CHARACTERIZATION FOR RELATIONS
 ON SOME SUMMABILITY METHODS

W.T. Sulaiman

Abstract

In this paper we characterize a previous result proved by us connecting the summability methods $\left|\bar{N}, p_{n}\right|_{k}$ with either $\left|N, q_{n}\right|_{k}$ or $\left|\bar{N}, w_{n}\right|_{k}$ for given sequences $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{w_{n}\right\}$ of positive real constants. Other results are also deduced.

1 - Introduction

Let $\sum a_{n}$ be an infinite series with partial sums s_{n}. Let σ_{n}^{δ} and η_{n}^{δ} denote the n-th Cesàro mean of order $\delta(\delta>-1)$ of the sequences $\left\{s_{n}\right\}$ and $\left\{n a_{n}\right\}$ respectively. The series $\sum a_{n}$ is said to be summable $|C, \delta|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1}\left|\sigma_{n}^{\delta}-\sigma_{n-1}^{\delta}\right|^{k}<\infty
$$

or equivalently

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|\eta_{n}^{\delta}\right|^{k}<\infty
$$

Let $\left\{p_{n}\right\}$ be a sequence of real or complex constants such that

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} \quad\left(p_{-1}=P_{-1}=0\right)
$$

The series $\sum a_{n}$ is said to be summable $\left|N, p_{n}\right|$ if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|T_{n}-T_{n-1}\right|<\infty \tag{1.1}
\end{equation*}
$$

Received: October 19, 1997.
where

$$
T_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{n-v} s_{v} \quad\left(T_{-1}=0\right)
$$

We write $p=\left\{p_{n}\right\}$ and

$$
M=\left\{p: p_{n}>0 \text { and } p_{n+1} / p_{n} \leq p_{n+2} / p_{n+1} \leq 1, n=0,1, \ldots\right\}
$$

It is known for $p \in M$ (1.1) holds iff (see [5])

$$
\sum_{n=1}^{\infty} \frac{1}{n P_{n}}\left|\sum_{v=1}^{n} p_{n-v} v a_{v}\right|<\infty
$$

For $p \in M$, we say that $\sum a_{n}$ is summable $\left|N, p_{n}\right|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} \frac{1}{n}\left|\frac{1}{P_{n}} \sum_{v=1}^{n} p_{n-v} v a_{v}\right|^{k}<\infty \quad \text { (Sulaiman [6]) }
$$

In the special case in which $p_{n}=A_{n}^{r-1}, r>-1$, where A_{n}^{r} is the coefficient of x^{n} in the power series expansion of $(1-x)^{-r-1}$ for $|x|<1,\left|N, p_{n}\right|_{k}$ reduces to $|C, r|_{k}$ summability. The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|t_{n}-t_{n-1}\right|^{k}<\infty \quad(\text { Bor }[1])
$$

where

$$
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

If we take $p_{n}=1$, then $\left|\bar{N}, p_{n}\right|_{k}$ summability is equivalent to $|C, 1|_{k}$ summability. In general these two summabilities are not comparable.

Throughout this paper we set

$$
\begin{aligned}
& Q_{n}=q_{0}+q_{1}+\cdots+q_{n}, \quad q_{-1}=Q_{-1}=0 \\
& W_{n}=w_{0}+w_{1}+\cdots+w_{n}, \quad w_{-1}=W_{-1}=0 \\
& \Delta f_{n}=f_{n}-f_{n+1}
\end{aligned}
$$

Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be sequences of positive real constants such that $q \in M . \sum a_{n}$ is said to be summable $\left|N, p_{n}, q_{n}\right|_{k}, k \geq 1$, if

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\sum_{v=1}^{n} P_{v-1} q_{n-v} a_{v}\right|^{k}<\infty \quad \text { (Sulaiman [7]) }
$$

where

$$
R_{n}=p_{0} q_{n}+p_{1} q_{n-1}+\cdots+p_{n} q_{0}
$$

Clearly $\left|N, p_{n}, 1\right|_{k}$ is the same as $\left|\bar{N}, p_{n}\right|_{k}$.
The following results are known.
Theorem A (Bor [1]). Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that as $n \rightarrow \infty$
(i) $\quad n p_{n}=O\left(P_{n}\right)$,
(ii) $\quad P_{n}=O\left(n p_{n}\right)$.

If $\sum a_{n}$ is summable $|C, 1|_{k}$, then it is summable $\left|\bar{N}, P_{n}\right|_{k}, k \geq 1$.
Theorem B (Bor [2]). Let $\left\{p_{n}\right\}$ be a sequence of positive real constants such that it satisfies (1.2). If $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$ then it is also summable $|C, 1|_{k}$.

Theorem C (Sulaiman [7]). Let $\left\{p_{n}\right\},\left\{q_{n}\right\}$ and $\left\{w_{n}\right\}$ be sequences of positive real constants such that $q \in M$ and $\left\{p_{n} / P_{n} R_{n-1}^{k}\right\}$ is nonincreasing for $q_{n} \neq c$. Let t_{n} denote the $\left(\bar{N}, w_{n}\right)$-mean of the series $\sum a_{n}$. Let $\left\{\varepsilon_{n}\right\}$ be a sequence of constants. If

$$
\begin{align*}
& \sum_{n=v+1}^{m} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}}=O\left(P_{v}^{-1}\right), \quad m \rightarrow \infty \tag{1.3}\\
& \sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|\varepsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.4}\\
& \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}}\left(\frac{W_{n}}{w_{n}}\right)^{k}\left|\varepsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.5}\\
& \sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left(\frac{W_{n}}{w_{n}}\right)^{k}\left|\Delta \varepsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}}\left(\frac{P_{n-1}}{R_{n-1}}\right)^{k}\left(\frac{W_{n}}{w_{n}}\right)^{k}\left|\varepsilon_{n}\right|^{k}\left|\Delta t_{n-1}\right|^{k}<\infty \tag{1.7}
\end{equation*}
$$

then the series $\sum a_{n}$ is summable $\left|N, p_{n}, q_{n}\right|_{k}, k \geq 1$.

It may be mentioned that Theorems A and B are special cases of Theorem C.
The object of this paper is to prove the following

Theorem D. Let $\left(p_{n}\right),\left(q_{n}\right)$ and $\left(w_{n}\right)$ be sequences of positive real constants such that $q \in M$ and $\left(p_{n} / P_{n} R_{n-1}^{k}\right)$ nonincreasing for $q_{n} \neq c$. Suppose that

$$
\begin{align*}
R_{n-1} & =O\left(P_{n-1}\right) \tag{1.8}\\
P_{n} w_{n} & =O\left(p_{n} W_{n}\right) \tag{1.9}\\
\Delta\left(\frac{w_{n} P_{n} R_{n-1}}{W_{n} p_{n} P_{n-1}}\right) & =O\left(\frac{w_{n}}{W_{n}}\right), \tag{1.10}\\
\Delta\left(\frac{W_{n} p_{n} P_{n-1}}{w_{n} P_{n} R_{n-1}} \varepsilon_{n}\right) & =O\left(\frac{p_{n} P_{n-1}}{P_{n} R_{n-1}}\right) \tag{1.11}
\end{align*}
$$

Then necessary and sufficient conditions that $\sum a_{n} \varepsilon_{n}$ be summable $\left|N, p_{n}, q_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, w_{n}\right|_{k}, k \geq 1$, are

$$
\begin{align*}
(\mathbf{i}) & \varepsilon_{n} \tag{i}
\end{align*}=O\left(\frac{w_{n} P_{n} R_{n-1}}{W_{n} p_{n} P_{n-1}}\right),
$$

2 - Lemmas

Lemma 1 (Sulaiman [7]). Let $q \in M$. Then for $0<\gamma \leq 1$,

$$
\sum_{n=v+1}^{\infty} \frac{q_{n-v-1}}{n^{\gamma} Q_{n-1}}=O\left(v^{-\gamma}\right)
$$

Lemma 2 (Bor [4]). Let $k \geq 1$ and let $A=\left(a_{n v}\right)$ be an infinite matrix. In order that $A \in\left(\ell^{k} ; \ell^{k}\right)$ it is necessary that

$$
\begin{equation*}
a_{n v}=O(1) \quad(\text { for all } n, v) \tag{2.1}
\end{equation*}
$$

Lemma 3. Suppose that $\varepsilon_{n}=O\left(f_{n} g_{n}\right), f_{n}, g_{n} \geq 0, f_{n+1} g_{n+1}=O\left(f_{n} g_{n}\right)$, $\Delta\left(f_{n} g_{n}\right)=O\left(f_{n}\right)$ and $\Delta\left(\varepsilon_{n} / f_{n} g_{n}\right)=O\left(1 / g_{n}\right)$. Then $\Delta \varepsilon_{n}=O\left(f_{n}\right)$.

Proof: We have

$$
\begin{aligned}
\varepsilon_{n} & =k_{n} f_{n} g_{n}, \quad \text { where } k_{n}=\frac{\varepsilon_{n}}{f_{n} g_{n}}=O(1), \\
\Delta \varepsilon_{n} & =k_{n} f_{n+1} \Delta g_{n}+k_{n} g_{n+1} \Delta f_{n}+f_{n+1} g_{n+1} \Delta k_{n}
\end{aligned}
$$

Since

$$
f_{n} \Delta g_{n}+g_{n+1} \Delta f_{n}=O\left(f_{n}\right)
$$

then

$$
\begin{aligned}
\Delta \varepsilon_{n} & =k_{n} f_{n} \Delta g_{n}+k_{n}\left[O\left(f_{n}\right)-f_{n} \Delta g_{n}\right]+f_{n+1} g_{n+1} \Delta k_{n} \\
& =k_{n} O\left(f_{n}\right)+O\left(f_{n} g_{n}\left|\Delta k_{n}\right|\right) \\
& =O\left(f_{n}\right)+O\left(f_{n}\right) \\
& =O\left(f_{n}\right) .
\end{aligned}
$$

3 - Proof of Theorem D

Write

$$
\begin{align*}
& T_{n}=\sum_{v=1}^{n} P_{v-1} q_{n-v} a_{v} \varepsilon_{v}, \quad t_{n}=\frac{w_{n}}{W_{n} W_{n-1}} \sum_{v=1}^{n} W_{v-1} a_{v}, \\
T_{n}= & \sum_{v=1}^{n} W_{v-1} a_{v}\left(\frac{P_{v-1}}{W_{v-1}} q_{n-v} \varepsilon_{v}\right) \\
= & \sum_{v=1}^{n-1}\left(\sum_{r=1}^{v} W_{r-1} a_{r}\right) \Delta_{v}\left(\frac{P_{v-1}}{W_{v-1}} q_{n-v} \varepsilon_{v}\right)+\left(\sum_{r=1}^{n} W_{r-1} a_{r}\right) \frac{P_{n-1}}{W_{n-1}} q_{0} \varepsilon_{n} \\
= & \sum_{v=1}^{n-1}\left\{P_{v-1} \Delta_{v} q_{n-v} \frac{W_{v}}{w_{v}} \varepsilon_{v} t_{v}+P_{v-1} q_{n-v-1} \varepsilon_{v} t_{v}\right. \tag{3.1}\\
& \left.+p_{v} q_{n-v-1} \frac{W_{v-1}}{w_{v}} \varepsilon_{v} t_{v}-P_{v} q_{n-v-1} \frac{W_{v-1}}{w_{v}} \Delta \varepsilon_{v} t_{v}\right\}+P_{n-1} q_{0} \frac{W_{n}}{w_{n}} \varepsilon_{n} t_{n} \\
= & T_{n, 1}+T_{n, 2}+T_{n, 3}+T_{n, 4}+T_{n, 5}, \quad \text { say . }
\end{align*}
$$

In order to prove sufficiency, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, r}\right|^{k}<\infty, \quad r=1,2,3,4,5
$$

Applying Hölder's inequality,

$$
\begin{aligned}
\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, 1}\right|^{k}= & \sum_{n=1}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v-1} \Delta_{v} q_{n-v} \frac{W_{v}}{w_{v}} \varepsilon_{v} t_{v}\right|^{k} \\
\leq & \sum_{n=1}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}} \sum_{v=1}^{n-1} P_{v-1}^{k}\left|\Delta_{v} q_{n-v}\right|\left(\frac{W_{v}}{w_{v}}\right)^{k}\left|\varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& \cdot\left\{\sum_{v=1}^{n-1}\left|\Delta_{v} q_{n-v}\right|\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m} P_{v-1}^{k}\left(\frac{W_{v}}{w_{v}}\right)^{k}\left|\varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v}^{m+1} \frac{p_{n}\left|\Delta_{v} q_{n-v}\right|}{P_{n} R_{n-1}^{k}} \\
= & O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left(\frac{P_{v-1}}{R_{v-1}}\right)^{k}\left(\frac{W_{v}}{w_{v}}\right)^{k}\left|\varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k}, \\
\sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, 4}\right|^{k}= & \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|\sum_{v=1}^{n-1} P_{v} q_{n-v-1} \frac{W_{v-1}}{w_{v}} \Delta \varepsilon_{v} t_{v}\right|^{k} \\
\leq & \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}} \sum_{v=1}^{n-1}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v} q_{n-v-1}\left(\frac{W_{v-1}}{w_{v}}\right)^{k}\left|\Delta \varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& \cdot\left\{\sum_{v=1}^{n-1} \frac{p_{v} q_{n-v-1}}{R_{n-1}}\right\}^{k-1} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k} p_{v}\left(\frac{W_{v-1}}{w_{v}}\right)^{k}\left|\Delta \varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{p_{n} q_{n-v-1}}{P_{n} R_{n-1}} \\
= & O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left(\frac{W_{v-1}}{w_{v}}\right)^{k}\left|\Delta \varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k}
\end{aligned}
$$

Similarly we can show that

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, 2}\right|^{k}=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{k-1}\left|\varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& \sum_{n=2}^{m+1} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, 3}\right|^{k}=O(1) \sum_{v=1}^{m} \frac{p_{v}}{P_{v}}\left(\frac{W_{v}}{w_{v}}\right)^{k}\left|\varepsilon_{v}\right|^{k}\left|t_{v}\right|^{k} \\
& \sum_{n=1}^{m} \frac{p_{n}}{P_{n} R_{n-1}^{k}}\left|T_{n, 5}\right|^{k}=O(1) \sum_{n=1}^{m} \frac{p_{n}}{P_{n}}\left(\frac{P_{n-1}}{R_{n-1}}\right)^{k}\left(\frac{W_{n}}{w_{n}}\right)^{k}\left|\varepsilon_{n}\right|^{k}\left|t_{n}\right|^{k} .
\end{aligned}
$$

The sufficiency follows.

Necessity of (i). Using the result of Bor in [4], the transformation from $\left(\left(P_{n} / p_{n}\right)^{1-1 / k} t_{n}\right)$ into $\left(\left[\left(p_{n} / P_{n}\right)^{1 / k} / R_{n-1}\right] T_{n}\right)$ maps ℓ^{k} into ℓ^{k} and hence the diagonal elements of this transformation are bounded (by Lemma 2) and so (i) is necessary.

Necessity of (ii). This follows from Lemma 3 and the necessity of (i) by taking $f_{n}=w_{n} / W_{n}, g_{n}=P_{n} R_{n-1} / p_{n} P_{n-1}$.

4 - Applications

Corollary 1. Let $\left\{p_{n}\right\}$ and $\left\{w_{n}\right\}$ be sequences of positive real constants such that (1.9) is satisfied.

Then the necessary and sufficient conditions such that $\sum a_{n}$ be summable $\left|\bar{N}, p_{n}\right|_{k}$ whenever it is summable $\left|\bar{N}, w_{n}\right|_{k}, k \geq 1$, is

$$
\begin{equation*}
p_{n} W_{n}=O\left(P_{n} w_{n}\right) . \tag{4.1}
\end{equation*}
$$

The proof follows from Theorem D by putting $\varepsilon_{n}=1, q_{n}=1$.
Corollary 2 (Bor and Thorpe [3]). Let $\left\{p_{n}\right\}$ and $\left\{w_{n}\right\}$ be sequences of positive real constants such that (1.9) and (4.1) are satisfied.

Then the series $\sum a_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}$ iff it is summable $\left|\bar{N}, w_{n}\right|_{k}, k \geq 1$.
The proof follows from Corollary 1.
Corollary 3. Let $\left(p_{n}\right)$, $\left(w_{n}\right)$ be sequences of positive real constants such that (1.9) is satisfied and

$$
\begin{aligned}
\Delta\left(\frac{w_{n} P_{n}}{W_{n} p_{n}}\right) & =O\left(\frac{w_{n}}{W_{n}}\right), \\
\Delta\left(\frac{W_{n} p_{n}}{w_{n} P_{n}} \varepsilon_{n}\right) & =O\left(\frac{p_{n}}{P_{n}}\right) .
\end{aligned}
$$

Then necessary and sufficient conditions that $\sum a_{n} \varepsilon_{n}$ be summable $\left|\bar{N}, p_{n}\right|_{k}$ whenever $\sum a_{n}$ is summable $\left|\bar{N}, w_{n}\right|_{k}, k \geq 1$, are

$$
\varepsilon_{n}=O\left(\frac{w_{n} P_{n}}{W_{n} p_{n}}\right), \quad \Delta \varepsilon_{n}=O\left(\frac{w_{n}}{W_{n}}\right) .
$$

The proof follows from Theorem D by putting $q_{n}=\varepsilon_{n}=1$.

Remark. It may be mentioned that Theorems A and B could be obtained from Corollary 2.

REFERENCES

[1] Bor, H. - On two summability methods, Math. Proc. Cambridge Philos. Soc., 97 (1985), 147-149.
[2] Bor, H. - A note on two summability methods, Proc. Amer. Math. Soc., 98 (1986), 81-84.
[3] Bor, H. and Thorpe, B. - On some absolute summability methods, Analysis, 7 (1987), 145-152.
[4] Bor, H. - On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113 (1991), 1009-1012.
[5] Das, G. - Tauberian theorems for absolute Nörlund summability, Proc. London Math. Soc., 19 (1969), 357-384.
[6] Sulaiman, W.T. - Notes on two summability methods, Pure Appl. Math. Sci., 31(1990), 59-68.
[7] Sulaiman, W.T. - Relations on some summability methods, Proc. Amer. Math. Soc., 118 (1993), 1139-1145.
W.T. Sulaiman,
P.O. Box 120054,

Doher - QATAR

