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SOLITON TYPE ASYMPTOTIC SOLUTIONS
OF THE CONSERVED PHASE FIELD SYSTEM

G.A. Omel’yanov, V.G. Danilov and E.V. Radkevich

Abstract: We consider the conserved phase field system with a small parameter

in the n-dimensional case (n ≤ 3). The soliton type solution describes the first stage of

separation in an alloy, when a set of “superheated liquid” appears inside the “solid” part.

The corresponding Hugoniot type condition is obtained and the asymptotic solution is

justified.

1 – Introduction

The aim of this paper is to consider the metastable processes of solidification.

We shall consider the conserved phase field system (the non-isothermal Cahn–

Hilliard system), proposed by G. Caginalp [5]

(1)

∂

∂t

(
θ +

l

2
ϕ

)
= k∆θ + f(x, t) , (x, t) ∈ Q ,

− τ0
∂ϕ

∂t
= ξ2∆

(
ξ2∆ϕ+

1

2a
(ϕ− ϕ3) + κ1 θ

)
.

Here Q = Ω × (0, T ), Ω ⊂ Rn is a bounded domain with smooth (C∞)

boundary ∂Ω, n ≤ 3, T < ∞; ∆ is the Laplace operator; θ is the normalized

temperature; ϕ is the order function (that is, the values ϕ = 1 and ϕ = −1
outside the free boundary correspond to the pure phases); l > 0, k > 0, κ1 are

constants; f(x, t) is a certain smooth functions (in [5] f = 0); τ0 > 0, ξ > 0, and

a > 0 are parameters.

The physical meaning of τ0, ξ, a, and of the whole model (1) for the phase

transitions was discussed in the papers by G. Caginalp [5, 6] and by A. Novick–

Cohen [17]. H. Alt and I. Pawlow [1] proposed general models for non-isothermal
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phase transitions with a conserved order function. Nevertheless, the simplest

model by G. Caginalp is of independent interest since it qualitatively describes

the actual physical processes in a binary alloy; the solutions of system (1) can be

analysed by mathematical methods.

We shall study the structure of the solution of system (1) and analyze how

to pass to the limit from the microscopic description (1) to the macroscopic

description. It is well-known that we can pass to the limit as a → 0 and ξ → 0,

and that the form of the limiting problem depends on the relations between the

parameters a, ξ and τ0 (here we have the situations in which either τ0 = const or

τ0 → 0). We restrict our consideration to the case

a¿ 1 , ξ ¿ 1 , ξ a−1/2 = const , τ0 = const .

Let us introduce a small parameter ε→ 0 and set

(2) a = ε/2 , ξ =
√
ε , τ0 = κ , κ = const > 0 .

For simplicity, we also assume that k = 1 and l = 2. Completing (1) with natural

initial and boundary conditions, we obtain our basic mathematical model

(3)

∂

∂t
(θ + ϕ) = ∆θ + f(x, t) ,

− κ ∂ϕ
∂t

= ∆(ε2∆ϕ+ ϕ− ϕ3 + κ1 ε θ) ,

θ|t=0 = θ0(x, ε) , ϕ|t=0 = ϕ0(x, ε) ,

∂θ

∂N

∣∣∣∣
Σ
= 0 ,

∂ϕ

∂N

∣∣∣∣
Σ
= 0 ,

∂

∂N
∆ϕ

∣∣∣∣
Σ
= 0 .

Here N is the external normal to the boundary ∂Ω and Σ = [0, T ]× ∂Ω.
Precisely as the solution of the Cahn–Hilliard equation (the second equation

in (3) with θ = const), the solution of the conserved phase field system (3) is very

complicated, since its behavior varies depending on different stages of the phase

separation process in binary alloys. (For example, the solution is of the oscillating

type [15, 16] or of the Van der Waals tanh-type [4–6, 20–22, 25]). These stages

are called stable, unstable, and metastable [15, 16]. They correspond to the cases:

ϕ̄ ≥ 1 or ϕ̄ ≤ −1, and −1/
√
3 ≤ ϕ̄ ≤ 1/

√
3, and −1 < ϕ̄ < −1/

√
3 or 1/

√
3 <

ϕ̄ < 1 respectively. Here and below f̄(x) = w− lim
ε→0

f(x, ε) denotes the weak limit

in the D′ sense. The numbers ±1 correspond to the zero points of the equilibrium

chemical potential W ′(ϕ) = ϕ − ϕ3. The numbers ±1/
√
3 correspond to local

maxima/minima of W ′. At present, the solution to problem (3) with arbitrary
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initial data can be analyzed in detail only by numerical methods. However, by

setting some special initial data, one can select and thoroughly study a certain

type of solutions.

Naturally, solutions corresponding to experimentally observed processes must

be stable at each stage, i.e., theses processes must not vary much during some

time. We shall study possible stable structures of solutions by using asymptotic

methods. Functions of the form

(4) θM (x, t, ε) =
K1∑

i=0

εi Vi(S/ε, x, t) , ϕM (x, t, ε) =
K2∑

i=0

εiΦi(S/ε, x, t)

will be called a self-similar (formal) asymptotic up to O(εM+1) solution of system

(3). Here S = S(x, t) ∈ C∞(Q̄), Φi(η, x, t), and Vi(η, x, t) are smooth functions

uniformly bounded in R1
η × Q together with their derivatives; the nonnegative

numbers Kj = Kj(M), j = 1, 2, are such that for any number M ≥ 0 the

substitution of the functions θM , ϕM into (3) gives a discrepancy O(εM+1) on

the right-hand side of (3), here O( · ) is a bound in the sense of C(R1
η × Q̄).

The possible types of stable asymptotic solutions differ by the form of depen-

dence on the fast variable η = S/ε. As is easy to see, there is a finite number of

types for (3). To this end, we substitute θM , ϕM into the Cahn–Hilliard equation

and set the coefficient at ε−2 equal to zero. We obtain the equation

(5)
∂2

∂η2

(
|∇S|2 ∂

2Φ0

∂η2
+Φ0(1− Φ2

0)

)
= 0 .

Integrating with respect to η, we obtain

(6) |∇S|2 ∂
2Φ0

∂η2
+Φ0(1− Φ2

0) = C + C1 η ,

where the “constants” of integration C = C(x, t) and C1 = C1(x, t) are smooth

functions. The assumption that the function Φ0 is uniformly bounded implies the

equality C1 ≡ 0. Thus, we have obtained an autonomic second-order equation,

namely, the Newton equation. For this equation we can list all possible types of

solutions. Multiplying this equation by ∂Φ0/∂η and integrating with respect to

η, we obtain

(7) |∇S| ∂Φ0

∂η
= ±
√
2
√
E − U(Φ0, C) ,

where E = E(x, t) is the second “constant” of integration, and

U(Φ0, C) =W (Φ0)− C Φ0 , W (Φ0) =
1

2
Φ2
0 −

1

4
Φ4
0 .
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Obviously, this equation has real solution if and only if E ≥ U . Figure 1 shows

the potential U(Φ0, C) is plotted in the case C < 0 (for C > 0 the hump on the

left is higher than the crest on the right and for C = 0 the potential U(Φ0, 0) is

an even function of Φ0).

Figure 1

We denote the maximal values of the potential by U0 and U1, U0 < U1

(U0 = U(ϕ0, C) and U1 = U(Φ+
0 , C), where ϕ0 and Φ+

0 are the minimal and

maximal roots of the equation Φ3
0 − Φ0 + C = 0, respectively). We assume that

U2 = U(Φ∗0, C), where Φ∗0 is the point at which U takes its local minimum.

Obviously, if E > U0, the equation for Φ0 has no solutions with compact range,

which means that the corresponding mechanical system has no finite motions.

If E ∈ (U2, U0) (see Fig. 1), Φ0 has a compact range such that U(Φ0, C) ≤ E.

Hence, to each such value of E there corresponds a periodic solution Φ0(η, x, t)

(see also [15–17]). Finally, for E = U0 the point ϕ0 at which U = U0 is an

isolated solution of the equation for Φ0 and, under the condition ∂U
∂Φ0
|Φ0=Φ−

0

6= 0

(i.e., C 6= 0), the point Φ−0 such that U(Φ−0 , C) = U0 and Φ−0 6= ϕ0 is a turning

point and the corresponding solution is shown in Fig. 2.

Figure 2



SOLITON TYPE ASYMPTOTIC SOLUTIONS 475

It is easy to see that as |η| → ∞ this solution exponentially tends to ϕ0. This

solution will be called a soliton-type solution. Finally, if C = 0, then U0 = U1 and

Φ0 = Φ−0 is also an isolated solution. In this case, the solution Φ0 is a separatrix

and the explicit expression for this solution is well-known: Φ0 = tanh(η/
√
2 |∇S|),

i.e., Φ0 is the Van der Waals tanh solution.

The physical setting of our problem is the following: to simplify the problem

we assume that the initial concentration ϕ0(x) ∈ (1/
√
3, 1) for all x ∈ Ω. The

set of such points with concentration will be called “solid”. At first sight, since

the interval (1/
√
3, 1) belongs to the domain of attraction to the point ϕ+

eq = 1,

the concentration would seem to increase and tend to ϕ+
eq. But it is impossible

to obtain the situation in which ϕ(x, t) = ϕ+
eq at each point of Ω, since the global

mass m(ϕ),

m(ϕ) =

∫

Ω
ϕdx ,

conserves in time and m(ϕ0) < |Ω|. Thus, one must assume the appearance

of subdomains Ω±t such that ϕ̄ ∈ (1/
√
3, 1] as x ∈ Ω+

t and ϕ̄ ∈ [−1,−1/
√
3)

as x ∈ Ω−t . After that, the next stage of the solidification starts at which the

subdomains Ω±t transform. The soliton type asymptotic solution, constructed in

the present paper, describes the first stage at which the “liquid” part Ω−t appears

inside the “solid” part, but the volume of Ω−t is still small enough (note that the

domains Ω±t are fulfilled by a substance that, in fact, is not solid or liquid).

The Van der Waals type asymptotic solution [21] describes the motion of Ω±t
when the volumes of Ω±t are not small. Our construction allows us as well to show

that the temperature remains a smooth function (in the leading term with respect

to ε) during these processes. Therefore, the solidification process, described by

the conserved phase field system (3), differs, in principle, from the dynamics of

“solid”/“liquid”, described by both the phase field model and by (1) for small

relaxation time τ0 [20].

Actually, according to the phase field model and to (1) for τ0 ∼ ε, the temper-

ature has a weak discontinuity on the free interface, whereas, according to model

(3), the temperature is almost the same on the “solid” and “liquid” domains (for

both |Ω−t | ¿ 1 and |Ω−t | ∼ const). So we can say that the appearing set Ω−t is a

domain of “superheated liquid”. We shall consider only the case ϕ0 ∈ (1/
√
3, 1].

Nevertheless, it is clear that our construction also allows us to describe the similar

processes in the case ϕ0 ∈ [−1,−1/
√
3).

The multidimensional Cahn–Hilliard equation with a small parameter was

considered by B. Stoth [25] (in the spherical case) and by R.L. Pego [22]. The

conserved phase field system (1) was considered by G. Caginalp [5, 6] and by

G. Omel’yanov [20,21].
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Here we use the method for constructing asymptotic solutions, which is a

modification of the two-scale method for obtaining solutions with localized “fast”

variation. It was developed by V. Maslov, V. Tsupin, G. Omel’yanov, V. Danilov,

and K. Volosov [11–14] for constructing soliton-type and traveling wave-type

asymptotic solutions. A modification of this method for phase transition problems

(to the phase field system and to the conserved phase field system) was proposed

in the works by E. Radkevich, V. Danilov, and G. Omel’yanov [7, 8, 18–21,

24]. The main idea of this method is to construct some analogs of the internal

and external expansions assuming that they are defined in the whole range of

independent variables. This implies that there are no summands polynomially

increasing in the “fast” variable. Obviously, no matching is needed.

Here we have the following important points. Suppose the “fast” variation of

the solution u is localized in a small neighborhood of the smooth surface Γt, for

example, u = A(x, t) cosh−2 (S(x, t)/ε), Γt = {x ∈ Ω, S(x, t) = 0}, S,A ∈ C∞.

Then, to calculate the function S at each instant of time t ≥ 0, it is sufficient to

define only its zero surface {x, ψ(x) = t} ≡ {x, S(x, t) = 0} and the first normal

derivative S′ on Γt, since in an ε-neighborhood of Γt the smooth function S cannot

vary more than by O(ε) and outside an ε1−δ-neighborhood of Γt (0 < δ < 1) the

solution varies slowly with precision up to O(ε∞) (u = 0 for the above example).

Here we speak about a polynomial (with respect to the parameter ε) asymptotics,

and hence, the discrepancy O(ε∞) (i.e., O(εM ) for any M > 0) is much less than

the discrepancy O(εi+1) arising at the ith step for each fixed i.

Furthermore, in the traditional two-scale method we first construct a rapidly

varying solution u(S/ε, x, t) in the “extended” space R1 × Ω × [0, T ], assuming

that u = u(η, x, t) and that the variables η and x, t are independent. Then we

calculate the trace u(η, x, t)|η=S/ε. This approach is absolutely justified for fast

oscillating solutions. However, for solutions with localized fast variation we can

construct the rapidly varying components only in the subspace R1×T δT , where T δT
is an ε1−δ-neighborhood of the surface TT = {(x, t) ∈ Q̄, t = ψ(x)} = ⋃

t∈[0,T ] Γt.

That is, we know beforehand that our final goal is only the trace u(η, x, t)|η=S/ε.
In its turn, since u(η, x, t) smoothly depends on “slowly” varying variables x

and t, we can calculate the solution in two stages: in the first stage we define

the trace ǔ = u(η, x, t)|t=ψ(x) of u on the section R1×TT , in the second stage we

construct a sufficiently smooth continuation of ǔ outside R1×TT . Needless to say,

this continuation must be constructed sufficiently accurate, nevertheless, there is

some freedom in choosing this continuation. Namely, this freedom provides the

boundedness (uniformly in η ∈ R1, x, t ∈ Q) of all terms of the asymptotic

expansion. In § 2 we formalize these considerations, which are obvious enough,
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and in detail describe the method for constructing the soliton-type asymptotic

solution.

We have discussed only a formal asymptotic solution. However, in the strict

sense, this does not imply that the discrepancy between the explicit solution and

the asymptotic one is actually small in a certain sense. Therefore, in particular,

one cannot use formal asymptotics for obtaining the limiting (as ε→ 0) problem.

Thus, in §3 we rigorously justify the asymptotics constructed.

2 – Soliton type asymptotic solution

Let us formulate the main result of this section. By θ0 = θ0(x, t), ϕ0 =

ϕ0(x, t) ∈ (1/
√
3, 1), ψ = ψ(x), we denote the solutions of the following model

problems

κ
∂ϕ0

∂t
= ∆(ϕ3

0 − ϕ0) , x ∈ Ω, t > 0 ,

ϕ0

∣∣∣
t=0

= ϕ0(x) ,
∂ϕ0

∂N

∣∣∣
Σ
= 0 ,

(8)

∂θ0
∂t

= ∆θ0 + f(x, t)− ∂ϕ0

∂t
, x ∈ Ω, t > 0 ,

θ0
∣∣∣
t=0

= θ0(x) ,
∂θ0
∂N

∣∣∣
Σ
= 0 ,

(9)

κ vν =
1

3
Kt
(
1 +G(ϕ̌0)

)
+G0

∂ϕ̌0

∂ν
, ψ|Γ0

= 0 .(10)

Here vν = 1/|∇ψ| is the normal velocity of motion of the surface Γt = {x ∈ Ω,

ψ(x) = t}; Kt = div(ν) is the mean curvature of Γt, ν = ∇ψ/|∇ψ| is the vector

normal to Γt; F̌ = F (x, ψ(x)) for all continuous functions F (x, t); ∂/∂ν = (ν,∇);

G(ϕ̌0) =
I Q2

2(Q− I) , G0 =
G(ϕ̌0)

ϕ̌0
,

∂ϕ̌0

∂ν
=
(
ν,∇ϕ0(x, ψ)

)
,

Q =
√
3(ϕ̌0)2 − 1 , I =

√
2 ϕ̌0 ln J , J = (

√
2 ϕ̌0 +Q)/

√
b , b = 1− ϕ̌2

0 .

Theorem 1. Let Γ0 = {x ∈ Ω, ψ(x) = 0} be a sufficiently smooth closed
surface of codimension 1. Let sufficiently smooth solutions of problem (8)–(10)

exist, and ϕ0 ∈ (1/
√
3, 1), and let dist(Γt, ∂Ω) ≥ const for all t ∈ [0, T ]. Then,
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for any M ≥ 0, there exists a formal asymptotic (up to O(εM+1) ) solution of

equations (3). The leading term of this asymptotic solution has the form

(11) θ(x, t, ε) = θ0(x, t) , ϕ(x, t, ε) = ϕ0(x, t) + χ(η, x) .

Here

χ = −8Q2
{
eξ + 8 b e−ξ + 8 ϕ̌0

}−1
,(12)

ξ = β(η + ψ1(x)) , η = (t− ψ(x))/ε , β = Q/|∇ψ| ,

ψ1 is a smooth function, the method for calculating this function is given below

(see formula (31) and Lemma 2).

Remark. It is not too difficult to prove that equation (10) is a quasilinear

parabolic equation, in which xν (along the vector ν) is a time like variable, and

xt (tangential to Γt) are space like variables. So, the additional condition in (10)

is actually the initial condition [7, 8]. The classical solvability and uniqueness of

solutions of quasilinear parabolic problems with smooth coefficients are the result

of the realization of some matching conditions between the initial and boundary

data [10, 23].

At first let us consider the statement of Theorem 1. Formulas (11), (12) and

the solutions of problems (8)–(10) describe the motion of the soliton χ on the

smooth “background” ϕ0 (a soliton type solution was obtained also in [9] by nu-

merical simulations for the one-dimensional Cahn–Hilliard equation). Obviously,

the surface Γt is the set of maximum magnitude of |χ|

A = max
x∈Ω
|χ| = −χ|Γt = Q2

{9
8
+ ϕ̌0 − ϕ̌2

0

}−1
.

It is easy to prove that this solution exists if and only if ϕ̌0 ∈ (1/
√
3, 1). The

amplitude A is a monotonically increasing function, A′ϕ̌0
> 0, and trivial calcu-

lations show that A → 0 and G → 0 as ϕ̌0 → 1/
√
3. It is also clear that there

exists a value ϕ∗ ∈ (1/
√
3, 1) such that A < ϕ̌0 as ϕ̌0 ∈ (1/

√
3, ϕ∗), and A > ϕ̌0

as ϕ̌0 ∈ (ϕ∗, 1). Thus, moving into the domain with ϕ̌0 ∈ (ϕ∗, 1), the soliton

solution describes how the set Ω−t,ε = {x ∈ Ω, ϕ̌0 + χ < 0} with negative concen-

tration arises |Ω−t,ε| ∼ ε. Let us consider the behavior of the solution as ϕ0 tends

to 1. Setting ϕ0 = 1 − ϕ̃(x, t) exp (−1/δ), δ ¿ 1, we get the following relations

A = 16/9 + O(e−1/δ), G = −1 + O(δ). Hence, vν ∼ δ and the velocity of the

soliton motion decreases as δ → 0. On the other hand, the volume of the set Ω−t,ε
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increases, since b ∼ exp (−1/δ) and |Ω−t,ε| ∼ |Ω−t,ε/δ| ∼ ε/δ for δ ¿ 1. Thus, this

solution describes the appearance of a sufficiently large domain of “superheated

liquid”, since the concentration ϕ ∼ −7/9 on Ω−t,ε/δ and the temperature θ0 is

almost independent of ϕ0 at these points. Nevertheless, this asymptotic solution

is correct only if |Ω−t,ε/δ| → 0 as ε→ 0.

We shall also see that the first corrections of the asymptotic expansions for

the temperature and concentration have the form of smoothed shock waves. So,

w − lim
ε→0

1

ε
(θ − θ0) = A1,θH(t− ψ) , w − lim

ε→0

1

ε
(ϕ− ϕ0 − χ) = A1,ϕH(t− ψ) ,

where H is the Heaviside function, A1,θ = 2I/(ϕ̌0vν), A1,ϕ = 2κI/(ϕ̌0Q
2vν) are

the amplitudes of jumps on Γt. It is easy to calculate that A1,θ, A1,ϕ are bounded

as ϕ̌0 → 1.

Let us prove Theorem 1 and consider the general method for constructing the

asymptotic solution of problem (3) (with special initial data) up to an arbitrary

precision.

First, we introduce some classes of functions, which we shall need for con-

structing asymptotic solutions with localized fast variation. That is,

H =

{
f(η, x, t) ∈ C∞(R1 × Q̄), ∃ f± ∈ C∞(Q̄),

lim
η→±∞

ηm
∂r+|α|+γ

∂ηr ∂xα ∂tγ

(
f(η, x, t)− f±(x, t)

)
= 0, ∀m, r, α, γ ≥ 0

}
,

S =
{
f(η, x, t) ∈ H, f+ = f− = 0

}
,

P =

{
f(τ, x′, t) ∈ C∞(R1

+ × Σ),

lim
τ→∞

τm
∂r+|α

′|+γ

∂τ r ∂(x′)α′ ∂tγ
f(τ, x′, t) = 0, ∀m, r, γ, α′, γ ≥ 0

}
.

Lemma 1. Let S(x, t) ∈ C∞(Q̄) be such that ∂S/∂t|Γt 6= 0, where Γt =

{x ∈ Ω, S(x, t) = 0}, t ≥ 0. Then, for any function f(η, x, t) ∈ H, we get

f

(
S(x, t)

ε
, x, t

)
= f

(
β(x)

t− ψ(x)
ε

, x, t

)
+O(ε) ,

where t = ψ(x) is the equation of the surface S(x, t) = 0 and β(x) = ∂S/∂t|t=ψ(x).
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2. Let µ(η, x, t), ζ(η, x, t) ∈ H be such that µ± = ±1, ζ+ = 1, ζ− = 0. Then,

for any function f ∈ H, we have the representations

f =
1

2
(f+ + f−) +

1

2
(f+ − f−)µ(η, x, t) + ω1(η, x, t) ,

f = f− + (f+ − f−) ζ(η, x, t) + ω2(η, x, t) ,

where ωi are functions from S.
3. The relations

(t− ψ)k f
(
t− ψ
ε

, x, t

)
= O(εk) , k ≥ 0 ,

g(x, t) f

(
t− ψ(x)

ε
, x, t

)
= g(x, ψ(x)) f

(
t− ψ(x)

ε
, x, ψ(x)

)
+O(ε) ,

hold for any functions f(η, x, t) ∈ S, g(x, t) ∈ C∞(Q̄).

The proof obviously follows from the definition (see also [12]).

Let us note that the representation S = t − ψ(x) does not mean that the

solution must move with velocity of order O(1). Actually, since the function

ψ(x) can increase rapidly along the direction normal to the surface Γt = {x ∈ Ω,

ψ(x) = t}, the motion of the solution can be arbitrary slowly.

Let us begin to construct the self-similar asymptotic solution of problem (3).

One can show that the leading term of the asymptotic expansion for θ must be

a smooth function, since the leading term of ϕ is a soliton. This implies that the

asymptotic solution has the following form

θ(x, t, ε) = ϑM(x, t, ε) + εVM
(
S(x, t)

ε
,
xN
ε
, x, t, ε

)
,

ϕ(x, t, ε) = ΦM(x, t, ε) +WM

(
S(x, t)

ε
,
xN
ε
, x, t, ε

)
,(13)

where the functions ϑM , ΦM (uniformly smooth with respect to ε ∈ [0, 1],

x, t ∈ Q, the so-called “regular part” or the “background”) give an analog of

the external expansion,

ϑM(x, t, ε) =
M∑

j=0

εj θj(x, t) , ΦM(x, t, ε) =
M∑

j=0

εj ϕj(x, t) ,
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the functions VM , WM (rapidly varying near Γt and the external boundary) give

an analog of the internal expansion,

VM(η, τ, x, t, ε) =
M∑

j=1

εj−1
{
Uj(η, x, t) + Yj(τ, x

′, t)
}
,

WM(η, τ, x, t, ε) = χ(η, x, t) +
M∑

j=1

εj
{
Wj(η, x, t) + Zj(τ, x

′, t)
}
.

Here xN is the distance from a point x ∈ Ω to a point x′ ∈ ∂Ω along the

internal normal,

S, θj , ϕj ∈ C∞(Q̄) , Yj(τ, x
′, t), Zj(τ, x

′, t) ∈ P ,

χ(η, x, t) ∈ S , Uj(η, x, t), Wj(η, x, t) ∈ H ,

and

(14) U−j = 0 , W−
j = 0 ,

∂S

∂t

∣∣∣∣
Γt

6= 0 , Γt =
{
x ∈ Ω, S(x, t) = 0

}
.

By Lemma 1, without loss of generality, we can assume that S = t − ψ(x),
χ = χ(η, x).

Furthermore, outside small neighborhoods of the soliton support and the ex-

ternal boundary, i.e., as η → ±∞, and τ →∞, we have θj + Uj + Yj ³ θj + U±j .

Since all the functions in the latter relation are arbitrary for the moment, we can

redefine θj (for example, by setting θj := θj + U+
j or θj := θj + U−j ) and thus set

one of the limiting values U+
j or U−j equal to zero. For definiteness, we set U−j

and, similarly, W−
j = 0.

Substituting (13) into equations (3), we get the relations

(15)
∂

∂t
(ϑM +ΦM)−∆ϑM − f =

[
1

ε

{
L̂2 VM −

∂

∂η
WM

}
−

− {
(
∂

∂η
+ L1

)
VM +

∂

∂t
WM

}
+ ε

(
∆x −

∂

∂t

)
VM

] ∣∣∣∣∣
η=S/ε, τ=xN/ε

,



482 G.A. OMEL’YANOV, V.G. DANILOV and E.V. RADKEVICH

(16)

[
1

ε2
L̂2
(
L̂2WM +WM − (ΦM +WM)3

)
+

+
1

ε

{(
κ
∂

∂η
− L̂2 L̂1

)
WM − L̂1

(
L̂2WM +WM − (ΦM +WM)3

)}

+
{
(L̂2∆x + L̂21)WM + κ1 L̂2 VM + κ

∂

∂t
(ΦM +WM)

+ ∆x

(
L̂2WM +ΦM +WM − (ΦM +WM)3

)}

− ε
{
L̂1(∆xWM + κ1WM) + ∆x(L̂1WM − κ1 ϑM)

}
+

+ ε2∆x

{
∆x(Φ

M +WM) + κ1 VM
}] ∣∣∣∣∣

η=S/ε, τ=xN/ε

= 0 .

Here, as usually in the two-scale method, the expressions in square brackets are

considered as functions of independent variables η, x, and t,

L̂2 = |∇ψ|2
∂2

∂η2
+ |∇xN |2

∂2

∂τ2
, L̂1 =

∂

∂η
Π̂− ∂

∂τ
Π̂b ,

Π̂ = 2(∇ψ,∇x) + ∆ψ , Π̂b = 2(∇xN ,∇x) + ∆xN .

First, let us obtain the regular terms of expansion (13). Passing to the limit

as η → ±∞, τ →∞, from (15), (16) we get

∂

∂t
(ϑM +ΦM)−∆ϑM − f = − ∂

∂t
WM± − ε

(
∂

∂t
−∆

)
VM± ,

(17) κ
∂

∂t
(ΦM +WM±) + ∆

(
ΦM +WM± − (ΦM +WM±)3

)
=

= ε κ1∆ϑ
M + ε2∆

(
∆(ΦM +WM±) + κ1 VM±

)
.

Introducing the notation

(18) θ±j = θj + U±j , Φ±j = ϕj +W±
j , j = 1, 2, ...,M ,

and setting the terms of the order O(εj) equal to zero, we get equations (8), (9)

for the leading terms, as well the following equations for the lower terms of the

asymptotic expansion

(19)

(
∂

∂t
−∆

)
θ±k = f±k,θ(x, t) , x ∈ D±t , t > 0 ,

κ
∂

∂t
Φ±k −∆

(
(3ϕ2

0 − 1)Φ±k

)
= f±k,ϕ(x, t) .
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Here k = 1, ...,M , D±t are subdomains of Ω such that

D+
t =

{
x ∈ Ω, ψ(x) < t

}
, D−t =

{
x ∈ Ω, ψ(x) > t

}
, Ω = D+

t ∪ D−t ∪ Γt ,

f±k,θ(x, t), f
±
k,ϕ(x, t) are functions of the previous terms of the expansion and their

derivatives. In particular, f±1,θ = −∂Φ±1 /∂t, f±1,ϕ = κ1∆θ0.

Now we note that the supports of fast variations of boundary-layer functions

and of functions rapidly varying on a neighborhood of Γt do not intersect (up to

terms O(ε∞)), since dist(∂Ω,Γt) ≥ const. Hence the solution in a neighborhood

of Γt and in a neighborhood of ∂Ω is constructed differently.

Let us consider a neighborhood of Γt. Passing to the limit as τ → ∞, we

obtain that the terms in (15), (16) belong to the space S, since relations (17)

hold. So we can use the method developed for phase transition problems by

V. Danilov, G. Omel’yanov and E. Radkevich [7, 8, 20, 21, 24]: step by step we

decompose the coefficients at εj in (15), (16), j = −2,−1, 0, ..., into the Taylor

expansion at the point t = ψ(x) and use the relation η = (t − ψ)/ε. Further,

passing to the functions of independent variables η, x, we obtain the asymptotic

solution on the surface Tt. Finally, we define a sufficiently smooth extension of

these functions on R1
η ×Q, so that the lower terms of the asymptotic expansion

exist and belong to the space H.
Let us denote F̌ = F (η, x, t)|t=ψ(x) and consider the terms O(ε−2) in (16):

∂2

∂η2

{
|∇ψ|2 ∂

2χ̌

∂η2
+ χ̌− (ϕ̌0 + χ̌)3

}
= 0 .

After the integration, for χ̌ ∈ S we get

(20) |∇ψ|2 ∂
2χ̌

∂η2
+ χ̌− (ϕ̌0 + χ̌)3 = c , χ̌→ 0 as η → ±∞ .

Choosing c = −ϕ̌3
0, we get that the solution on Tt has the form (12), where the

“constant” of integration ψ1 = ψ1(x) is an arbitrary function from C∞(Ω̄).

Let us extend χ̌ (defined on the section (x, t) ∈ TT =
⋃
t∈[0,T ] Γt, η ∈ R1) by

the identity to χ ≡ χ̌(η, x) for all (x, t) ∈ Q̄, η ∈ R1. Now, setting the terms

O(ε−2+k) equal to zero, from (15), (16) we get the following equations

∂2Ǔk
∂η2

= F̌ θk , Ǔk → 0 as η → −∞ ,(21)

∂2

∂η2
L̂ W̌k = F̌ϕk , W̌k → 0 as η → −∞ .(22)
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Here

L̂ = |∇ψ|2 ∂2

∂η2
+ 1− 3(ϕ̌0 + χ)2 ,

F̌ϕk , F̌
θ
k are functions of θ0, ϕ0, ..., Uk−1,Wk−1 and of their derivatives at the point

t = ψ(x), k = 1, 2, ...,M . In particular,

F̌ϕ1 =
∂2

∂η2

{
Π̂
∂χ

∂η
+ 3(ϕ̌0 + χ)2 ϕ1

}
(23)

+ 3
∂ϕ0

∂t

{
2 + η

∂

∂η

}
∂

∂η
(ϕ0 + χ)2 − κ |∇ψ|−2 ∂χ

∂η

∣∣∣
t=ψ

,

F̌ θ1 = |∇ψ|−2 ∂χ
∂η

.(24)

It is not too difficult to prove that the following statement holds (see also

[7, 12]).

Lemma 2. The solutions Ǔk ∈ H, W̌k ∈ H of (21), (22) exist if and only if

(25) F̌ θk ∈ S , F̌ϕk ∈ S ,

(26)

∫ ∞

−∞
F̌ θk dη = 0 ,

∫ ∞

−∞
F̌ϕk dη = 0 ,

(27)

∫ ∞

−∞
f̌ϕk

∂χ

∂η
dη = 0 ,

where

f̌ϕk =

∫ η

−∞

∫ η′

−∞
F̌ϕk (η

′′, x) dη′′ dη′ .

Using (23), (24), it is easy to see that the conditions (25), (26) hold automat-

ically for k = 1.

Further, since

f̌ϕ1 = Π̂
∂χ

∂η
+ 3(ϕ1 + ξ ϕ0t) (2ϕ0 χ+ χ2)

∣∣∣
t=ψ

+
√
2κβ ln(J2R) ,

R =
{
eξ + 4ϕ̂0 − 2

√
2Q

}{
eξ + 4ϕ̂0 + 2

√
2Q

}−1
,

where notation (12) is used, simple calculations yield the statement

Lemma 3. For k = 1 condition (27) is equivalent to equation (10).
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Now, since (25)–(27) are satisfied for k = 1, we can obtain the functions Ǔ1,

W̌1:

Ǔ1 = Ǔ+
1 (x) ζ(η, x) , W̌1 = W̌+

1 (x) ζ(η, x) + ω1(η, x) .

Here

ζ =

√
2

a
ln(J2R) ∈ H , ζ+ = 1, ζ− = 0 ,

Ǔ+
1 = −a vν , W̌+

1 = Ǔ+
1 κ/Q

2 ,

ω1(η, x) = ω1,1(η, x) + ψ2(x)χη(η, x) ∈ S ,

ψ2 is the “constant” of integration, a = 2I/ϕ̌0.

Let us fix the functions θ1(x, t), ϕ1(x, t) so that θ1, ϕ1 are sufficiently smooth

on Q and that θ1 = θ−1 , ϕ1 = Φ−1 on D̄−t for all t ≥ 0. Let us define the functions

θ−1c(x, t), Φ
−
1c(x, t) as θ−1c = θ1, Φ

−
1c = ϕ1 for all (x, t) ∈ Q, and let θ+1c, Φ

+
1c be

sufficiently smooth extensions of θ+1 , Φ
+
1 in D̄+

t ∪Γ−t,δ, such that the heat equations

(19) are satisfied for k = 1. Here 0 < δ ¿ 1 is an arbitrary number and Γ−t,δ ⊂ D−t
is a layer of width δ adjoined to Γt. Now we can define the extensions U1, W1

(28) U1 = u1(x, t) ζ(η, x) , W1 = w1(x, t) ζ(η, x) + ω1(η, x) ,

where

u1 = θ+1c − θ−1c , w1 = Φ+
1c − Φ−1c .

Note that outside Γt we have

θ1 + U1 = θ±1 +
[
(θ+1c − θ−1c)O(e∓βη)

]
, x ∈ D±t , η = (t− ψ)/ε+ ψ1 ,

ϕ1 +W1 = Φ±1 +
[
(Φ+

1c − Φ−1c)O(e∓βη)
]
+ ω1 .

This implies that the expressions in square brackets are of maximal value O(ε) in
an ε1−µ-neighborhood of Γt, 0 < µ < 1, and they are exponentially small outside

this neighborhood. Hence, the freedom in choosing the extensions θ±1c, Φ
±
1c results

in corrections of order O(ε) which automatically are taken into account when we

construct the next approximations.

Thus we have the following conditions for jumps of θ±1 , Φ
±
1 on Γt

(29) [θ±1 ]
∣∣∣
Γt

= a vν , [Φ±1 ]
∣∣∣
Γt

=
κ a

Q2
vν .

Here we use the notation [f±]|Γt = f−|Γt+0− f+|Γt−0 and note that the vector ν

is directed from D+
t to D−t .
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Let us consider equations (21), (22) in the case k = 2. The right-hand sides of

these equations belong to S, since equation (8) and the first equation (19) hold

for k = 1. Further, after some calculations, we get the following statement

Lemma 4. For k = 2 conditions (26) are equivalent to the equalities

[
∂θ±1
∂ν

]∣∣∣∣
Γt

= −a vν
{(

1 +
κ

Q2

)
vν +Kt −

4

a bQ

∂ϕ̌0

∂ν

}
,

[
∂

∂ν

(
(3ϕ2

0 − 1)Φ±1

)]∣∣∣∣
Γt

= −12 |∇ψ| ∂ϕ0

∂t

∣∣∣∣
Γt

{
QKt − vν div(Q∇ψ) +

a

2

∂ϕ̌0

∂ν

}

+ v2ν
κ a

2Q2
(κ+Q2∆ψ) .

Finally, for k = 2, after some trivial but cumbersome calculations condition

(27) can be transformed to the following linear inhomogeneous equation for the

phase correction ψ1:

(31) κ
∂ψ1

∂ν
= G1 K̂′ ψ1 + fψ1(x) , ψ1

∣∣∣
Γ0

= 0 .

Here K̂′ is the variation of the operator Kt from (10), the right-hand side fψ1(x)

depends on the functions ψ, θ0, ϕ0, θ
±
1 , Φ

±
1 .

The following constructions are performed similarly:

1. Calculating Ǔ±k , W̌±
k , we get conditions for jumps of the functions θ±k , Φ

±
k

on Γt;

2. By using formulas similar to (28), we define the extensions Uk, Wk on Q.

Since θ±k , Φ
±
k is the solution of (19), we see that conditions (25) hold;

3. Conditions (26) imply conditions for the normal derivatives of θ±k−1, Φ
±
k−1

on Γt;

4. Condition (27) yields an equation (similar to (31)) for the “constant” of

integration ψk.

In fact, since

f
(
β(η+ψ1)

)
+ε β f ′η ψ2+ε

2 β f ′η ψ3+... = f
(
β(η+ψ1+εψ2+ε

2 ψ3+...)
)
+O(ε2) ,

the functions ψk, k ≥ 1, are the lower corrections to the principle phase ψ. So,

these functions describe the front of the soliton wave more precisely.

We must also pose the initial conditions for the equations (3) as well as for

the heat equations (8), (9), (19). Since θ0, ϕ0 are smooth functions on Ω× [0, T ]
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and θ±k , Φ
±
k are smooth functions on D±t × [0, T ], let us define the initial data as

follows

θ0 = w − lim
ε→0

θ0(x, ε), ϕ0 = w − lim
ε→0

ϕ0(x, ε) , x ∈ Ω ,

θ0k
±
= w − lim

ε→0

1

εk

(
θ0(x, ε)− θ0 −

k−1∑

j=1

εj(θj + Uj + Yj)
∣∣∣
t=0

)
, x ∈ D±0 ,

ϕ0
k

±
= w − lim

ε→0

1

εk

(
ϕ0(x, ε)− ϕ0 − χ−

k−1∑

j=1

εj(ϕj +Wj + Zj)
∣∣∣
t=0

)
, x ∈ D±0 .

These formulas yield the initial data (8), (9) and the initial data for equations

(19):

(32) θ±k |t=0 = θ0k
±
(x), ϕ±k |t=0 = ϕ0

k

±
(x) , x ∈ D±0 .

Furthermore, a natural form of the initial value of ϕ is ϕ|t=0 = ϕ0(r0(x)/ε, x, ε),

where r0 is the distance function. Nevertheless, the constructed asymptotic de-

pends on the variable η = (t − ψ(x))/ε + ψ1 with functions ψ and ψ1 unknown

beforehand. Note that ψ|Γ0
= 0 and ψ1|Γ0

= 0, the unit vector ∇(ψ/|∇ψ|)|Γ0

is normal to Γ0 and directed opposite to ∇r0|Γ0
. Therefore, for any function

f(η, x) ∈ H we have

f

(
r0
ε
, x

)
= f

(−ψ + εψ1

|∇ψ| ε +
1

ε
g1 + g2, x

)

= f

(
η

|∇ψ| , x
)
+ ε f ′η

(
η

|∇ψ| , x
){

η
∂g2
∂ν

∣∣∣
Γ0

+
1

2
η2
∂2g1
∂ν2

∣∣∣
Γ0

}
+O(ε2) ,

where g1 = r0 + ψ/|∇ψ|, g2 = −ψ1/|∇ψ|, ∂/∂ν = |∇ψ|−1〈∇ψ,∇〉, and η =

−ψ/ε + ψ1 for t = 0. We also take into account that f ′η ∈ S, and hence, the

functions |ηkf ′η| are bounded in C for all k ≤M .

Moreover, in §3 we prove that the initial perturbations O(ε3) (in the sense of

L2(Ω)) do not lead the soliton-type solution out of the stability domain. There-

fore, we fix the initial data only up to the terms O(ε2). The above constructions

imply that the behavior of smooth (for the ε > 0) functions θ0(x, ε), ϕ0(x, ε) may

be arbitrary outside an ε-neighborhood of Γ0, but ϕ
0 and the lower terms of θ0

(w.r.t. ε) must be of a special form in this neighborhood.

Now let us consider the boundary conditions on the external boundary ∂Ω

and calculate the boundary-layer functions. The soliton part of the asymptotic

solution satisfies both boundary conditions in (3) up to O(ε∞). So, for ϕ on Σ,
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a discrepancy in the second boundary condition arises only from the regular part

of the solution, since dist(Γt, ∂Ω) ≥ const and, in general,

∂

∂N
∆ϕ0

∣∣∣∣
Σ
6= 0 .

Let us put Zj = 0 for j = 1, 2 since

∂

∂N
∆ε3 Z3

(
xN
ε
, x′
)∣∣∣∣
xN=0

= O(1) .

Then, using the construction common for the boundary layer asymptotic solu-

tions, we obtain the equation for Z3:

(32)
∂2

∂τ2
Z3 − q Z3 = 0 , Z3 → 0, τ →∞ ,

where q = 3ϕ2
0|Σ − 1 > 0. Obviously,

Z3 = c3(x
′, t) exp(−√q τ) .

Now we can see that the boundary condition

(33)
∂3

∂τ3
Z3

∣∣∣∣
τ=0

=
∂

∂N
∆ϕ0

∣∣∣∣
Σ

leads to the formula

c3 = −q−3/2
∂

∂N
∆ϕ0

∣∣∣∣
Σ
.

Further, we note that the appearance of the boundary-layer function ε3Z3

necessarily implies a correction of the Neumann condition in the term O(ε2).
Let, for definiteness, ∂Ω ∩ ∂D−t = ∂Ω. Then the Neumann condition for Φ−2 has

the form

(34)
∂Φ−2
∂N

∣∣∣∣
Σ
=
∂Z3

∂τ

∣∣∣∣
τ=0

=
1

q

∂

∂N
∆ϕ0

∣∣∣∣
Σ
.

The appearance of the boundary-layer functions Zk implies the boundary-

layer terms Yj in the θ asymptotic expansion. Since the boundary ∂Ω is fixed,

for j = 1, ..., 4 we have Yj = 0 and for Y5 we have the equation:

(35)
∂2Y5
∂τ2

=
∂

∂t
Z3(τ, x

′, t) , Y5 → 0, τ →∞ .

Therefore

Y5 = −q−5/2
∂2

∂N∂t
∆ϕ0

∣∣∣∣
Σ
exp(−√q τ) .
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Conversely, the appearance of Y5 leads to a correction of the Neumann condition

for the temperature in the term O(ε4). Thus, the Neumann condition for θ−4 has

the form

(36)
∂θ−4
∂N

∣∣∣∣
Σ
=
∂Y5
∂τ

∣∣∣∣
τ=0

=
1

q2
∂2

∂N∂t
∆ϕ0

∣∣∣∣
Σ
.

Finally, the asymptotic expansion in a small neighborhood of ∂Ω has the

following form

θ = θ0(x, t) +
4∑

j=1

εj θ−j (x, t) +
M∑

j=5

εj
(
θ−j (x, t) + Yj(τ, x

′, t)
)
+O(εM+1) ,

ϕ = ϕ0(x, t) +
2∑

j=1

εj Φ−j (x, t) +
M∑

j=3

εj
(
Φ−j (x, t) + Zj(τ, x

′, t)
)
+O(εM+1) .

Here Z3, Y5 ∈ P are described above, Zk ∈ P, k ≥ 4, and Yj ∈ P, j ≥ 6, are

calculated from linear inhomogeneous problems like (32), (33), (35). In turn, we

obtain the boundary conditions for problems (19):

1. Conditions (8), (9) for θ0, ϕ0;

2. Conditions

∂θ−j
∂N

∣∣∣∣
Σ
= 0 ,

∂Φ−1
∂N

∣∣∣∣
Σ
= 0

for θ−j , j = 1, ..., 3, Φ−1 ;

3. Conditions (34), (36) for Φ−2 , θ
−
4 ;

4. Conditions

∂θ−j
∂N

∣∣∣∣
Σ
=
∂Yj+1

∂τ

∣∣∣∣
τ=0

,
∂Φ−k
∂N

∣∣∣∣
Σ
=
∂Zk+1

∂τ

∣∣∣∣
τ=0

for θ−j , j ≥ 5 and Φ−k , k ≥ 3.

Theorem 1 is proved.

Moreover, analyzing our construction, we obtain the statement.
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Theorem 2. Let the assumptions of Theorem 1 hold. Then for any integer

M ≥ 0 there exist the functions

(37)

θasM = θ0 +
M∑

j=1

εj(θj + Uj + Yj) + εM+1(UM+1 + YM+1) ,

ϕas
M = ϕ0 + χ+

M∑

j=1

εj(ϕj +Wj + Zj) + εM+1(WM+1 + ZM+1) ,

such that

∂

∂t
(θasM + ϕas

M)−∆θasM − f(x, t) = εM FθM ,

κ
∂ϕas

M

∂t
+∆

(
ε2∆ϕas

M + ϕas
M − (ϕas

M)3 + ε κ1 θ
as
M

)
= εM FϕM ,

(38)

∂θasM
∂N

∣∣∣∣
Σ
= εM+1 F θM ,

∂ϕas
M

∂N

∣∣∣∣
Σ
= 0 ,

∂

∂N
∆ϕas

M

∣∣∣∣
Σ
= εM−1 FϕM ,(39)

θasM |t=0 = θ0 + ε(θ0±1 + θ̃) , ϕas
M |t=0 = ϕ0 + χ

∣∣∣
t=0

+ ε(ϕ0±
1 + ϕ̃) .(40)

Here θ̃, ϕ̃, Fϕ,θM , Fϕ,θM are (smooth for ε > 0) functions such that

‖θ̃;L2(Ω)‖+ ‖ϕ̃;L2(Ω)‖ ≤ c0
√
ε ,(40′)

‖FθM ;C(Q̄)‖+ ‖FϕM ;C(Q̄)‖ ≤ c1 ,

‖F θM ;C(Σ)‖+ ‖FϕM ;C(Σ)‖ ≤ c2 ,(41)

‖FθM ;L2(Ω)‖+ ‖FϕM ;L2(Ω)‖ ≤ c3
√
ε ,

where the constants cj are independent of ε.

3 – Justification of the soliton type asymptotic solution

In this section we shall obtain estimates for the differences between the exact

θ, ϕ and asymptotic θasM , ϕas
M solutions of problem (3). Let us introduce the

notation σ = θ− θasM , ω = ϕ−ϕas
M and let the initial data θ0, ϕ0 exhibit a special

behavior. Then, from (3) and (38)–(40), we get the following problem for the

remainders σ, ω:

(42)
∂

∂t
(σ + ω)−∆σ = −εM FθM ,
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(43) κ
∂ω

∂t
+∆

(
ε2∆ω + ω(1− 3ϕ2

M − 3ϕM ω − ω2) + ε κ1 σ
)
= −εM FϕM ,

(44)

∂σ

∂N

∣∣∣∣
Σ
= −εM+1 F θM ,

∂ω

∂N

∣∣∣∣
Σ
= 0 ,

∂

∂N
∆ω

∣∣∣∣
Σ
= −εM−1 FϕM ,

σ|t=0 = −εM+1/2 fθM , ω|t=0 = −εM+1/2 fϕM .

Here Fθ,ϕM , F θ,ϕM are smooth functions satisfying (41), f θ,ϕM are functions such that

(45) ‖f θM ;L2(Ω)‖+ ‖fϕM ;L2(Ω)‖ ≤ c√ε

with constant c independent of ε. To simplify the notation, we omit the super-

script denoting asymptotic solutions.

The main result of this section is

Theorem 3. Let there exist a sufficiently smooth solution of problem (3)

on the time interval [0, T ], where the quantity T > 0 is independent of ε. Let

also the assumptions of Theorem 1 be satisfied, M ≥ 2 and there exist a constant

γ > 0 such that ϕ0−1/
√
3 ≥ γ uniformly in x ∈ Ω, t ∈ [0, T ]. Then the estimates

‖ω;L∞((0, T );L2(Ω))‖+ ‖σ;L∞((0, T );L2(Ω))‖ ≤ c εM+1 ,(46)

‖∇ω;L2(Q)‖+ ‖∇σ;L2(Q)‖ ≤ c εM+1/2 , ‖∆ω;L2(Q)‖ ≤ c εM−1/2

hold with constant c independent of ε.

The main obstacle to the derivation of a priori estimates (46) is a rapidly

varying coefficient ϕM in (43). This is typical for nonlinear equations and the

following summand

J =

∫ t

0

∫

Ω

(
∇ω,∇(ϕ2

Mω)
)
dx dt′

appears on the right-hand side of the energy inequality, while on the left-hand

side we have only ‖ω;L∞(0, T ;L2(Ω))‖2 and ε2‖∆ω;L2(Q)‖2. It is clear that

trivial estimates, for example,

|J | ≤ c
(
max
x,t
|∆ϕ2

M | ‖ω;L2(Q)‖2 + ‖∇ω;L2(Q)‖2
)

≤ c1
ε2
‖ω;L2(Q)‖2 + c ‖∇ω;L2(Q)‖2 ,

allow us to prove that the discrepancy is bounded only for the time Tε ∼ ε2. The
first point of observation is that, to overcome this difficulty, we can rewrite the

“bad” summand (∇ω,∇(ϕ2
Mω)) in the form

−(3ϕ2
0 − 1) |∇ω|2 − ε−2 ω2Ψ1 + |∇ω|2 χ g1 + ε−2 ω2Ψ1(Ψ2 + εΨ3) ,
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where nonnegative Ψ1 belongs to S, Ψ2 ∈ S, Ψ3 ∈ H, g1 is a bounded in C

function. Let us recall that ϕ0 ≥ 1/
√
3+γ, where γ > 0 is a fixed number. Thus,

we obtain the summand ‖
√
3ϕ2

0 − 1 |∇ω|; L2(Q)‖2+ ε−2‖√Ψ1 ω; L
2(Q)‖2 on the

left-hand side of the energy inequality and the expression

J1 =

∫ t

0

∫

Ω
χ g1 |∇ω|2 dx dt′ +

1

ε2

∫ t

0

∫

Ω
ω2Ψ1(Ψ2 + εΨ3) dx dt

′

on the right-hand side. Obviously, if we again estimate the functions χg1 and

Ψ1(Ψ2+εΨ3) by the maximum of the modulus, there is no result, but we now can

use the fact that the functions χ and Ψ1 are bounded by a constant (in C) and

localized (with precision up to O(ε)) in an ε-neighborhood of the free interface

Γt. Here the main point is Lemma 6 about estimating integrals of the form

I =

∫ ∞

−∞
v

(
x

ε

)
f(x) dx ,

where v(η) ∈ S is a known function exponentially vanishing outside the point

η = 0. To estimate f we can use the norms in Lk(R1) only for k = 1 and

k = 2. Lemma 6 implies that for sufficiently small ε the first summand in J1 is

bounded from above by o(Rω), where Rω = γ‖∇ω;L2(Q)‖2 + ε2‖∆ω;L2(Q)‖2.
Since on the left-hand side of the energy inequality we have kRω with a constant

k > 0 independent of ε, we see that the first summand in J1 is no obstacle to the

derivation of a priori estimate for all finite T .

Similarly, by Lemma 6, we now can prove that for sufficiently small ε the sec-

ond summand in J1 has the upper bound k(Rω+3ε−2‖ω√Ψ1;L
2(0, t;L2(Ω))‖2)/4.

Therefore, the second summand is no more an obstacle to the derivation of a priori

estimate for all finite T .

It should be noted that, justifying a boundary-layer asymptotics for the semi-

linear Dirichlet problem, M. Berger and L. Fraenkel [3] proved a statement similar

to Lemma 6. However, in the boundary-layer situation the fast varying asymp-

totics v is localized in a small neighborhood of the external boundary. Moreover,

the discrepancy vanishes on the boundary. The condition f |∂Ω = 0 used in [3]

considerably simplifies the estimation of the integral I. In the phase transition

problems the remainder does not necessarily vanish on the free boundary, so, in

these problems one cannot use the estimate derived by M. Berger and L. Fraenkel.

To prove Theorem 3 we first need to obtain an auxiliary result.
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Theorem 4. Under the assumptions of Theorem 3, the following estimates

‖ω;L∞((0, T );L2(Ω))‖+ ‖σ;L∞((0, T );L2(Ω))‖ ≤ c εM+1/2 ,(47)

‖∇σ;L2(Q)‖+ ‖∇ω;L2(Q)‖ ≤ c εM+1/2 , ‖∆ω;L2(Q)‖ ≤ c εM−1/2 ,

hold with constant c independent of ε.

Proof: Multiplying equations (42), (43) by σ, ω respectively and integrating

on Ω, we get the relations

(48)
1

2

d

dt
‖σ‖2 +

∫

Ω
ωt σ dx+ ‖∇σ‖2 = −εM

∫

Ω
σFθM dx− εM+1

∫

∂Ω
σ F θM dx

′ ,

(49)
κ

2

d

dt
‖ω‖2 + ε2 ‖∆ω‖2 + 3 ‖ω∇ω‖2 =

∫

Ω

(
∇ω,∇(ω(1− 3ϕ2

M))
)
dx−

− 3

∫

Ω

(
∇ω,∇(ϕMω2)

)
dx+ ε κ1

∫

Ω
(∇ω,∇σ) dx

− εM
∫

Ω
ωFϕM dx+ εM+1

∫

∂Ω
ω FϕM dx

′ + εM+2 κ1

∫

∂Ω
ω F θM dx

′ .

Here and below ‖f‖ denotes the L2(Ω) norm of f .

Further, multiplying (42) by ω, integrating on Ω and summing with (48), we

obtain

(50)
1

2

d

dt

{
‖ω‖2 + ‖σ‖2 + 2

∫

Ω
ω σ dx

}
+ ‖∇σ‖2 +

∫

Ω
(∇ω,∇σ) dx =

= −εM
∫

Ω
(ω + σ)FθM dx− εM+1

∫

∂Ω
(ω + σ)F θM dx

′ .

Let us fix a constant K > 1/γ. Multiplying (49) by K and summing with (50),

we get the equality

1

2

d

dt

{
(1+κK) ‖ω‖2+ ‖σ‖2+2

∫

Ω
ωσ dx

}
+ ‖∇σ‖2+ ε2K‖∆ω‖2+3K ‖ω∇ω‖2=

(5.1)

= K

∫

Ω

(
∇ω, ∇(ω(1− 3ϕ2

M))
)
dx− 3K

∫

Ω

(
∇ω, ∇(ϕMω2)

)
dx

+ (ε κ1K − 1)

∫

Ω
(∇ω,∇σ) dx− εM

∫

Ω

{
(ω + σ)FθM + ωK FϕM

}
dx

− εM+1
∫

∂Ω

{
(ω + σ)F θM − ωK(FϕM + ε κ1 F

θ
M)
}
dx′ .

We shall analyze the terms in the right-hand side of (51).
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Lemma 5. Let ϕM be the asymptotical expansion (37). Then

(52)

∫

Ω

(
∇ω,∇(ω(1− 3ϕ2

M))
)
dx = −

∫

Ω
(3ϕ2

0 − 1) |∇ω|2 dx− 1

ε2

∫

Ω
ω2Ψ1 dx+ I ,

I =

∫

Ω
|∇ω|2 (g1 χ+ ε g2) dx+

1

ε2

∫

Ω
ω2
(
Ψ1(Ψ2 + εΨ3) + ε2Ψ4

)
dx ,

where

(53) Ψ1 = A1
cosh3 ρ+A cosh ρ+ (1 + 2A)/α

(cosh ρ+ α)4
∈ S ,

ρ = ξ − 1

2
ln 8b , α = ϕ̌0

√
2/b , A = Q2

√
2/b , A1 = ϕ̌0A

2/6b ,

gi, Ψk are smooth functions such that

|gi| ≤ const , Ψ2 ∈ S , Ψ3 ∈ H , |Ψ4| ≤ const .

Proof of Lemma 5: Using the expansion (37) and rewriting ϕM in the form

ϕM = ϕ0 + χ+ εϕ∗M , we get

(54)

∫

Ω

(
∇ω, ∇(ω(1− 3ϕ2

M))
)
dx = −

∫

Ω
(3ϕ2

0 − 1) |∇ω|2 dx+

+

∫

Ω
|∇ω|2 (g1 χ+ ε g2) dx+

3

2

∫

Ω
ω2∆(ϕ2

M) dx ,

where g1 = −3(χ+ 2ϕ0), g2 = (2ϕ0 + 2χ+ εϕ∗M)ϕ∗M . Obviously, gi are bounded

functions. Further, simple calculations yield the relation

(55)
1

2
∆(ϕ2

M) =

(
1

ε2
|∇ψ|2

{
χ2η + (ϕ0 + χ)χηη

}
+

1

ε
Ψ̃ + Ψ4

) ∣∣∣∣
η=(t−ψ)/ε

.

Here

Ψ̃ = −2χη
(
|∇ψ|2W1η + (∇ψ,∇ϕ0)

)

+ (ϕ0 + χ)
(
|∇ψ|2W1ηη − Π̂χη

)
+ (ϕ1 +W1) |∇ψ|2 χηη ,

Ψ4 is bounded (in the C-sense) and Π̂ is the operator described in (16). Let us

rewrite the function χ in the form χ = −A{cosh(ρ) + α}−1, where ρ, A > 0,

α > 0 are described in (53). Now it is easy to calculate that

3 |∇ψ|2
{
χ2η + (ϕ0 + χ)χηη

}
= Ψ1(1−Ψ2) ,



SOLITON TYPE ASYMPTOTIC SOLUTIONS 495

where Ψ1 has the form (53) and

Ψ2 =
{A+ 1

α
cosh2 ρ+(α2+2) cosh ρ+2α

}{
cosh3 ρ+A cosh ρ+(2A+1)/α

}−1
.

Obviously, Ψ2 ∈ S. Finally, let us note that the term Ψ̃ can be written in the

form Ψ̃ = Ψ1Ψ3, where Ψ3 is a function from H, since W1 satisfies (22) and χη,

χηη vanish like 1/ cosh ρ as η → ±∞. This equality, (54), and (55) complete the

proof of Lemma 5.

Now, using (44), (52) and integrating (51) with respect to t, we get

(56)
1

2

{
(1 + κK) ‖ω‖2 + ‖σ‖2

}
(t) +

∫ t

0

{
‖∇σ‖2 + ε2K ‖∆ω‖2 +

+ 3K ‖ω∇ω‖2 +K

∫

Ω
(3ϕ2

0 − 1) |∇ω|2 dx+
K

ε2

∫

Ω
ω2Ψ1 dx

}
dt′ =

=
1

2
ε2M+1

{
(1 + κK) ‖fϕM‖2 + ‖f θM‖2 + 2

∫

Ω
fϕM f

θ
M dx

}
−
∫

Ω
ω σ dx

+

∫ t

0

{
KI − 3K

∫

Ω

(
∇ω, ∇(ϕM ω2)

)
dx+ (ε κ1K − 1)

∫

Ω
(∇ω,∇σ) dx

− εM
∫

Ω

[
(ω + σ)FθM + ωK FϕM

]
dx

− εM+1
∫

∂Ω

[
(ω + σ)F θM − ωK(FϕM + ε κ1 F

θ
M)
]
dx′
}
dt′ .

It is easy to see that

2
∣∣∣
∫

Ω
ω σ dx

∣∣∣ ≤ α1 ‖ω‖2 +
1

α1
‖σ‖2 ,

2
∣∣∣
∫

Ω
(∇ω,∇σ) dx

∣∣∣ ≤ α2 ‖∇ω‖2 +
1

α2
‖∇σ‖2 ,

α1 =
1

2

(
κK +

√
(κK)2 + 4

)
, α2 =

1

2

(
γK − 1 +

√
(γK − 1)2 + 4

)
.

Let us choose the constant K large enough, so that γK−α2 ≥ 1/2. It is possible,

since γK − α2 varies from 0 to 1. Further, by the embedding theorem (see, for

example, [10]) and (41), we get

εM+1

∣∣∣∣
∫

∂Ω

[
(ω + σ)F θM − ωK(FϕM + ε κ1 F

θ
M)
]
dx′
∣∣∣∣ ≤

≤ c εM+1
(
‖ω;L2(∂Ω)‖+ ‖σ;L2(∂Ω)‖

)
≤ c ε2M+2 +

1

4
‖ω‖21 +

1

4
‖σ‖21 .
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Here and below c denotes a universal constant, ‖f‖k is the Hk(Ω) norm of f , and

Hk denotes the Sobolev space.

Therefore, choosing ε small enough, from (56) we obtain the following inequal-

ity

(57)
α1 − 1

2α1

{
‖ω‖2 + ‖σ‖2

}
(t) +

∫ t

0

{
1

4
‖∇ω‖2 + 1

4
‖∇σ‖2 +

+ ε2K ‖∆ω‖2 + 3K ‖ω∇ω‖2 + K

ε2

∫

Ω
ω2Ψ1 dx

}
dt′ ≤

≤ c ε2M+1 +

∫ t

0

{
K |I|+ c

(
‖ω‖2 + ‖σ‖2

)
+ 3K

∣∣∣
∫

Ω

(
∇ω, ∇(ϕM ω2)

)
dx
∣∣∣
}
dt′ .

To estimate the integral I we shall need the following

Lemma 6 ([13], [18]). For any nonnegative functions f , v,

f(x) ∈ L2(R1) ∩ L1(R1) , v(x) ∈ S(R1) ,

where S is the Schwartz space, there exists a constant ε0 > 0 such that, for all

ε ∈ (0, ε0],
∫ ∞

−∞
f(x) v

(x
ε

)
dx ≤ δ ‖f ;L1(R1)‖+ cv(δ) ε

3/2 ρ(ε) ‖f ;L2(R1)‖ ,

where δ is a constant such that δ ≥ k ε1/2−µ, µ ∈ (0, 1/2), and k > 0 is a constant.

Here cv(δ) is a constant depending on δ and on ‖v(x);L2(R1)∩L1(R1)‖ such that
0 < cv(δ) ≤ const /δ2, and ρ(ε)→ 0 as ε→ 0.

Let us estimate the principal terms of I.

Lemma 7. Let ε be small enough. Then
∫

Ω
|∇ω|2 |g1|χdx ≤ δ1 ‖∇ω‖2 + cχ(δ1) ε

9/2 ‖∆ω‖2 ,(58)

1

ε2

∫

Ω
ω2Ψ1 |Ψ2| dx ≤

δ2
ε2

∫

Ω
ω2Ψ1 dx+ cχ(δ2) ε

2 ‖ω‖21 ,(59)

where δi > 0 are arbitrary constants.

Proof: Denote by Nµ a µ neighborhood of the interface Γt, where µ ≥ 0 is

a constant independent of ε. Since χ = O(ε∞) outside Nµ, we have
∫

Ω
|∇ω|2 |g1|χdx ≤ c0

∫

Nµ
|∇ω|2 χdx+ ε2 c0

∫

Ω
|∇ω|2 dx ,

where c0 = max
x∈Ω
|g1|.
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Choosing µ sufficiently small, we pass to the variables y = (y1, ..., yn) in Nµ,
where y1 is the coordinate normal to Γt = {x ∈ Ω, t = ψ(x)}. Then in Nµ = {y,
|y1| ≤ µ, Y −i ≤ yi ≤ Y +

i , i = 2, ..., n} we have

∫

Nµ
|∇ω|2 χdx =

n∏

i=2

∫ Y +

i

Y −
i

∫ µ

−µ

˜|∇ω|2 v
(y1
ε
, y, t

)
J dy1 dyi ,

where J is the Jacobian of this change of variables,

˜|∇ω| = |∇xω|
∣∣∣
x=x(y,t)

, v(η, y, t) = χ(β(η + ψ1))
∣∣∣
x=x(y,t)

.

By Lemma 6 and the embedding theorem for n = 1, we get

∫

Nµ
|∇ω|2χdx ≤

n∏

i=2

∫ Y +

i

Y −
i

{
δ1

∫ µ

−µ

˜|∇ω|2J dy1 + c ε3/2ρ(ε)
(∫ µ

−µ

˜|∇ω|4J2 dy1
)1/2}

dyi

≤ δ1 ‖∇ω‖2 + c ε3/2−k1−k2 ρ(ε)
{
ε4k1/3 ‖∇ω‖2 + ε4k2

(
‖∇ω‖2 + ‖∆ω‖2

)}

≤ δ1 ‖∇ω‖2 + c ε1/2 ρ(ε)
{
‖∇ω‖2 + ε4 ‖∆ω‖2

}
,

where we choose k2 = 1+k1/3 and use that J > 0 is a bounded smooth function.

This implies estimate (58). Here and below we omit the dependence of cχ(δ) on

the function χ and on the constant δ. It is clear that, choosing δ, we take into

account that cχ(δ)→∞ as δ → 0. Similarly,

1

ε2

∫

Nµ
ω2Ψ1 |Ψ2| dx ≤

δ2
ε2

∫

Ω
ω2Ψ1 dx+ c ρ(ε) ε−1/2 ×

×
n∏

i=2

∫ Y +

i

Y −
i

∥∥∥ω̃
√
J Ψ̃1 ; L

2(−µ, µ)
∥∥∥
3/2 ∥∥∥ω̃

√
J Ψ̃1; H

1(−µ, µ)
∥∥∥
1/2

dyi ≤

≤ δ2
ε2

∥∥∥ω
√
Ψ1

∥∥∥
2
+ c ρ(ε)

{ 1

ε2

∥∥∥ω
√
Ψ1

∥∥∥
2
+ ε2 ‖ω‖2 + ε4 ‖∇ω‖2

}
.

Lemma 7 is proved.

Further, choosing ε small enough, we have the trivial estimate

(60) ε

∫

Ω
|∇ω|2 |g2| dx+

1

ε

∫

Ω
ω2Ψ1 |Ψ3 + εΨ4 | dx ≤

≤ c ‖ω‖2 + δ3
{
‖∇ω‖2 + 1

ε2

∫

Ω
ω2Ψ1 dx

}

with an arbitrary constant δ3 > 0.
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Let us estimate the last term in the right-hand side of (57). Using the

Galliardo-Nierenberg inequality, we get that

(61)
∣∣∣
∫

Ω

(
∇ω, ∇(ϕMω2)

)
dx
∣∣∣ ≤ c

∫

Ω
|ω| |∇ω|2 dx+

c

ε

∫

Ω
|∇ω|ω2 dx ≤

≤ c ‖ω‖(8−n)/4 ‖ω‖(4+n)/42 +
c

ε
‖∇ω‖ ‖ω‖(8−n)/4 ‖ω‖n/42

≤ δ4
{
‖∇ω‖2 + ε2 ‖ω‖22

}
+ c ε−2(4+n)/(4−n) ‖ω‖2(8−n)/(4−n) .

Choosing δi = min{1/12, 1/24K}, i = 1, ..., 4, and using (58)–(61), we can trans-

form (57) as follows

(62) U(t)+c

∫ t

0

{
‖∇ω‖2+‖∇σ‖2+ε2 ‖∆ω‖2+‖ω∇ω‖2+ 1

ε2

∥∥∥
√
Ψ1 ω

∥∥∥
2
}
dt′ ≤

≤ c ε2M+1 + c

∫ t

0

{
U(t′) + ε−r(U(t′))1+λ

}
dt′ .

Here

U(t) =
{
‖ω‖2 + ‖σ‖2

}
(t) , λ = 4/(4− n) , r = 2(4 + n)/(4− n) .

Let us fix a number T1 ∈ (0, T ], T < ∞, and let t ∈ [0, T1]. Then, according to

the Gronwall lemma, (62) yields

U(t) ≤ c
(
ε2M+1 + ε−r

∫ T1

0
U1+λ dt′

)
.

Let z = max
t∈[0,T1]

U(t). Then

(63) z ≤ c
(
ε2M+1 + ε−r T1 z

1+λ
)
.

To analyze the last relation, we need the following lemma proved by

V.P. Maslov and P.P. Mosolov.

Lemma 8. Let positive numbers p, q, λ satisfy the estimate

(64) q <
λ

1 + λ

(
p(1 + λ)

)−1/λ
.

Then the solutions of the inequality 0 ≤ z ≤ q+p z1+λ belong to the set [0, Z−]∪
[Z+,∞), where the numbers Z+, Z− are such that 0 ≤ Z− < q(1 + λ)/λ < Z+.
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In our case p = c T1 ε
−r. Therefore, since ε is small enough, the inequality

(64) holds for any M ≥ 2. Since z = z(T1) continuously depends on T1 and

z(0) ≤ c ε2M+1 < c ε2M+1(1 + λ)/λ, we obtain the estimate

(65) max
t∈[0,T1]

U(t) ≤ c ε2M+1

with a constant c independent of ε.

It is easy to see that (65) and (62) yield the estimates (47). This completes

the proof of Theorem 4.

Proof of Theorem 3: Let us choose the numberM ′ =M+1, whereM ≥ 2.

Then, by Theorem 4, we get

θ = θasM′ + εM+3/2 σM′ , ϕ = ϕas
M′ + εM+3/2 ωM′ ,

where σM′ , ωM ′ are functions from L∞(0, T ;L2(Ω)) uniformly bounded in ε.

Nevertheless,

θasM′ = θasM + εM+1 YθM+1 , ϕas
M′ = ϕas

M + εM+1 Yϕ
M+1 ,

YθM+1 = θM+1(x, t) + UM+1(η, x, t) + YM+1(τ, x
′, t) ,

Yϕ
M+1 = ϕM+1(x, t) +WM+1(η, x, t) + ZM+1(τ, x

′, t) ,

where η = (t− ψ(x))/ε, τ = xN/ε. It is easy to calculate that

∥∥∥YθM+1; L
∞(0, T ;L2(Ω))

∥∥∥+
∥∥∥YϕM+1; L

∞(0, T ;L2(Ω))
∥∥∥ ≤ c .

Therefore,

θ = θasM + εM+1 σ∗M , ϕ = ϕas
M + εM+1 ω∗M ,

where

σ∗M = YθM+1 +
√
ε σM′ , ω∗M = Yϕ

M+1 +
√
ε ωM ′

are functions such that the estimate

∥∥∥YθM+1; L
∞(0, T ;L2(Ω))

∥∥∥+
∥∥∥YϕM+1; L

∞(0, T ;L2(Ω))
∥∥∥+

+
∥∥∥σM′ ; L∞(0, T ;L2(Ω))

∥∥∥+
∥∥∥ωM′ ; L∞(0, T ;L2(Ω))

∥∥∥ ≤ const

holds uniformly in ε. This estimate and Theorem 4 complete the proof of Theo-

rem 3.
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