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CHARACTERIZATION FOR RELATIONS
ON SOME SUMMABILITY METHODS

W.T. Sulaiman

Abstract: In this paper we characterize a previous result proved by us connecting

the summability methods |N, pn|k with either |N, qn|k or |N,wn|k for given sequences

{pn}, {qn} and {wn} of positive real constants. Other results are also deduced.

1 – Introduction

Let
∑

an be an infinite series with partial sums sn. Let σδ
n and ηδn denote

the n-th Cesàro mean of order δ (δ > −1) of the sequences {sn} and {nan}

respectively. The series
∑

an is said to be summable |C, δ|k, k ≥ 1, if

∞
∑

n=1

nk−1 |σδ
n − σδ

n−1|
k <∞ ,

or equivalently
∞
∑

n=1

1

n
|ηδn|

k <∞ .

Let {pn} be a sequence of real or complex constants such that

Pn = p0 + p1 + · · ·+ pn (p−1 = P−1 = 0) .

The series
∑

an is said to be summable |N, pn| if

(1.1)
∞
∑

n=1

|Tn − Tn−1| <∞ ,
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where

Tn =
1

Pn

n
∑

v=0

pn−v sv (T−1 = 0) .

We write p = {pn} and

M =
{

p : pn > 0 and pn+1/pn ≤ pn+2/pn+1 ≤ 1, n = 0, 1, ...
}

.

It is known for p ∈M (1.1) holds iff (see [5])

∞
∑

n=1

1

nPn

∣

∣

∣

∣

n
∑

v=1

pn−v v av

∣

∣

∣

∣

<∞ .

For p ∈M , we say that
∑

an is summable |N, pn|k, k ≥ 1, if

∞
∑

n=1

1

n

∣

∣

∣

∣

1

Pn

n
∑

v=1

pn−v v av

∣

∣

∣

∣

k

<∞ (Sulaiman [6]) .

In the special case in which pn = Ar−1
n , r > −1, where Ar

n is the coefficient of

xn in the power series expansion of (1 − x)−r−1 for |x| < 1, |N, pn|k reduces to

|C, r|k summability. The series
∑

an is said to be summable |N, pn|k, k ≥ 1, if

∞
∑

n=1

(

Pn

pn

)k−1

|tn − tn−1|
k <∞ (Bor [1]) ,

where

tn =
1

Pn

n
∑

v=0

pv sv .

If we take pn = 1, then |N, pn|k summability is equivalent to |C, 1|k summability.

In general these two summabilities are not comparable.

Throughout this paper we set

Qn = q0 + q1 + · · ·+ qn , q−1 = Q−1 = 0 ,

Wn = w0 + w1 + · · ·+ wn , w−1 = W−1 = 0 ,

∆fn = fn − fn+1 .

Let {pn} and {qn} be sequences of positive real constants such that q ∈M .
∑

an
is said to be summable |N, pn, qn|k, k ≥ 1, if

∞
∑

n=1

pn

PnRk
n−1

∣

∣

∣

∣

n
∑

v=1

Pv−1 qn−v av

∣

∣

∣

∣

k

<∞ (Sulaiman [7]) ,
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where

Rn = p0 qn + p1 qn−1 + · · ·+ pn q0 .

Clearly |N, pn, 1|k is the same as |N, pn|k.

The following results are known.

Theorem A (Bor [1]). Let {pn} be a sequence of positive real constants

such that as n→∞

(1.2)
(i) n pn = O(Pn) ,

(ii) Pn = O(n pn) .

If
∑

an is summable |C, 1|k, then it is summable |N,Pn|k, k ≥ 1.

Theorem B (Bor [2]). Let {pn} be a sequence of positive real constants

such that it satisfies (1.2). If
∑

an is summable |N, pn|k then it is also summable

|C, 1|k.

Theorem C (Sulaiman [7]). Let {pn}, {qn} and {wn} be sequences of

positive real constants such that q ∈ M and {pn/PnR
k
n−1} is nonincreasing for

qn 6=c. Let tn denote the (N,wn)-mean of the series
∑

an. Let {εn} be a sequence

of constants. If

m
∑

n=v+1

pn qn−v−1

PnRn−1

= O(P−1
v ) , m→∞ ,(1.3)

∞
∑

n=1

(

Pn

pn

)k−1

|εn|
k |∆tn−1|

k <∞ ,(1.4)

∞
∑

n=1

pn
Pn

(

Wn

wn

)k

|εn|
k |∆tn−1|

k <∞ ,(1.5)

∞
∑

n=1

(

Pn

pn

)k−1 (Wn

wn

)k

|∆εn|
k |∆tn−1|

k <∞ ,(1.6)

and
∞
∑

n=1

pn
Pn

(

Pn−1

Rn−1

)k (Wn

wn

)k

|εn|
k |∆tn−1|

k <∞ ,(1.7)

then the series
∑

an is summable |N, pn, qn|k, k ≥ 1.

It may be mentioned that Theorems A and B are special cases of Theorem C.

The object of this paper is to prove the following
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Theorem D. Let (pn), (qn) and (wn) be sequences of positive real constants

such that q ∈M and (pn/PnR
k
n−1) nonincreasing for qn 6= c. Suppose that

Rn−1 = O(Pn−1) ,(1.8)

Pnwn = O(pnWn) ,(1.9)

∆

(

wn PnRn−1

Wn pn Pn−1

)

= O

(

wn

Wn

)

,(1.10)

∆

(

Wn pn Pn−1

wn PnRn−1

εn

)

= O

(

pn Pn−1

PnRn−1

)

.(1.11)

Then necessary and sufficient conditions that
∑

an εn be summable |N, pn, qn|k
whenever

∑

an is summable |N,wn|k, k ≥ 1, are

(i) εn = O

(

wn PnRn−1

Wn pn Pn−1

)

,

(ii) ∆εn = O

(

wn

Wn−1

)

.

2 – Lemmas

Lemma 1 (Sulaiman [7]). Let q ∈M . Then for 0 < γ ≤ 1,

∞
∑

n=v+1

qn−v−1

nγ Qn−1

= O(v−γ) .

Lemma 2 (Bor [4]). Let k ≥ 1 and let A = (anv) be an infinite matrix. In

order that A ∈ (`k; `k) it is necessary that

(2.1) anv = O(1) (for all n, v) .

Lemma 3. Suppose that εn = O(fn gn), fn, gn ≥ 0, fn+1 gn+1 = O(fn gn),

∆(fn gn) = O(fn) and ∆(εn/fn gn) = O(1/gn). Then ∆εn = O(fn).

Proof: We have

εn = kn fn gn, where kn =
εn

fn gn
= O(1) ,

∆εn = kn fn+1 ∆gn + kn gn+1 ∆fn + fn+1 gn+1 ∆kn .
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Since

fn ∆gn + gn+1 ∆fn = O(fn) ,

then

∆εn = kn fn ∆gn + kn
[

O(fn)− fn ∆gn
]

+ fn+1 gn+1 ∆kn

= knO(fn) +O(fn gn |∆kn|)

= O(fn) +O(fn)

= O(fn) .

3 – Proof of Theorem D

Write

Tn =
n
∑

v=1

Pv−1 qn−v av εv , tn =
wn

WnWn−1

n
∑

v=1

Wv−1 av ,

(3.1)

Tn =
n
∑

v=1

Wv−1 av

(

Pv−1

Wv−1

qn−v εv

)

=
n−1
∑

v=1

( v
∑

r=1

Wr−1 ar

)

∆v

(

Pv−1

Wv−1

qn−v εv

)

+

( n
∑

r=1

Wr−1 ar

)

Pn−1

Wn−1

q0 εn

=
n−1
∑

v=1

{

Pv−1 ∆vqn−v
Wv

wv
εv tv + Pv−1 qn−v−1 εv tv

+ pv qn−v−1

Wv−1

wv
εv tv − Pv qn−v−1

Wv−1

wv
∆εv tv

}

+ Pn−1 q0
Wn

wn
εn tn

= Tn,1 + Tn,2 + Tn,3 + Tn,4 + Tn,5 , say .

In order to prove sufficiency, by Minkowski’s inequality, it is sufficient to show

that
∞
∑

n=1

pn

PnRk
n−1

|Tn,r|
k <∞ , r = 1, 2, 3, 4, 5 .
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Applying Hölder’s inequality,

m+1
∑

n=2

pn

PnRk
n−1

|Tn,1|
k =

m+1
∑

n=1

pn

PnRk
n−1

∣

∣

∣

∣

n−1
∑

v=1

Pv−1 ∆vqn−v
Wv

wv
εv tv

∣

∣

∣

∣

k

≤
m+1
∑

n=1

pn

PnRk
n−1

n−1
∑

v=1

P k
v−1 |∆vqn−v|

(

Wv

wv

)k

|εv|
k |tv|

k

·

{n−1
∑

v=1

|∆vqn−v|

}k−1

= O(1)
m
∑

v=1

P k
v−1

(

Wv

wv

)k

|εv|
k |tv|

k
m+1
∑

n=v

pn |∆vqn−v|

PnRk
n−1

= O(1)
m
∑

v=1

pv
Pv

(

Pv−1

Rv−1

)k (Wv

wv

)k

|εv|
k |tv|

k ,

m+1
∑

n=2

pn

PnRk
n−1

|Tn,4|
k =

m+1
∑

n=2

pn

PnRk
n−1

∣

∣

∣

∣

n−1
∑

v=1

Pv qn−v−1

Wv−1

wv
∆εv tv

∣

∣

∣

∣

k

≤
m+1
∑

n=2

pn
PnRn−1

n−1
∑

v=1

(

Pv

pv

)k

pv qn−v−1

(

Wv−1

wv

)k

|∆εv|
k |tv|

k

·

{n−1
∑

v=1

pv qn−v−1

Rn−1

}k−1

= O(1)
m
∑

v=1

(

Pv

pv

)k

pv

(

Wv−1

wv

)k

|∆εv|
k |tv|

k
m+1
∑

n=v+1

pn qn−v−1

PnRn−1

= O(1)
m
∑

v=1

(

Pv

pv

)k−1 (Wv−1

wv

)k

|∆εv|
k |tv|

k .

Similarly we can show that

m+1
∑

n=2

pn

PnRk
n−1

|Tn,2|
k = O(1)

m
∑

v=1

(

Pv

pv

)k−1

|εv|
k |tv|

k ,

m+1
∑

n=2

pn

PnRk
n−1

|Tn,3|
k = O(1)

m
∑

v=1

pv
Pv

(

Wv

wv

)k

|εv|
k |tv|

k ,

m
∑

n=1

pn

PnRk
n−1

|Tn,5|
k = O(1)

m
∑

n=1

pn
Pn

(

Pn−1

Rn−1

)k (Wn

wn

)k

|εn|
k |tn|

k .

The sufficiency follows.
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Necessity of (i). Using the result of Bor in [4], the transformation from

((Pn/pn)
1−1/k tn) into ([(pn/Pn)

1/k/Rn−1]Tn) maps `k into `k and hence the di-

agonal elements of this transformation are bounded (by Lemma 2) and so (i) is

necessary.

Necessity of (ii). This follows from Lemma 3 and the necessity of (i) by taking

fn = wn/Wn, gn = PnRn−1/pnPn−1.

4 – Applications

Corollary 1. Let {pn} and {wn} be sequences of positive real constants

such that (1.9) is satisfied.

Then the necessary and sufficient conditions such that
∑

an be summable

|N, pn|k whenever it is summable |N,wn|k, k ≥ 1, is

(4.1) pnWn = O(Pnwn) .

The proof follows from Theorem D by putting εn = 1, qn = 1.

Corollary 2 (Bor and Thorpe [3]). Let {pn} and {wn} be sequences of

positive real constants such that (1.9) and (4.1) are satisfied.

Then the series
∑

an is summable |N, pn|k iff it is summable |N,wn|k, k ≥ 1.

The proof follows from Corollary 1.

Corollary 3. Let (pn), (wn) be sequences of positive real constants such

that (1.9) is satisfied and

∆

(

wn Pn

Wn pn

)

= O

(

wn

Wn

)

,

∆

(

Wn pn
wn Pn

εn

)

= O

(

pn
Pn

)

.

Then necessary and sufficient conditions that
∑

an εn be summable |N, pn|k
whenever

∑

an is summable |N,wn|k, k ≥ 1, are

εn = O

(

wn Pn

Wn pn

)

, ∆εn = O

(

wn

Wn

)

.

The proof follows from Theorem D by putting qn = εn = 1.
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Remark. It may be mentioned that Theorems A and B could be obtained

from Corollary 2.
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