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A REMARK ON THE UNIQUENESS OF
FUNDAMENTAL SOLUTIONS TO THE

p-LAPLACIAN EQUATION, p > 2

Ph. Laurençot

Presented by J.F. Rodrigues

Abstract: Uniqueness of fundamental solutions to the p-Laplacian equation is in-

vestigated in the class of nonnegative functions taking on their initial data in the sense

of bounded measures.

1 – Introduction

In this note, we study the uniqueness of nonnegative solutions to the Cauchy

problem

ut − div
(

|∇u|p−2∇u
)

= 0 in RN×(0,+∞) ,(1.1)

u(0) =M δ ,(1.2)

where p and M are positive real numbers, p > 2, and δ denotes the Dirac mass

centered at x = 0. A solution to (1.1)–(1.2) is usually called a fundamental or

source-type solution in the litterature.

The problem (1.1)–(1.2) is not a standard Cauchy problem, since the initial

data in (1.2) involves a measure. A precise meaning has thus to be given to (1.2).

Since M δ is a bounded measure, the natural way to give a sense to (1.2) is to
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assume that u takes on the initial data Mδ in the sense of bounded measures, i.e.

(1.3) lim
t→0

∫

u(x, t) ζ(x) dx =M ζ(0)

for every ζ ∈ Cb(RN ). Here, Cb(RN ) denotes the space of real-valued bounded

and continuous functions on RN .

Existence of a solution to (1.1)–(1.3) is well-known, and an explicit formula

is available for such a solution. Indeed, for M > 0, define

WM (x, t) = t−k
(

AM − b
(

|x|t−k/N
)p/(p−1)

)(p−1)/(p−2)

+

for (x, t) ∈ RN×(0,+∞), where z+ denotes the positive part of the real number

z,

k =
N

N(p− 2) + p
, b =

p− 2

p

(

k

N

)1/(p−1)

,

and AM is a constant depending on M , N and p such that |WM (t)|L1 = M .

Then, WM is a solution to (1.1) and fulfills (1.3).

Our main concern in this paper is the question of uniqueness of nonnegative

solutions to (1.1)–(1.3). The starting point of our study is the following result of

Kamin and Vázquez ([6]).

Theorem 1.1 ([6, Theorem 1]). Let M be a positive real number and u be

a nonnegative function such that for each T > 0,

u∈C((0, T );L1
loc(RN )) ∩ L1(0, T ;W 1,p−1

loc (RN )) ,

and

(1.4)

∫ T

0

∫

(

−uϕt + |∇u|
p−2∇u · ∇ϕ

)

dx dt = 0

for every test function ϕ ∈ W 1,∞(0, T ;L∞(RN )) ∩ L∞(0, T ;W 1,∞(RN )) with

compact support. Assume further that

(1.5) lim
t→0

|u(t)|C(K) = 0

for every compact subset K of RN\{0}, and

(1.6) lim
t→0

∫

BR(0)
u(x, t) dx =M , R > 0 ,

where BR(x) denotes the open ball of RN of center x and radius R. Then,

u =WM .
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Owing to [6, Lemma 3.1], it turns out that (1.5) and (1.6) yield (1.3). How-

ever, the opposite assertion is not true in general and the set of assumptions

(1.5)–(1.6) is thus stronger than (1.3). It is the purpose of this note to prove

that (1.3) is sufficient to obtain uniqueness, provided that u is assumed to be in

L∞(0, T ;L1(RN )) for each T > 0. In the framework of [6], this further require-

ment is fulfilled as a consequence of (1.5) and [6, Lemma 3.1]. Our result then

reads:

Theorem 1.2. Let M be a positive real number and u be a nonnegative

function such that for each T > 0,

u ∈ L∞(0, T ;L1(RN )) ∩ L1(0, T ;W 1,p−1
loc (RN ))

and satisfies (1.4) for every test function ϕ ∈ W 1,∞(0, T ;L∞(RN )) ∩ L∞(0, T ;

W 1,∞(RN )) with compact support, and (1.3) as well. Then, u =WM .

The basic idea of the proof of Theorem 1.2 is to show that a solution to

(1.1)–(1.3) in the sense of Theorem 1.2 is necessarily radially symmetric and

nonincreasing with respect to the space variable for each t > 0. It is then sufficient

to notice that (1.3) implies (1.5)–(1.6) for radially symmetric and nonincreasing

functions and to use Theorem 1.1 to complete the proof.

2 – Proof of Theorem 1.2

Let M be a positive real number and u be a nonnegative solution to (1.1)–

(1.3) in the sense of Theorem 1.2. Since u(t) ∈ L1(RN ) for almost every t > 0

and − div(|∇v|p−2∇v) generates a contraction semigroup in L1(RN ) ([3], [2]),

u ∈ C((0,+∞);L1(RN )) and we infer from (1.1) and (1.3) that

(2.1)

∫

u(x, t) dx =M , t > 0 .

Also, u belongs to C(RN×(0,+∞)) (see e.g. [1], [4]).

Lemma 2.1. For every t > 0, u(t) is radially symmetric and nonincreasing

with respect to the space variable.

Proof: For ε > 0 and r > 0, we put

uε,r
0 (x) = u(x, ε)χBr(0)(x) , x ∈ RN ,
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where χBr(0) denotes the characteristic function of the ball Br(0). Then, uε,r
0 ∈

L1(RN ) is compactly supported and we denote by uε,r the solution to (1.1) with

initial data uε,r
0 .

Let t>0. On the one hand, since u(ε) and uε,r
0 are in L1(RN ), the L1-contrac-

tion property of (1.1) yields

(2.2)
∣

∣

∣u (t+ ε)− uε,r(t)
∣

∣

∣

L1
≤
∣

∣

∣u(ε)− uε,r
0

∣

∣

∣

L1
.

On the other hand, we claim that

(2.3) lim
ε→0

∣

∣

∣u(ε)− uε,r
0

∣

∣

∣

L1
= 0 .

Indeed, proceeding as in [5, Lemma 4.1], we consider ζ ∈ Cb(RN ), 0 ≤ ζ ≤ 1 such

that ζ(x) = 1 if |x| ≥ r/2 and ζ(0) = 0. Then,

∣

∣

∣u(ε)− uε,r
0

∣

∣

∣

L1
=

∫

{|x|≥r}
u(x, ε) dx ≤

∫

u(x, ε) ζ(x) dx ,

and the right-hand side of the above inequality converges to zero as ε → 0 by

(1.3), hence the claim.

Combining (2.2) and (2.3), we obtain, since u ∈ C((0,+∞);L1(RN )),

(2.4) lim
ε→0

∣

∣

∣u(t)− uε,r(t)
∣

∣

∣

L1
= 0 .

Next, since uε,r
0 is compactly supported with support in Br(0), we infer from

[6, Lemma 5.1] that, for any (x1, x2) in RN× RN ,

(2.5) |x1| ≥ r and |x2| ≥ |x1|+ 2r =⇒ uε,r(x1, t) ≥ uε,r(x2, t) .

We then let ε → 0 in (2.5) and use (2.4) and the continuity of u(t) in RN to

obtain

(2.6) |x1| ≥ r and |x2| ≥ |x1|+ 2r =⇒ u(x1, t) ≥ u(x2, t) .

Since (2.6) is valid for any r > 0, Lemma 2.1 follows from the continuity of u(t)

in RN by letting r → 0 in (2.6).

Having shown that u(t) is radially symmetric and nonincreasing for each t > 0,

we now prove that u satisfies (1.5) and (1.6).

We first check (1.5). We consider R > 0 and a function ζ ∈ Cb(RN ) such that

0 ≤ ζ ≤ 1, ζ(x) = 1 if |x| ≥ R and ζ(x) = 0 if |x| ≤ R/2. Since u is radially

symmetric and nonincreasing, we have

(2.7) u(x, t)meas (B2R(0)\BR(0)) ≤

∫

u(y, t) ζ(y) dy
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for |x| ≥ 2R. We then let t → 0 in (2.7) and use (1.3) to obtain (1.5). Next,

(1.6) follows from (1.3) by approximating the characteristic function of BR(0) by

bounded continuous functions.

Therefore, u fulfills the assumptions of Theorem 1.1, hence u =WM .
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