local behaviour of X(x1,X2; s?) when 712,
Ria, 7y and RJy are small, which is valid for s — oo and for small 1, 73 and
large 72, Ya:

4
(6.7) X(x1,%255%) = > Xi(x1,%2;8%)
=1

where
a) if x; and x3 belong to a sufficiently small domain D(1;), then
(6 8) X (X1 X9; 82) = —i{l -7 <i>_l}Ko(S p12) + 0{871 eiAls’)H} ;
' B 21 &3 ’
b) if x; and x2 belong to a sufficiently small domain D(I3), then

_ 1 /0 o
(6.9 Xa(x1,x258%) = %{1 — 2 1(@)}&)(5{)12) + O{s L=A2sp 2} ;

c) if x; and x2 belong to a sufficiently small domain D(I3), then

1 0

-1
~ . _ -1 _—Aszs .
(610) X3(X17X2a82) = 271'{1 _73(85%) }K0(8p12)+0{5 16 3 P12} :

d) if x; and x2 belong to a sufficiently small domain D(1y), then

_ 1 _ 0 1 A
(611) X4(X17X2;82) - _271_{1—’)/41<8§%>}K0(3p12)+0{5 16 Ay P12} .
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When 12 > 61 > 0, Ri2 > d2 > 0, 7] > 03 > 0 and R}y > 04 > 0, the function
X(x1, x2; 52) is of order O(e~5%) as s — oo, where B is a positive constant. Thus,
since . .

im 72 = gim 2 gy T2 gy, T2

r12—0 p12 Ri2—0 p12 ;=0 012 Rip;—0 P12
(see [8], [9]), then we have the asymptotic formulae (6.9)—(6.11) with pi2 in the
small domains D(I;) (i = 1,2,3,4) being replaced by 712, Ri2, 77y and R}, in the
large domains Q2 +I'; (i = 1,2, 3,4) respectively.

Similar formulae for the other fifteen cases can be found.

7 — Construction of our results

Since for €2 >h; (i=1,2,3,4) the functions ; (x, x; s) are of order O(e~284ih)
(i = 1,2,3,4), the integral over the region Q of the function X(x,x;s?) can be
approximated in the following way (see (3.12)):

/53 0/51 | Tlexis) {1 = halg!) €7 de” dg?
(7.1) =S [ v (4 (€ € ag
=1 - -
4
+ZO{€_25A”‘"} as s — 00 .

If the e*-expansions of X;(x,x;s?) (i = 1,2,3,4) are introduced into (7.1), one
obtains an asymptotic series of the form

P
(7.2) Z s+ O0(sPY)  as s — o0,

where the coefficients a,,, for all sixteen cases, are calculated from the e*-expan-
sions with the help of formula (10.3) of Section 10 in [9] (see also [4], [5]).
On inverting Laplace transforms and using (3.7), we arrive at our results

(2.1)-(2.7).
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