A REMARK ON THE UNIQUENESS OF FUNDAMENTAL SOLUTIONS TO THE p-LAPLACIAN EQUATION, $p>2$

Ph. Laurençot

Presented by J.F. Rodrigues

Abstract

Uniqueness of fundamental solutions to the p-Laplacian equation is investigated in the class of nonnegative functions taking on their initial data in the sense of bounded measures.

1 - Introduction

In this note, we study the uniqueness of nonnegative solutions to the Cauchy problem

$$
\begin{align*}
u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) & =0 \quad \text { in } \mathbb{R}^{N} \times(0,+\infty) \tag{1.1}\\
u(0) & =M \delta \tag{1.2}
\end{align*}
$$

where p and M are positive real numbers, $p>2$, and δ denotes the Dirac mass centered at $x=0$. A solution to (1.1)-(1.2) is usually called a fundamental or source-type solution in the litterature.

The problem (1.1)-(1.2) is not a standard Cauchy problem, since the initial data in (1.2) involves a measure. A precise meaning has thus to be given to (1.2). Since $M \delta$ is a bounded measure, the natural way to give a sense to (1.2) is to

[^0]assume that u takes on the initial data $M \delta$ in the sense of bounded measures, i.e.
\[

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int u(x, t) \zeta(x) d x=M \zeta(0) \tag{1.3}
\end{equation*}
$$

\]

for every $\zeta \in \mathcal{C}_{b}\left(\mathbb{R}^{N}\right)$. Here, $\mathcal{C}_{b}\left(\mathbb{R}^{N}\right)$ denotes the space of real-valued bounded and continuous functions on \mathbb{R}^{N}.

Existence of a solution to (1.1)-(1.3) is well-known, and an explicit formula is available for such a solution. Indeed, for $M>0$, define

$$
W_{M}(x, t)=t^{-k}\left(A_{M}-b\left(|x| t^{-k / N}\right)^{p /(p-1)}\right)_{+}^{(p-1) /(p-2)}
$$

for $(x, t) \in \mathbb{R}^{N} \times(0,+\infty)$, where z_{+}denotes the positive part of the real number z,

$$
k=\frac{N}{N(p-2)+p}, \quad b=\frac{p-2}{p}\left(\frac{k}{N}\right)^{1 /(p-1)}
$$

and A_{M} is a constant depending on M, N and p such that $\left|W_{M}(t)\right|_{L^{1}}=M$. Then, W_{M} is a solution to (1.1) and fulfills (1.3).

Our main concern in this paper is the question of uniqueness of nonnegative solutions to (1.1)-(1.3). The starting point of our study is the following result of Kamin and Vázquez ([6]).

Theorem 1.1 ([6, Theorem 1]). Let M be a positive real number and u be a nonnegative function such that for each $T>0$,

$$
u \in \mathcal{C}\left((0, T) ; L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)\right) \cap L^{1}\left(0, T ; W_{l o c}^{1, p-1}\left(\mathbb{R}^{N}\right)\right)
$$

and

$$
\begin{equation*}
\int_{0}^{T} \int\left(-u \varphi_{t}+|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi\right) d x d t=0 \tag{1.4}
\end{equation*}
$$

for every test function $\varphi \in W^{1, \infty}\left(0, T ; L^{\infty}\left(\mathbb{R}^{N}\right)\right) \cap L^{\infty}\left(0, T ; W^{1, \infty}\left(\mathbb{R}^{N}\right)\right)$ with compact support. Assume further that

$$
\begin{equation*}
\lim _{t \rightarrow 0}|u(t)|_{\mathcal{C}(K)}=0 \tag{1.5}
\end{equation*}
$$

for every compact subset K of $\mathbb{R}^{N} \backslash\{0\}$, and

$$
\begin{equation*}
\lim _{t \rightarrow 0} \int_{B_{R}(0)} u(x, t) d x=M, \quad R>0 \tag{1.6}
\end{equation*}
$$

where $B_{R}(x)$ denotes the open ball of \mathbb{R}^{N} of center x and radius R. Then, $u=W_{M}$.

Owing to [6, Lemma 3.1], it turns out that (1.5) and (1.6) yield (1.3). However, the opposite assertion is not true in general and the set of assumptions (1.5)-(1.6) is thus stronger than (1.3). It is the purpose of this note to prove that (1.3) is sufficient to obtain uniqueness, provided that u is assumed to be in $L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right)$ for each $T>0$. In the framework of [6], this further requirement is fulfilled as a consequence of (1.5) and [6, Lemma 3.1]. Our result then reads:

Theorem 1.2. Let M be a positive real number and u be a nonnegative function such that for each $T>0$,

$$
u \in L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{N}\right)\right) \cap L^{1}\left(0, T ; W_{l o c}^{1, p-1}\left(\mathbb{R}^{N}\right)\right)
$$

and satisfies (1.4) for every test function $\varphi \in W^{1, \infty}\left(0, T ; L^{\infty}\left(\mathbb{R}^{N}\right)\right) \cap L^{\infty}(0, T$; $W^{1, \infty}\left(\mathbb{R}^{N}\right)$) with compact support, and (1.3) as well. Then, $u=W_{M}$.

The basic idea of the proof of Theorem 1.2 is to show that a solution to (1.1)-(1.3) in the sense of Theorem 1.2 is necessarily radially symmetric and nonincreasing with respect to the space variable for each $t>0$. It is then sufficient to notice that (1.3) implies (1.5)-(1.6) for radially symmetric and nonincreasing functions and to use Theorem 1.1 to complete the proof.

2 - Proof of Theorem 1.2

Let M be a positive real number and u be a nonnegative solution to (1.1)(1.3) in the sense of Theorem 1.2. Since $u(t) \in L^{1}\left(\mathbb{R}^{N}\right)$ for almost every $t>0$ and $-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)$ generates a contraction semigroup in $L^{1}\left(\mathbb{R}^{N}\right)([3],[2])$, $u \in \mathcal{C}\left((0,+\infty) ; L^{1}\left(\mathbb{R}^{N}\right)\right)$ and we infer from (1.1) and (1.3) that

$$
\begin{equation*}
\int u(x, t) d x=M, \quad t>0 . \tag{2.1}
\end{equation*}
$$

Also, u belongs to $\mathcal{C}\left(\mathbb{R}^{N} \times(0,+\infty)\right)$ (see e.g. [1], [4]).
Lemma 2.1. For every $t>0, u(t)$ is radially symmetric and nonincreasing with respect to the space variable.

Proof: For $\epsilon>0$ and $r>0$, we put

$$
u_{0}^{\epsilon, r}(x)=u(x, \epsilon) \chi_{B_{r}(0)}(x), \quad x \in \mathbb{R}^{N},
$$

where $\chi_{B_{r}(0)}$ denotes the characteristic function of the ball $B_{r}(0)$. Then, $u_{0}^{\epsilon, r} \in$ $L^{1}\left(\mathbb{R}^{N}\right)$ is compactly supported and we denote by $u^{\epsilon, r}$ the solution to (1.1) with initial data $u_{0}^{\epsilon, r}$.

Let $t>0$. On the one hand, since $u(\epsilon)$ and $u_{0}^{\epsilon, r}$ are in $L^{1}\left(\mathbb{R}^{N}\right)$, the L^{1}-contraction property of (1.1) yields

$$
\begin{equation*}
\left|u(t+\epsilon)-u^{\epsilon, r}(t)\right|_{L^{1}} \leq\left|u(\epsilon)-u_{0}^{\epsilon, r}\right|_{L^{1}} \tag{2.2}
\end{equation*}
$$

On the other hand, we claim that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left|u(\epsilon)-u_{0}^{\epsilon, r}\right|_{L^{1}}=0 \tag{2.3}
\end{equation*}
$$

Indeed, proceeding as in [5, Lemma 4.1], we consider $\zeta \in \mathcal{C}_{b}\left(\mathbb{R}^{N}\right), 0 \leq \zeta \leq 1$ such that $\zeta(x)=1$ if $|x| \geq r / 2$ and $\zeta(0)=0$. Then,

$$
\left|u(\epsilon)-u_{0}^{\epsilon, r}\right|_{L^{1}}=\int_{\{|x| \geq r\}} u(x, \epsilon) d x \leq \int u(x, \epsilon) \zeta(x) d x
$$

and the right-hand side of the above inequality converges to zero as $\epsilon \rightarrow 0$ by (1.3), hence the claim.

Combining (2.2) and (2.3), we obtain, since $u \in \mathcal{C}\left((0,+\infty) ; L^{1}\left(\mathbb{R}^{N}\right)\right)$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left|u(t)-u^{\epsilon, r}(t)\right|_{L^{1}}=0 \tag{2.4}
\end{equation*}
$$

Next, since $u_{0}^{\epsilon, r}$ is compactly supported with support in $B_{r}(0)$, we infer from $\left[6\right.$, Lemma 5.1] that, for any $\left(x_{1}, x_{2}\right)$ in $\mathbb{R}^{N} \times \mathbb{R}^{N}$,

$$
\begin{equation*}
\left|x_{1}\right| \geq r \text { and }\left|x_{2}\right| \geq\left|x_{1}\right|+2 r \Longrightarrow u^{\epsilon, r}\left(x_{1}, t\right) \geq u^{\epsilon, r}\left(x_{2}, t\right) \tag{2.5}
\end{equation*}
$$

We then let $\epsilon \rightarrow 0$ in (2.5) and use (2.4) and the continuity of $u(t)$ in \mathbb{R}^{N} to obtain

$$
\begin{equation*}
\left|x_{1}\right| \geq r \text { and }\left|x_{2}\right| \geq\left|x_{1}\right|+2 r \Longrightarrow u\left(x_{1}, t\right) \geq u\left(x_{2}, t\right) \tag{2.6}
\end{equation*}
$$

Since (2.6) is valid for any $r>0$, Lemma 2.1 follows from the continuity of $u(t)$ in \mathbb{R}^{N} by letting $r \rightarrow 0$ in (2.6).

Having shown that $u(t)$ is radially symmetric and nonincreasing for each $t>0$, we now prove that u satisfies (1.5) and (1.6).

We first check (1.5). We consider $R>0$ and a function $\zeta \in \mathcal{C}_{b}\left(\mathbb{R}^{N}\right)$ such that $0 \leq \zeta \leq 1, \zeta(x)=1$ if $|x| \geq R$ and $\zeta(x)=0$ if $|x| \leq R / 2$. Since u is radially symmetric and nonincreasing, we have

$$
\begin{equation*}
u(x, t) \text { meas }\left(B_{2 R}(0) \backslash B_{R}(0)\right) \leq \int u(y, t) \zeta(y) d y \tag{2.7}
\end{equation*}
$$

for $|x| \geq 2 R$. We then let $t \rightarrow 0$ in (2.7) and use (1.3) to obtain (1.5). Next, (1.6) follows from (1.3) by approximating the characteristic function of $B_{R}(0)$ by bounded continuous functions.

Therefore, u fulfills the assumptions of Theorem 1.1, hence $u=W_{M}$.

REFERENCES

[1] Alikakos, N.D. and Rostamian, R. - Gradient estimates for degenerate diffusion equations II, Proc. Roy. Soc. Edinburgh Sect. A, 91 (1992), 335-346.
[2] Attouch, H. and Damlamian, A. - Application des méthodes de convexité et monotonie à l'étude de certaines équations quasi-linéaires, Proc. Roy. Soc. Edinburgh Sect. A, 79 (1977), 107-129.
[3] BÉnilan, Ph. - Opérateurs accrétifs et semi-groupes dans les espaces $L^{p}(1 \leq p \leq \infty)$, in "Functional Analysis and Numerical Analysis", Japan-France Seminar, (H. Fujita, Ed.), Japan Society for the Promotion of Science, 1978, pp. 15-53.
[4] DiBenedetto, E. and Herrero, M.A. - On the Cauchy problem and initial traces for a degenerate parabolic equation, Trans. Amer. Math. Soc., 314 (1989), 187-224.
[5] Escobedo, M., Vázquez, J.L. and Zuazua, E. - Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rational Mech. Anal., 124 (1993), 43-65.
[6] Kamin, S. and Vázquez, J.L. - Fundamental solutions and asymptotic behaviour for the p-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-354.

Philippe Laurençot,
Institut Elie Cartan - Nancy, Université de Nancy I,
BP 239, F-54506 Vandœuvre les Nancy cedex - FRANCE

[^0]: Received: January 23, 1997; Revised: April 23, 1997.
 1991 Mathematics Subject Classification: 35K65.
 Keywords and Phrases: Degenerate parabolic equation, p-Laplacian, source-type solution, uniqueness.

 This work was done while I was visiting the Weierstraß-Institut in Berlin. I thank this institution for its hospitality.

