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ON THE DISCRETIZATION OF
DEGENERATE SWEEPING PROCESSES

M. Kunze and M.D.P. Monteiro Marques

Abstract: We prove existence theorems for evolution equations of the form

−u′(t) ∈ ∂δC(t)(Au(t)) with some maximal monotone and strongly monotone operator

A : D(A)→ 2H .

1 – Introduction and main results

We study the evolution problem

(1) −u′(t) ∈ ∂δC(t)(Au(t)) a.e. in [0, T ], u(0) = u0 ∈ D(A) ,

where A is a maximal monotone and strongly monotone operator in the real

Hilbert space H, and t 7→ C(t) is a Hausdorff-continuous multifunction with

closed convex values. Equations of this form arise from problems of the type

−x′(t) ∈ ∂δC(g(t, x(t))), which play an important rôle in elasticity theory,

cf. [8, 3, 4] for more information. To solve (1) means that we have to find

u ∈W 1,1([0, T ];H) and v ∈ L2([0, T ];H) such that u(0) = u0,

u(t)∈D(A) a.e., v(t)∈Au(t)∩C(t) a.e. and −u′(t)∈∂δC(t)(v(t)) a.e. in [0, T ] .

Our general assumptions are

(H1) A:D(A)→2H\{∅} is a maximal monotone operator (abbreviated mmop)

such that A = ∂ψ for some lsc, convex and proper ψ : H → R ∪ {∞},
and there exists a β > 0 such that

(2) 〈Ax−Ay, x− y〉 ≥ β |x− y|2 for x, y ∈ D(A) .
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(H2) For every t ∈ [0, T ], ∅ 6= C(t) ⊂ H is a closed convex set, and t 7→ C(t)

is Lipschitz continuous, in that for some L ≥ 0

(3) dH

(
C(t), C(s)

)
≤ L|t− s| for t, s ∈ [0, T ] ,

and we obtain the following result.

Theorem 1. Let (H1) and (H2) be satisfied. If in addition

(H3a) C(0) is bounded, or

(H3b) there exists a function M : [0,∞[ → [0,∞[ which maps bounded sets

into bounded sets such that

(4) ‖Ax‖ = sup
{
|y| : y ∈ Ax

}
≤M(|x|) for x ∈ D(A) ,

and

(H4a) D(A) ∩BR(0) is relatively compact for every R > 0, or

(H4b) C(t) ∩BR(0) is compact for every t ∈ [0, T ] and R > 0,

then (1) has a Lipschitz continuous solution, for every u0 ∈ D(A) with Au0 ∩

C(0) 6= ∅.

In the bounded linear case we can do much better. Here the result is

Theorem 2. Let A : H → H be linear, bounded and selfadjoint such that

〈Ax, x〉 ≥ β |x|2 for x ∈ H. If (H2) holds for C(·) and if Au0 ∈ C(0), then (1)

has a unique solution, and this solution is Lipschitz continuous.

To discuss these theorems, we first remark that our proof relies on a concrete

and constructive discretization method, contrary to [4], where related results

were obtained in a more complicated way by Yosida–Moreau approximation of

A and ∂δC(t). Theorem 1 in particular covers all results from [4] with A being

a subdifferential. Moreover, the conditions (H3a) and (H4a) are easier to satisfy

in applications. We also note that taking A = id in Theorem 2 gives the known

existence theorem (cf. [6, 7] or [5, p. 141] and the references given therein) for

the classical sweeping process in infinite dimensions (including uniqueness), and

therefore seems to be a more natural extension than [4]; the latter covered the

classical sweeping process only in case that dimH < ∞. We also refer to [4] for

additional references concerning non-standard variants of the classical sweeping

process.
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Already simple examples show that this Theorem 2 (and hence also The-

orem 1) might be wrong if β = 0 in (2), cf. Example 3 in Section 2 below.

Although (H3) and (H4) are needed only for proof-technical reasons, we guess

that (H1) and (H2) are not enough to ensure the existence of a solution to (1).

These conditions (H3) and (H4) play a rôle as follows: from (H1) and (H2) alone

it is possible to construct two approximating sequences satisfying un(t) ∈ D(A),

vn(t) ∈ Aun(t) and vn(t) “almost in” C(t). Moreover, (un)n∈N is uniformly

bounded in norm and variation. Then (H3) is used to ensure that also (vn)n∈N is

uniformly bounded, and thus w.l.o.g. un → u and vn → v weakly in L2([0, T ];H)

for some functions u and v. But to conclude v(t) ∈ Au(t) a.e., one of the weak

convergences has to be improved to a strong convergence, and for this (H4) is

needed. It is clear that in concrete special cases, e.g. if A (the realization of A in

L2([0, T ];H)) has weakly-weakly-closed graph (as is the case for linear A), then

no additional compactness condition is needed. It should be noted that (H3b) is

a restrictive condition, since it enforces D(A) = H. [Indeed, A−1 : H → D(A) is

a mmop, and A = (A−1)
−1

is locally bounded, so H = R(A−1) = D(A).]

We also remark that our results remain true, if t 7→ C(t) is only assumed to

be absolutely continuous, i.e. dH(C(t), C(s)) ≤ |a(t)− a(s)| for some ac. function

a : [0, T ] → R, the difference being only that the solution obtained is also only

ac. instead of Lipschitz continuous. Condition (3) was only imposed to simplify

the proof.

The paper is organized as follows. In Section 2 we introduce some notation

and state some preliminary results which will be used to establish the existence

of the discretization resp. to prove convergence of the approximants. Moreover,

we included some easy counterexamples concerning uniqueness of solutions and

the case β = 0 in (2). Section 3 contains the construction of the approximations

and the derivation of uniform bounds under assumptions (H1) and (H2). The

proofs of Theorem 1 and Theorem 2 are carried out in Sections 4 and Section 5,

respectively.

2 – Notation and preliminaries

Our notations are quite standard, cf. [1, 2, 5]. So 〈·, ·〉 denotes the inner

product in H, and for a mmop A, D(A) resp. R(A) =
⋃
x∈D(A) Ax are the

domain of definition resp. the range of A. For a closed convex C ⊂ H the set

∂δC(x) = NC(x) = {y ∈ H : 〈y, c− x〉 ≤ 0 ∀ c ∈ C}, x ∈ C, denotes the normal

cone to C at x. Also,

dH(C1, C2) = max
{
sup
x∈C2

dist (x,C1), sup
x∈C1

dist (x,C2)
}
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with dist (x,C1) = inf{|x− y| : y ∈ C1} for C1, C2 ⊂ H is the Hausdorff distance

between the sets C1 and C2.

To establish the existence of approximate solutions to (1), we introduce the

following notation.

Definition 1. Let A be a mmop in H such that (2) holds, and let C ⊂ H be

closed convex. A map D(A) 3 u 7→ PA,C(u) ∈ D(A) is called the approximation

operator, if for every u ∈ D(A) there exists a PA,C(u) = w ∈ D(A) such that

u− w ∈ NC(Aw), i.e. u− w ∈ NC(v) for some v ∈ Aw ∩ C.

Remark 1. Due to (2) the element PA,C(u) is unique. Indeed, assume that

also for some w ∈ D(A) we have u− w ∈ NC(v) for some v ∈ Aw ∩ C. Because

NC(·) is monotone it follows that 0 ≤ 〈[u−w]− [u−w], v− v〉 = 〈v− v, w−w〉.

Since v ∈ Aw and v ∈ Aw, this implies w = w by means of (2).

Remark 2. PA,C(·) exists iff R(A
−1+NC) ⊃ D(A). To see this, we note first

that by (2), A−1 is locally bounded, hence A is onto by [2, Théorème 2.3]. Thus

A−1 : H → D(A) is monotone, single-valued, and 1/β-Lipschitz, because of (2).

Thus A−1 +NC is a mmop with domain of definition C, cf. [2, Lemme 2.4]. Now

R(A−1+NC) ⊃ D(A) iff for u ∈ D(A) we find v ∈ C such that u ∈ A−1v+NC(v).

Letting w = A−1v this yields v ∈ Aw and u− w ∈ NC(v).

This gives a simple criterion on when the approximation operator can be

defined.

Lemma 1. Let A be a mmop such that (2) holds. If C ⊂ H is nonempty,

closed, convex and bounded, then PA,C(·) exists.

Proof: In this case, A−1 + NC is a mmop with bounded domain C, hence

A−1 +NC is onto by [2, Corollaire 2.2].

The dependence of PA,C(·) on C is studied in the next lemma.

Lemma 2. Let A be a mmop satisfying (2) and let C1, C2 ⊂ H be such that

PA,C2
(·) exists. If u1 ∈ D(A) with Au1 ∩ C1 6= ∅, then

|u1 − PA,C2
(u1)| ≤

1

β
dH(C1, C2) .

Proof: Fix v1 ∈ Au1 ∩ C1 and v2 ∈ Au2 ∩ C2 such that u1 − u2 ∈ NC2
(v2),

with u2 = PA,C2
(u1). Hence 〈u1 − u2, z − v2〉 ≤ 0 for all z ∈ C2, and thus by (2)
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for these z

β |u1 − u2|
2 ≤ 〈u1 − u2, v1 − v2〉 ≤ 〈u1 − u2, v1 − z〉 ≤ |u1 − u2| |v1 − z| .

Consequently, since v1 ∈ C1,

|u1 − u2| ≤
1

β
dist (v1, C2) ≤

1

β
dH(C1, C2) ,

as was claimed.

Next we collect some further preliminary results on mmops and convex func-

tions which will be needed later on.

Lemma 3. Let ψ : H → R ∪ {∞} be lsc, convex and proper. If u ∈

W 1,2([0, T ];H) and u(t) ∈ D(∂ψ) a.e. in ]0, T [, and if there exists v ∈ L2([0, T ];H)

such that v(t) ∈ ∂ψ(u(t)), then the function t 7→ ψ(u(t)) is a.c. on [0, T ]. More-

over,
d

dt
[ψ ◦ u](t) = 〈u′(t), v(t)〉 a.e. in ]0, T [ .

Proof: Cf. [2, Lemme 3.3, p. 73].

Lemma 4. Let ψ : H → R ∪ {∞} be lsc, convex and proper. If xn → x

weakly in H, then lim infn→∞ ψ(xn) ≥ ψ(x).

Proof: By using Mazur’s theorem, or [1, Chapter 1, Proposition 1.5].

The next lemma will be used to approximate possibly unbounded C(t).

Lemma 5. Let t 7→ C(t) satisfy (H2). Then there exists an n0 ∈ N such

that for all n ≥ n0 we have Cn(t) :=C(t) ∩Bn(0) 6= ∅ for t ∈ [0, T ], and

dH(Cn(t), Cn(s)) ≤ 8 dH(C(t), C(s)) ≤ 8L |t− s| , t, s ∈ [0, T ] .

Proof: We choose a continuous selection z : [0, T ]→ H of C(·), e.g. by solv-

ing the usual sweeping process with the convex and Lipschitz-continuous moving

set t 7→ C(t). Fixing n1 ≥ |z|∞+2, in particular the first claim holds for n ≥ n1.

To show the estimate on dH, we will use [9, Section 8, p. 169/170], cf. the proof

of this result. First, C(t) ∩ intBn(0) 6= ∅ for n ≥ n1 and t ∈ [0, T ], since z(t) is

contained in this set. Moreover, the function t 7→ diam(C(t)∩Bn(0)) is bounded
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by D = 2n. Finally,

e(C(t), H\Bn(0)) = sup
x∈C(t)

dist (x,H\Bn(0)) ≥ dist (z(t), H\Bn(0))

≥ n− |z|∞ > n− (n1 − 1) = n− n1 + 1=: % .

Thus by choosing α = %/2 in the formula derived in the proof of [9, Proposition

on p. 169], for t ∈ [0, T ] by (H2)

dH(Cn(t), Cn(s)) ≤

(
%+D

%/2

)
dH(C(t), C(s)) = 2

(
3n− n1 + 1

n− n1 + 1

)
dH(C(t), C(s))

≤ 8 dH(C(t), C(s)) ≤ 8L |t− s| ,

at least, if n ≥ 3(n1 − 1). Thus we can define n0 = 3(n1 − 1) ≥ n1 to obtain the

claim.

Finally we will make some remarks concerning uniqueness of solution to (1)

and the assumption on the strong monotonicity of A. Since A is in general

multivalued, one can not expect solutions (u, v) to be unique. This is shown by

the following simple

Example 1: Let H = R, T = 1, D(A) = {0}, A(0) = R and u0 = 0. Then

A = ∂δ0 is a subdifferential and (2) holds with every β > 0. Hence necessarily

u(t) = 0 in [0, 1] for a solution (u, v), but v only has to be a selection of C(·).

The next example shows that we cannot allow β = 0 in (2), i.e. it is not

enough that A be only maximal monotone.

Example 2: Let H = R, T = 1, Au = u + 1 for u ≤ −1, Au = 0 for

−1 ≤ u ≤ 1 and Au = u− 1 for u ≥ 1. Also let C(t) = [t, 1] for 0 ≤ t ≤ 1. Then

A is a maximal monotone graph and hence a subdifferential. Moreover, (2) holds

with β = 0 and C(·) is dH-Lipschitz with constant L = 1. Suppose that (1) has

a solution (u,Au) with initial values u0 = 0 ∈ D(A) and v0 = Au0 = 0 ∈ C(0).

Then, by continuity of u, we have |u(t)| ≤ 1 for 0 ≤ t ≤ δ for some δ > 0.

Therefore v(t) = Au(t) = 0 a.e. in [0, δ], contradicting v(t) ∈ C(t) = [t, 1] a.e.

In dimensions d ≥ 2 it is possible to modify the last example also to have a

counterexample for a bounded linear selfadjoint A.

Example 3: Let H = R2, T = 1, A =

(
1 0
0 0

)
and C(t) = [0, 1]× [t, 1] for

0 ≤ t ≤ 1. Here A is linear, bounded, selfadjoint, and (2) holds with β = 0. Also
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C(·) is dH-Lipschitz. Again there can be no solution (u,Au) of (1) with initial

value u0 = (0, 0) ∈ D(A), since this would imply Au(t) = (u1(t), 0) ∈ C(t) a.e. in

[0, 1], a contradiction.

3 – Discretization and bounds

In this section we will assume that (H1) and (H2) are satisfied. Under these

hypotheses we will establish the existence of approximative solutions, and we will

derive several auxiliary results on the approximations.

For every n ∈ N we define an approximative solution un : [0, T ] → H as

follows. Fix the partition 0 = tn0 < tn1 < ... < tnn = T of [0, T ] with tni = i T/n for

i = 0, ..., n. Then

(5) |tni+1 − t
n
i | =

T

n
for i = 0, ..., n− 1 .

By Lemma 5, Cn(t) :=C(t) ∩ Bn(0) 6= ∅, t ∈ [0, T ], for all sufficiently large

n ∈ N. Since by hypothesis Au0 ∩ C(0) 6= ∅, there exists v0 ∈ H such that we

have v0 ∈ Au0 ∩Cn(0) for large n. Because all sets Cn(t) are bounded, it follows

from Lemma 1 that the approximation operators PA,Cn(t)(·) exist for large n, say

for n ≥ n0.

Let un0 = u0 ∈ D(A). Thus by Lemma 1 there is un1 = PA,Cn(tn
1
)(u

n
0 ) ∈ D(A),

and hence we find vn1 ∈ Au
n
1 ∩Cn(t

n
1 ) such that un0 −u

n
1 ∈ NCn(tn

1
)(v

n
1 ). Moreover,

since Aun0 ∩ Cn(0) 6= ∅, Lemma 2 and Lemma 5 imply

|un0 − u
n
1 | ≤ β−1 dH(Cn(0), Cn(t

n
1 )) ≤

8

β
dH(C(0), C(t

n
1 )) .

Because again un1 ∈ D(A) and Aun1 ∩ Cn(t
n
1 ) 6= ∅, we can proceed in this way to

get uni ∈ D(A) and vni ∈ Au
n
i ∩ Cn(t

n
i ) for i = 1, ..., n such that

(6)

uni − u
n
i+1 = uni − PA,Cn(tn

i+1
)(u

n
i ) ∈ NCn(tn

i+1
)(v

n
i+1) and

|uni − u
n
i+1| ≤

8

β
dH(C(t

n
i ), C(t

n
i+1))

for i = 0, ..., n− 1. We then define

(7) un(t) = uni and vn(t) = vni for t ∈ [tni , t
n
i+1[, i = 0, ..., n− 1 ,

with vn0 := v0. Moreover, we also let un(T ) = unn and vn(T ) = vnn. Set

θn(t) = tni for t ∈ [tni , t
n
i+1[, i = 0, ..., n− 1, and θn(T ) = T .
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The above definitions yield un(0) = u0, vn(0) = v0,

(8) un(t) ∈ D(A) and vn(t) ∈ Aun(t) ∩ Cn(θn(t)) ⊂ Aun(t) ∩ C(θn(t))

for t ∈ [0, T ] .

This implies, by (H2) and (5),

(9) vn(t) ∈ C(t) +BLT/n(0) for n ∈ N, t ∈ [0, T ] .

Moreover, as a consequence of (2),

(10) |un(t)− um(t)| ≤ β−1 |vn(t)− vm(t)| for n,m ∈ N, t ∈ [0, T ] .

We also have

(11) |un(t)− un(s)| ≤
8L

β
[t− s+ T/n] for 0 ≤ s ≤ t ≤ T .

Indeed, if w.l.o.g. s ∈ [tni , t
n
i+1[ and t ∈ [tnj , t

n
j+1[ with j ≥ i + 1, then we obtain

from (6) and (3)

|un(t)− un(s)| = |u
n
j − u

n
i | ≤

j−1∑

k=i

|unk − u
n
k+1| ≤

8

β

j−1∑

k=i

dH(C(t
n
k), C(t

n
k+1)) ≤

≤
8L

β

j−1∑

k=i

[tnk+1 − t
n
k ] =

8L

β
[tnj − t

n
i ] ≤

8L

β
[t− tni ] ≤

8L

β
[t− s+ T/n] ,

and hence (11). To obtain the convergence of the sequence (un)n≥n0
constructed

above, we first note that (6) and (3) imply uniformly in n, as in the proof of (11),

var (un; 0, T ) =
n−1∑

i=0

|uni+1 − u
n
i | ≤

8L

β
T .

Since un(0) = u0, we also get

(12) |un(t)| ≤ |u0|+
8L

β
T for n ≥ n0, t ∈ [0, T ] ,

so that the sequence (un)n≥n0
is uniformly bounded in norm and variation. Hence,

cf. [5, Theorem 0.2.1], we find a function u : [0, T ]→ H of bounded variation and

a subsequence, for simplicity again indexed with n ∈ N (n ≥ n0), such that

(13) un(t)→ u(t) weakly for all t ∈ [0, T ] ,
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and

(14) un → u weakly in L2([0, T ];H) .

In particular,

(15) u(0) = u0 ,

and by (11)

|u(t)− u(s)| ≤ lim inf
n→∞

|un(t)− un(s)| ≤
8L

β
[t− s] for 0 ≤ s ≤ t ≤ T .

Thus u is Lipschitz continuous, and hence differentiable a.e. with bounded deriva-

tive u′.

To take a first step towards proving the validity of −u′(t) ∈ NC(t)(Au(t)) a.e.,

we will show

Lemma 6. In the situation considered above, for all continuous z : [0, T ]→H

being a selection of C(·)

(16)

∫

[0,T ]
z(t) · du(t) ≥ ψ(u(T ))− ψ(u0) .

In addition, if u(t) ∈ D(A) a.e. in [0, T ], and if for some v ∈ L2([0, T ];H) one has

v(t) ∈ Au(t) ∩ C(t) = ∂ψ(u(t)) ∩ C(t) a.e. in [0, T ], then

(17) −u′(t) ∈ NC(t)(v(t)) a.e. in [0, T ] .

Proof: Since z is bounded, we have z(t) ∈ Cn(t), t ∈ [0, T ], for all n ∈ N
sufficiently large. We first remark that by construction vni+1 ∈ Au

n
i+1 = ∂ψ(uni+1).

Thus 〈vni+1, u
n
i+1 − x〉 ≥ ψ(uni+1)− ψ(x) for all x ∈ H, and hence (6) implies

(18) 〈z, uni+1 − u
n
i 〉 ≥ 〈v

n
i+1, u

n
i+1 − u

n
i 〉 ≥ ψ(uni+1)− ψ(u

n
i ) for z ∈ Cn(t

n
i+1) .

Define the approximation zn(t) := z(tni+1) ∈ Cn(t
n
i+1) for t ∈ ]tni , t

n
i+1] and zn(0) :=

z(0). Then zn(t)→ z(t) uniformly on [0, T ] by (5). Since t = 0 is not an atom of

dun and since un is right-continuous, we obtain from (18)

(19)

∫

[0,T ]
zn(t) · dun(t) =

∫

]0,T ]
zn(t) · dun(t) =

n−1∑

i=0

∫

]tn
i
,tn

i+1
]
zn(t) · dun(t) =

=
n−1∑

i=0

z(tni+1) ·
∫

]tn
i
,tn

i+1
]
dun(t) =

n−1∑

i=0

〈
z(tni+1), un(t

n
i+1)− un(t

n
i )
〉

≥
n−1∑

i=0

[ψ(uni+1)− ψ(u
n
i )] = ψ(unn)− ψ(u

n
0 ) = ψ(un(T ))− ψ(u0) .



228 M. KUNZE and M.D.P. MONTEIRO MARQUES

By the uniform convergence zn → z we find |
∫
[0,T ] zn ·dun−

∫
[0,T ] z ·dun| → 0, and

the continuity of u and [5, Theorem 0.2.1] yield limn→∞
∫
[0,T ] z ·dun =

∫
[0,T ] z ·du.

Thus, by (13) and Lemma 4 it results from (19) that
∫
[0,T ] z(t)·du(t) ≥ ψ(u(T ))−

ψ(u0) for every continuous selection z : [0, T ]→ H of C(·). Thus we have shown

(16).

In case that there exists a v ∈ L2([0, T ];H) such that v(t) ∈ ∂ψ(u(t)) a.e.,

this can be used as follows. Since also u(t) ∈ D(A) a.e. in [0, T ], by Lemma 3

ψ ◦ u is a.c. with

d

dt
[ψ ◦ u](t) = 〈u′(t), v(t)〉 a.e. in [0, T ] .

Thus for all continuous selections z : [0, T ]→ H of C(·)

∫

[0,T ]
z(t) · du(t) ≥ ψ(u(T ))− ψ(u0) =

∫

[0,T ]
〈u′(t), v(t)〉 dt .

This yields (17) analogously to [10, Proposition 6], cf. [5, p. 144].

Next we will state two results about properties of limit functions.

Lemma 7. In the situation considered above, if for some v ∈ L2([0, T ];H)

vn → v weakly in L2([0, T ];H) ,

then

(20) v(t) ∈ C(t) a.e. in [0, T ] .

Proof: Fix ε > 0 and let Cε = {φ ∈ L
2([0, T ];H) : φ(t) ∈ C(t) +Bε(0) a.e.}.

Then Cε is closed and convex, hence weakly closed, and vn ∈ Cε for large n, by

(9). Thus v ∈ Cε for all ε > 0. Since every C(t) is closed, the claim follows.

Lemma 8. In the situation considered above, if for some v ∈ L2([0, T ];H)

one has vn → v weakly in L2([0, T ];H) and un → u strongly in L2([0, T ];H), or

vn → v strongly in L2([0, T ];H), then

(21) v(t) ∈ Au(t) a.e. in [0, T ] .

Proof: Consider the realization of A in L2([0, T ];H), i.e. Aξ = {φ ∈

L2([0, T ];H) : φ(t) ∈ Aξ(t) a.e.} for ξ ∈ D(A) = {ξ̃ ∈ L2([0, T ];H) : ξ̃(t) ∈ D(A)

a.e.}. Then A is maximal monotone in L2([0, T ];H), cf. [2, Exemple 2.3.3], and
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(un, vn) ∈ A by (8). Thus (u, v) ∈ A in the first case, because graph(A) is

strongly-weakly-closed, cf. [2, Proposition 2.5]. In the second case the argument

is the same, by (14), since graph(A) is also weakly-strongly-closed.

Later on we will also need continuous approximations of u. For that, we define

un(t) =
t− tni
tni+1 − t

n
i

(uni+1 − u
n
i ) + uni for t ∈ [tni , t

n
i+1], i = 0, ..., n− 1 .

By (7), (6), (3) and (5) we obtain

(22) |un(t)− un(t)| ≤
8LT

βn
for all n ∈ N, t ∈ [0, T ] .

Hence (13) yields

(23) un(t)→ u(t) weakly for all t ∈ [0, T ] .

Moreover, by (22) and (11),

|un(t)− un(s)| ≤
8L

β
[t− s+ 3T/n] for n ∈ N, 0 ≤ s ≤ t ≤ T .

Therefore the sequence (un)n∈N ⊂ C([0, T ];H) is equicontinuous.

4 – Proof of Theorem 1

In this section, we will derive consequences of (H3) and (H4) which directly

yield the claim of Theorem 1 in the considered cases.

4.1. Consequences of (H3)

Assume first that C(0) is bounded. Then (H2) shows that for some R1 > 0

⋃

t∈[0,T ]

C(t) ⊂ BR1
(0) .

This implies by (8)

(24) |vn(t)| ≤ R1 for n ∈ N, t ∈ [0, T ] .

The vn(t) are also uniformly bounded, if (4) holds. Indeed, let R2 = |u0|+
8L
β T .

Then by assumption M([0, R2]) ⊂ [0, R3] ⊂ R for some sufficiently large R3 > 0.
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Hence vn(t) ∈ Aun(t) and (12) imply that (24) is satisfied with R1 replaced

by R3. Consequently, under either condition we obtain w.l.o.g. that for some

v ∈ L2([0, T ];H) we have vn → v weakly in L2([0, T ];H). Thus, by Lemma 7,

(20) holds, i.e. v(t) ∈ C(t) a.e.

4.2. Consequences of (H4)

We will show that under one of the conditions (H4a) or (H4b),

(25) u(t) ∈ D(A) and v(t) ∈ Au(t) a.e. in [0, T ] ,

with v from Section 4.1. This in turn gives, by Section 4.1 and Lemma 6, the

differential inclusion (17). Summing up, then (15), (20), (25) and (17) prove that

(u, v) is a solution of (1). In particular, the argument to be given will show that

in order that (25) holds, it is enough to prove that {un(t) : n ≥ n0} ⊂ H is

relatively compact for every t ∈ [0, T ].

So assume first that (H4a) holds, i.e. D(A)∩BR(0) ⊂ H is relatively compact

for every R > 0. To prove uniform convergence of the equicontinuous sequence

(un)n≥n0
⊂ C([0, T ];H) of continuous approximations, we take R = |u0|+

8L
β T .

For all N ≥ n0, by (22), (8), and (12), we have
{
un(t) : n ≥ N

}
⊂
{
un(t) : n ≥ N

}
+B8LT/βN (0)

⊂ (D(A) ∩BR(0)) +B8LT/βN (0) .

Therefore {un(t) : n ≥ n0} ⊂ H is relatively compact for every t ∈ [0, T ], and

consequently by (23) and by Arzelà–Ascoli’s theorem, w.l.o.g. |un − u|∞ → 0 as

n → ∞. This, together with (22), implies un → u in L2([0, T ];H), so that by

Lemma 8 we obtain (25).

Next assume that (H4b) holds, i.e. C(t) ∩ BR(0) ⊂ H is relatively compact

for every t ∈ [0, T ] and R > 0. By Section 4.1 we know that (24) is satisfied

with some suitable R1 > 0. We take R = 2R1 and consider N ∈ N so large that

LT/N ≤ R1. Then by (9) for all sufficiently large N ∈ N
{
vn(t) : n ≥ N

}
⊂
(
C(t) +BLT/N (0)

)
∩BR1

(0)

⊂
(
C(t) ∩BR(0)

)
+BLT/N (0) .

This implies by assumption that {vn(t) : n ≥ n0} ⊂ H is relatively compact for

all t ∈ [0, T ]. Consequently, (10) yields that the same is true for {un(t) : n ≥ n0},

and this was all we had to show according to the above remark.

Hence the proof of Theorem 1 is finished in all considered cases.
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5 – Proof of Theorem 2

We first note that in particular A = ∂ψ for the lsc, convex and proper ψ(x) =
1
2〈Ax, x〉. Thus (H1) and (H2) hold, and therefore the results derived in Section 3

are valid. Also ‖Ax‖ = |Ax| ≤ |A| |x|, so that the second condition in (H3) is

satisfied with M(r) = |A| r. Hence also the uniform bound (24) for the |vn(t)|

from Section 4.1 remains true, and we may assume vn → v weakly in L2([0, T ];H)

for some v ∈ L2([0, T ];H). As for (25) it is enough to show that v(t) = Au(t)

a.e. in [0, T ], because D(A) = H. This can be achieved as follows. Since vn(t) =

Aun(t) by (8) and un(t)→ u(t) weakly for every t ∈ [0, T ] by (13), the symmetry

of A yields vn(t)→ Au(t) weakly for every t ∈ [0, T ], and this implies v(t) = Au(t)

a.e. in [0, T ], as it was to be shown in order to prove that (u, v) is a solution of

(1).

To prove uniqueness, suppose that (u, v) and (u, v) are solutions. Then a.e. in

[0, T ] we have u′(t) · (z − v(t)) ≥ 0 for all z ∈ C(t). Since v(t) ∈ C(t) a.e. we find

u′(t) · (v(t) − v(t)) ≥ 0 a.e. Exchanging the rôles and adding both inequalities

we get 〈v(t) − v(t), u′(t) − u′(t)〉 ≤ 0 a.e. with v(t) = Au(t) and v(t) = Au(t).

Moreover, a.e. in [0, T ]

d

dt

〈
Au(t)−Au(t), u(t)− u(t)

〉
= 2

〈
Au(t)−Au(t), u′(t)− u′(t)

〉
≤ 0 ,

and therefore integration and u(0) = u(0) = u0 gives for t ∈ [0, T ]

β|u(t)− u(t)|2 ≤
〈
Au(t)−Au(t), u(t)− u(t)

〉
≤ 0 .

This completes the proof of Theorem 2.
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[2] Brezis, H. – Opérateurs Maximaux Monotones, North Holland Publ. Company,
Amsterdam–London, 1973.



232 M. KUNZE and M.D.P. MONTEIRO MARQUES

[3] Carstensen, C. and Mielke, A. – A formulation of finite plasticity and an

existence proof for one dimensional problems, preprint, IfAM Univ. Hannover.
[4] Kunze, M. and Monteiro Marques, M.D.P. – Existence of solutions for de-

generate sweeping processes, J. Convex Analysis, 4 (1997), 165–176.
[5] Monteiro Marques, M.D.P. – Differential inclusions in nonsmooth mechanical

problems–shocks and dry friction, Birkhäuser, Basel–Boston–Berlin, 1993.
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