ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT

M. Guedda

Abstract: In this paper we consider the problem $\Delta^{2} u=\lambda|u|^{q_{c}-2} u+f$ in Ω, $u=\Delta u=0$ on $\partial \Omega$, where $q_{c}=2 N /(N-4), N>4$, is the limiting Sobolev exponent and Ω is a smooth bounded domain in \mathbb{R}^{N}. Under some restrictions on f and λ, the existence of weak solution u is proved. Moreover $u \geq 0$ for $f \geq 0$ whenever $\lambda \geq 0$.

1 - Introduction

In this article, we show that the problem

$$
\left(P_{\lambda, f}\right) \quad \begin{cases}\Delta(\Delta u)=\lambda|u|^{q_{c}-2} u+f & \text { in } \Omega \tag{1.1}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a smooth bounded domain in $\mathbb{R}^{N}, N>4, \Delta$ is the Laplacian operator and $q_{c}=2 N /(N-4)$, has weak solutions in $H_{\theta}^{2}(\Omega)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ equipped with the norm

$$
\|u\|_{H_{\theta}^{2}}=\left(\int_{\Omega}|\Delta u|^{2}\right)^{1 / 2}
$$

To this end we consider the functional

$$
\begin{equation*}
F_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\lambda}{q_{c}} \int_{\Omega}|u|^{q_{c}} d x-\int_{\Omega} f u d x, \quad u \in H_{\theta}^{2}(\Omega), \quad \lambda>0 \tag{1.2}
\end{equation*}
$$

Under some suitable conditions, it is proved that (1.1) admits at least two solutions. Our arguments make use of the mountain pass theorem and of the Lions concentration-compactness principle.

[^0]Recently, Van der Vorst [10] considered the following problem

$$
\begin{equation*}
S=\inf \left\{\int_{\Omega}|\Delta u|^{2} ; u \in H_{\theta}^{2}(\Omega), \int_{\Omega}|u|^{q_{c}}=1\right\} \tag{1.3}
\end{equation*}
$$

He proved that the infimum in (1.3) is never achieved by a function $u \in H_{\theta}^{2}(\Omega)$ when Ω is bounded. In contrast Hadiji, Picard and the author in [7] considered the problem

$$
\begin{equation*}
S_{\varphi}=\inf \left\{\int_{\Omega}|\Delta u|^{2} ; u \in H_{\theta}^{2}(\Omega), \int_{\Omega}|u+\varphi|^{q_{c}}=1\right\} \tag{1.4}
\end{equation*}
$$

They showed that the infimum in (1.4) is achieved whenever φ is continuous and non identically equal to zero. More precisely it is shown that, for any minimizing sequence $\left(u_{m}\right)$ for (1.4), there exists a subsequence $\left(u_{m_{k}}\right)$ and a function $u \in$ $H_{\theta}^{2}(\Omega)$ such that

$$
u_{m_{k}} \rightharpoonup u \text { weakly in } H_{\theta}^{2}(\Omega) \quad \text { and } \quad\|u+\varphi\|_{q_{c}}=1
$$

On the other hand, Bernis et al. [1] considered a variant of (1.1) where f is replaced by $\beta|u|^{p-2} u, 1<p<2$. They proved the existence of at least two positive solutions for β sufficiently small. At this stage, we would like to mention that when $\Omega=\mathbb{R}^{N}$ P.L. Lions [9] proved that S is achieved only by the function u_{ε} defined by

$$
u_{\varepsilon}(x)=\frac{\left[(N-4)(N-2) N(N+2) \varepsilon^{2}\right]^{\frac{N-4}{8}}}{\left(\varepsilon+|x-a|^{2}\right)^{\frac{N-4}{2}}}, \quad x \in \mathbb{R}^{N}
$$

for any $a \in \mathbb{R}^{N}$ and any $\varepsilon>0$. This note is organized as follows. In Section 2 we verify that F_{λ} satisfies the $(\mathrm{PS})_{c}$ condition. In Section 3 we prove the existence of a local minimizer u of F_{λ}. Moreover, we show that $u \geq 0$ whenever $f \geq 0$ and $\lambda \geq 0$. Section 4 is devoted to the existence of a second solution to (1.4). The results presented in this paper have been announced in [6].

Notice that if $f \equiv 0$, the result of Section 3 is valid and gives the trivial solution $u=0$. The method we adopt is closely related to the one of [3].

Before the verification of the $(\mathrm{PS})_{c}$ condition, let us remark that if v is a solution to (1.1) then $u=\lambda^{\frac{1}{q_{c}-2}} v$ satisfies

$$
\begin{cases}\Delta(\Delta u)=|u|^{q_{c}-2} u+g & \text { in } \Omega \tag{1.5}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where $g=\lambda^{\frac{1}{q_{c}-2}} f$.

2 - Verification of the $(\mathrm{PS})_{c}$ condition

Let Ω be a bounded domain in $\mathbb{R}^{N}, N>4$, and $f \in L^{2}(\Omega)$. We denote by $F_{\lambda}: H_{\theta}^{2}(\Omega) \rightarrow \mathbb{R}$ the functional defined by

$$
\begin{equation*}
F_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\lambda}{q_{c}} \int_{\Omega}|u|^{q_{c}} d x-\int_{\Omega} f u d x \tag{2.1}
\end{equation*}
$$

where Δ is the Laplacian operator and λ is a real parameter. We first look for critical points of $F \stackrel{\text { def }}{=} F_{1}$. We show that F satisfies the Palais-Smale condition in a suitable sublevel strip.

Let S be the best Sobolev embedding constant of $H_{\theta}^{2}(\Omega)$ into $L^{q_{c}}(\Omega)$; that is

$$
\begin{equation*}
S=\inf \left\{\int_{\Omega}|\Delta u|^{2} ; u \in H_{\theta}^{2}(\Omega), \int_{\Omega}|u|^{q_{c}}=1\right\} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
K=\frac{N^{\frac{q}{q_{c}}}}{2 q\left(4 q_{c}\right)^{\frac{q}{q_{c}}}}\|f\|_{q}^{q}, \quad q=\frac{q_{c}}{q_{c}-1} . \tag{2.3}
\end{equation*}
$$

Proposition 2.1. The functional F satisfies the $(P S)_{c}$ condition in the sublevel strip $\left(-\infty, \frac{2}{N} S^{\frac{N}{4}}-K\right)$; that is if $\left\{u_{m}\right\}$ is a sequence in $H_{\theta}^{2}(\Omega)$ such that

$$
\begin{equation*}
F\left(u_{m}\right) \rightarrow c \quad \text { and } \quad d F\left(u_{m}\right) \rightarrow 0 \quad \text { in } H_{\theta}^{-2}(\Omega), \tag{2.4}
\end{equation*}
$$

where

$$
c<\frac{2}{N} S^{\frac{N}{4}}-K
$$

then $\left\{u_{m}\right\}$ contains a subsequence which converges strongly in $H_{\theta}^{2}(\Omega)$.
Proof: Let $\left\{u_{m}\right\}$ be a sequence in $H_{\theta}^{2}(\Omega)$ which satisfies (2.4). From (2.4) it is easy to see that $\left\{u_{m}\right\}$ is bounded in $H_{\theta}^{2}(\Omega)$; thus there is a subsequence $\left\{u_{m_{k}}\right\}$, and an element u of $H_{\theta}^{2}(\Omega)$ such that

$$
\begin{equation*}
u_{m_{k}} \rightharpoonup u \quad \text { weakly in } H_{\theta}^{2}(\Omega) \tag{2.5}
\end{equation*}
$$

and
(2.6) $\quad u_{m_{k}} \rightarrow u$ strongly in $L^{p}(\Omega), \quad 1 \leq p<q_{c}$ and a.e. in $\bar{\Omega}$.

The concentration-compactness Lemma of Lions [9] asserts the existence of at most a countable index set J and positive constants $\left\{\nu_{j}\right\}, j \in J$ such that

$$
\begin{equation*}
\left|u_{m_{k}}\right|^{q_{c}} \rightharpoonup|u|^{q_{c}}+\sum_{j \in J} \nu_{j} \delta_{x_{j}}, \tag{2.7}
\end{equation*}
$$

weakly in the sense of measures, and

$$
\begin{equation*}
\left|\Delta u_{m_{k}}\right|^{2} \rightarrow \mu \tag{2.8}
\end{equation*}
$$

for some positive bounded measure μ. Moreover,

$$
\begin{equation*}
\mu \geq|\Delta u|^{2}+\sum_{j \in J} S \nu_{j}^{\frac{N-4}{N}} \delta_{x_{j}} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{j} \in \bar{\Omega} \quad \text { and } \quad \nu_{j}=0 \quad \text { or } \quad \nu_{j} \geq S^{\frac{N}{4}} \tag{2.10}
\end{equation*}
$$

We assert that $\nu_{j}=0$ for each j. If not, assume that $\nu_{j_{0}} \neq 0$, for some j_{0}. From the hypothesis (2.4),

$$
\begin{aligned}
& c=\lim _{k \rightarrow \infty} F\left(u_{m_{k}}\right)-\frac{1}{2}\left\langle d F\left(u_{m_{k}}\right), u_{m_{k}}\right\rangle \\
& c \geq \frac{2}{N} \int_{\Omega}|u|^{q_{c}}-\frac{1}{2} \int_{\Omega} f u+\frac{2}{N} S^{\frac{N}{4}}
\end{aligned}
$$

Using the Hölder inequality one has

$$
c \geq \frac{2}{N} S^{\frac{N}{4}}-\frac{N^{\frac{q}{q_{c}}}}{2 q\left(4 q_{c}\right)^{\frac{q}{q_{c}}}}\|f\|_{q}^{q}
$$

This contradicts the hypothesis. Consequently $\nu_{j}=0$ for each j and

$$
\lim _{k \rightarrow \infty} \int_{\Omega}\left|u_{m_{k}}\right|^{q_{c}}=\int_{\Omega}|u|^{q_{c}}
$$

which implies

$$
u_{m_{k}} \rightarrow u \quad \text { strongly in } H_{\theta}^{2}(\Omega)
$$

The proof is complete.

3 - Existence of a solution

In this part we consider the problem of finding solutions to $\left(P_{\lambda, f}\right)$. We show, under suitable conditions on f and λ, that F_{λ} has an infimum on a small ball in $H_{\theta}^{2}(\Omega)$. We suppose first that $\lambda=1$, and denote by F the functional F_{1}. The proof is based on the following lemma.

Lemma 3.1. There exist constants r and $R>0$ such that if $\|f\|_{2} \leq R$, then

$$
\begin{equation*}
F(u) \geq 0 \quad \text { for all } \quad\|u\|_{H_{\theta}^{2}(\Omega)}=r \tag{3.1}
\end{equation*}
$$

Proof: Thanks to the Sobolev and Hölder inequalities we have
(3.2) $F(u) \geq \frac{1}{2} \int_{\Omega}|\Delta u|^{2}-\frac{1}{q_{c}} S^{-q_{c}}\left(\int_{\Omega}|\Delta u|^{2}\right)^{\frac{q_{c}}{2}}-|\Omega|^{\frac{1}{2}-\frac{1}{q_{c}}} S^{-1}\|f\|_{2}\left(\int_{\Omega}|\Delta u|^{2}\right)^{1 / 2}$.

Inequality (3.2) can be written

$$
\begin{equation*}
F(u) \geq h\left(\|u\|_{H_{\theta}^{2}}\right), \tag{3.3}
\end{equation*}
$$

where

$$
h(x)=\frac{1}{2} x^{2}-\lambda_{0} x^{q_{c}}-\lambda_{1} x, \quad \lambda_{0}=\frac{1}{q_{c}} S^{-q_{c}} \quad \text { and } \quad \lambda_{1}=\|f\|_{2}|\Omega|^{\frac{1}{2}-\frac{1}{q_{c}}} S^{-1} .
$$

Let

$$
g(x)=\frac{1}{2} x-\lambda_{0} x^{q_{c}-1}-\lambda_{1} \quad \text { for } \quad x \geq 0 .
$$

There exists $\bar{\lambda}>0$ such that, if $0<\lambda_{1} \leq \bar{\lambda}, g$ attains its positive maximum and we get (3.1), with

$$
r=\left(\frac{q_{c} S^{q_{c}}}{2}\right)^{\frac{1}{q_{c}-1}} \quad \text { and } \quad R=|\Omega|^{-\frac{1}{2}+\frac{1}{q_{c}}} S \bar{\lambda},
$$

thanks to (3.3).
Remark 3.1. Arguing as above we can see that there exists a constant $\alpha>0$ such that

$$
F(u) \geq \alpha, \quad \text { for all } \quad\|u\|_{H_{\theta}^{2}}=r .
$$

Proposition 3.1. Let R and r be given by Lemma 3.1. Suppose that $f \not \equiv 0$ and

$$
\begin{equation*}
\max \left(\|f\|_{2},\|f\|_{q}\right)<\min \left(R^{\prime}, R\right) \tag{3.4}
\end{equation*}
$$

where

$$
R^{\prime}=\frac{4 q_{c} S^{\frac{N}{4 q}}}{N\left(2\left(q_{c}-1\right)\right)^{\frac{1}{q}}}
$$

Then there exists a function $u_{1} \in H_{\theta}^{2}(\Omega)$ such that

$$
\begin{equation*}
F\left(u_{1}\right)=\min _{B_{r}} F(v)<0 \tag{3.5}
\end{equation*}
$$

where

$$
B_{r}=\left\{v \in H_{\theta}^{2},\|v\|_{H_{\theta}^{2}(\Omega)}<r\right\}
$$

and u_{1} is a solution to $\left(P_{1, f}\right)$. Moreover, $u_{1} \geq 0$ whenever $f \geq 0$.
Proof: Without loss of generality, we can suppose that $f(a)>0$ for some $a \in \Omega$.

Let

$$
u_{\epsilon}(x)=\frac{\varepsilon^{\frac{N-4}{4}} \phi(x)}{\left(\varepsilon+|x-a|^{2}\right)^{\frac{N-4}{2}}}, \quad \varepsilon>0
$$

where $\phi \in C_{0}^{\infty}(\Omega)$ is a fixed function such that $0 \leq \phi \leq 1$ and $\phi \equiv 1$ in some neighbourhood of a.

Since

$$
\int_{\Omega} f u_{\epsilon} d x>0, \quad \text { for a small } \varepsilon
$$

we can choose $t>0$ sufficiently small such that

$$
F\left(t u_{\epsilon}\right)<0
$$

Hence

$$
\begin{equation*}
\inf _{B_{r}} F(v)<0 . \tag{3.6}
\end{equation*}
$$

Let $\left\{u_{m}\right\}$ be a minimizing sequence of (3.6). From (3.4) and Lemma 3.1 we may assume that

$$
\begin{equation*}
\left\|u_{m}\right\|_{H_{\theta}^{2}}<r_{0}<r \tag{3.7}
\end{equation*}
$$

According to the Ekeland variational principle [5] we may assume

$$
\begin{equation*}
\Delta^{2} u_{m}-\left|u_{m}\right|^{q_{c}}-f \rightarrow 0 \quad \text { in } \quad H_{\theta}^{-2}(\Omega) \tag{3.8}
\end{equation*}
$$

On the other hand, from (2.3) and (3.4), we get

$$
\begin{equation*}
\frac{1}{N} S^{\frac{N}{4}}-K>0 \tag{3.9}
\end{equation*}
$$

We deduce, from (3.8)-(3.9) and Proposition 2.1, that $\left\{u_{m}\right\}$ has a subsequence converging to $u_{1} \in H_{\theta}^{2}(\Omega)$, and u_{1} is a weak solution to $\left(P_{1, f}\right)$.

Now we suppose that $f \geq 0$. Let $v \in H_{\theta}^{2}(\Omega)$ be a solution to the following problem

$$
-\Delta v=\left|\Delta u_{1}\right|
$$

As in $[10,11]$ we get $v>0, v \geq\left|u_{1}\right|$ in Ω,

$$
\int_{\Omega}|\Delta v|^{2}=\int_{\Omega}\left|\Delta u_{1}\right|^{2} \quad \text { and } \quad \int_{\Omega}|v|^{q_{c}} \geq \int_{\Omega}\left|u_{1}\right|^{q_{c}}
$$

It then follows that

$$
F(v) \leq F\left(u_{1}\right) \quad \text { and } \quad\|v\|_{H_{\theta}^{2}} \leq r
$$

Consequently F is minimized by a positive function.
This method allows us under suitable conditions on f and λ, to prove the existence of solutions to $\left(P_{\lambda, f}\right)$.

Theorem 3.1. Suppose that $f \not \equiv 0$, then there exists $\lambda_{f}>0$ such that if the following condition is satisfied

$$
\begin{equation*}
0<\lambda_{f}<\lambda^{\frac{1}{q_{c}-2}}<\min \left(\frac{1}{\|f\|_{2}}, \frac{1}{\|f\|_{q}}\right) \min \left(R^{\prime}, R\right) \tag{3.10}
\end{equation*}
$$

Problem $(P)_{\lambda, f}$ has at least one solution u_{λ}. Moreover $u_{\lambda} \geq 0$ whenever $f \geq 0$.
Proof: For the proof we consider Problem $\left(P_{1, g}\right)$ where $g=f \lambda^{\frac{1}{q_{c}-2}}$. Condition (3.10) implies that g satisfies (3.4). So the existence follows immediately from Proposition 3.1.

Now suppose, on the contrary, that u_{λ} exists for any λ such that

$$
0<\lambda^{\frac{1}{q_{c}-2}}<\min \left(\frac{1}{\|f\|_{2}}, \frac{1}{\|f\|_{q}}\right) \min \left(R^{\prime}, R\right)
$$

Note that, since $\lambda^{-\frac{1}{q_{c}-2}} u_{\lambda}$ is the solution to $\left(P_{1, g}\right)$ obtained by (3.5), we have

$$
\left\|u_{\lambda}\right\|_{H_{\theta}^{2}(\Omega)} \leq r \lambda^{\frac{1}{q_{c}-2}}
$$

It follows from this that $\left\|u_{\lambda}\right\|_{H_{\theta}^{2}(\Omega)} \rightarrow 0$ as $\lambda \downarrow 0$.
Passing to the limit in $\left(P_{\lambda, f}\right)$ we deduce that $f \equiv 0$, which yields to a contradiction.

4 - Existence of a second solution

In this section we shall show, under additional conditions that $\left(P_{\lambda, f}\right)$ possesses a second solution. Here we use the mountain pass theorem without the PalaisSmale condition $[2,8]$. As in the preceding section, we first deal with the case $\lambda=1$.

Assume that condition (3.4) is satisfied and that $f>0$ in some neighbourhood of a. Set

$$
v_{\varepsilon}=\frac{u_{\varepsilon}}{\left\|u_{\varepsilon}\right\|_{q_{c}}}
$$

The main result of this section is the following.
Theorem 4.1. There exists $t_{0}>0$ such that if f satisfies

$$
\begin{equation*}
\|f\|_{q}^{q}<\frac{t_{0}}{K_{1}} \int_{\Omega} f v_{\varepsilon} d x, \quad \text { for small enough } \varepsilon>0 \tag{4.1}
\end{equation*}
$$

where

$$
K_{1}=\frac{N^{\frac{q}{q_{c}}}}{2 q\left(4 q_{c}\right)^{\frac{q}{q_{c}}}}
$$

then $\left(P_{1, f}\right)$ has at least two distinct solutions.
Proof: The proof relies on a variant of the mountain pass theorem without the (PS) condition. We have, for ε sufficiently small (see [4]),

$$
\begin{equation*}
\left\|\Delta v_{\varepsilon}\right\|_{2}^{2}=S+\mathrm{O}\left(\varepsilon^{\frac{N-4}{2}}\right) \tag{4.2}
\end{equation*}
$$

Set

$$
h(t)=F\left(t v_{\varepsilon}\right)=\frac{1}{2} t^{2} X_{\varepsilon}-\frac{1}{q_{c}} t^{q_{c}}-t \int_{\Omega} f v_{\varepsilon} d x \quad \text { for } t \geq 0
$$

where $X_{\varepsilon}=\left\|\Delta v_{\varepsilon}\right\|_{2}^{2}$.
Since $h(t)$ goes to $-\infty$ as t goes to $+\infty, \sup _{t \geq 0} h(t)$ is achieved at some $t_{\varepsilon} \geq 0$. Remark 3.1 asserts that $t_{\varepsilon}>0$, and we deduce

$$
\begin{equation*}
h^{\prime}\left(t_{\varepsilon}\right)=t_{\varepsilon}\left(X_{\varepsilon}-t_{\varepsilon}^{q_{c}-2}\right)-\int_{\Omega} f v_{\varepsilon} d x=0 \quad \text { and } \quad h^{\prime \prime}\left(t_{\varepsilon}\right) \leq 0 \tag{4.3}
\end{equation*}
$$

thus

$$
\begin{equation*}
\left(\frac{1}{q_{c}-1}\right)^{\frac{1}{q_{c}-2}} X_{\varepsilon}^{\frac{1}{q_{c}-2}} \leq t_{\varepsilon} \leq X_{\varepsilon}^{\frac{1}{q_{c}-2}} \tag{4.4}
\end{equation*}
$$

Let $t_{0}=\frac{1}{2}\left(\frac{1}{q_{c}-1}\right)^{\frac{1}{q_{c}-2}} S^{\frac{1}{q_{c}-2}}$. We deduce from (4.2) and (4.4) that, for ε_{0} small,

$$
\begin{equation*}
t_{0}<t_{\varepsilon} \quad \text { for } \quad \varepsilon \in\left(0, \varepsilon_{0}\right) \tag{4.5}
\end{equation*}
$$

Thus

$$
\sup _{t \geq 0} h(t)=\sup _{t \geq t_{0}} h(t)
$$

On the other hand, since the function $t \longrightarrow \frac{1}{2} t^{2} X_{\varepsilon}-\frac{1}{q_{c}} t^{q_{c}}$ is increasing on the interval $\left[0, X_{\varepsilon}^{\frac{1}{q_{c}-2}}\right]$, we get

$$
h\left(t_{\varepsilon}\right) \leq \frac{2}{N} S^{\frac{N}{4}}-t_{\varepsilon} \int_{\Omega} f v_{\varepsilon} d x+\mathrm{O}\left(\varepsilon^{\frac{N-4}{2}}\right)
$$

thanks to (4.2). Hence

$$
\begin{equation*}
h\left(t_{\varepsilon}\right) \leq \frac{2}{N} S^{\frac{N}{4}}-t_{0} \int_{\Omega} f v_{\varepsilon} d x+\mathrm{O}\left(\varepsilon^{\frac{N-4}{2}}\right) \tag{4.6}
\end{equation*}
$$

Consequently if we let

$$
\begin{equation*}
t_{0} \int_{\Omega} f v_{\varepsilon} d x>K_{1}\|f\|_{q}^{q} \tag{4.7}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
\sup _{t \geq 0} F\left(t v_{\varepsilon}\right)<\frac{2}{N} S^{\frac{N}{4}}-K \tag{4.8}
\end{equation*}
$$

Note that there exists t_{1} large enough such that

$$
\begin{equation*}
F\left(t_{1} v_{\varepsilon}\right)<0 \quad \text { and } \quad\left\|t_{1} v_{\varepsilon}\right\|_{H_{\theta}^{2}}>r \tag{4.9}
\end{equation*}
$$

where r is given by Lemma 3.1. Hence

$$
\alpha \leq c_{2}=\inf _{\gamma \in \Gamma} \max _{s \in[0,1]} F(\gamma(s))<\frac{2}{N} S^{\frac{N}{4}}-K
$$

where

$$
\Gamma=\left\{\gamma \in C\left([0,1], H_{\theta}^{2}(\Omega)\right): \gamma(0)=0, \gamma(1)=t_{1} v_{\varepsilon}\right\}
$$

provided ε is small enough. Then, according to the mountain pass theorem without the (PS) condition, there exists a sequence $\left\{u_{m}\right\}$ in $H_{\theta}^{2}(\Omega)$ such that

$$
F\left(u_{m}\right) \rightarrow c_{2} \quad \text { and } \quad d F\left(u_{m}\right) \rightarrow 0 \text { in } H_{\theta}^{-2}(\Omega)
$$

Since $c_{2}<\frac{2}{N} S^{\frac{N}{4}}-K$, we deduce from Proposition 2.1 that there exists u_{2} such that $c_{2}=F\left(u_{2}\right)$ and u_{2} is a weak solution to $\left(P_{1, f}\right)$.

This solution is distinct from u_{1} since $c_{1}<0<c_{2}$. So the proof is complete.
Finally, by using Theorem 4.1, we deduce the
Corollary 4.1. Assume (3.10). If

$$
\lambda^{\frac{q-1}{q_{c}-2}}<\frac{t_{0}}{K_{1}\|f\|_{q}^{q}} \int_{\Omega} f v_{\varepsilon} d x
$$

for ε small enough, then problem $\left(P_{\lambda, f}\right)$ has at least two solutions.

ACKNOWLEDGEMENTS - The author thanks C. Picard and M. Kirane for their useful discussions and for informing him of Ref. [1] and the referee for careful examination of the paper and valuable remarks. This work was partially supported by C.C.I. Kénitra (Maroc).

REFERENCES

[1] Bernis, F., Garcia-Azorero, J. and Peral, I. - Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Advances in Dif. Equat., 1(2) (1996), 219-240.
[2] Brezis, H. and Nirenberg, L. - Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437-477.
[3] Chabrowski, J. - On multiple solutions for the nonhomogeneous p-Laplacian with a critical Sobolev exponent, Diff. and Integ. Equat., 8(4), (1995), 705-716.
[4] Edmuns, E., Fortunato, D. and Jannelli, E. - Critical exponents, critical dimensions and the biharmonic operator, Arch. Rational Mech. Anal., 112 (1990), 269-289.
[5] Ekeland, I. - On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353.
[6] Guedda, M. - A Note on Nonhomogeneous Biharmonic Equations Involving Critical Sobolev Exponent, report LAMIFA, Univ. de Picardie, Fac. de Maths et d'Info, Amiens.
[7] Guedda, M., Hadiji, R. and Picard, C. - in preparation.
[8] Guedda, M. and Veron, L. - Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. The. Meth. and Appl., 13(8) (1989), 879-902.
[9] Lions, P.L. - The concentration-compactness principle in the calculus of variations, the limit case, Parts 1 and 2, Riv. Mat. Iberoamericana, 1 (1985), 45-121, 145-201.
[10] Van Der Vorst, R.C.A.M. - Best constant for the embedding of the space $H^{2} \cap H_{0}^{2}(\Omega)$ into $L^{\frac{2 N}{N-4}}(\Omega)$, Diff. and Integ. Equat., 6(2) (1993), 259-276.
[11] Van Der Vorst, R.C.A.M. - Fourth order elliptic equations with critical growth, C.R.A.S., 320(I) (1995), 295-299.

LAMFA, Faculté de Mathématiques et d'Informatique, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens - FRANCE

[^0]: Received: November 10, 1997; Revised: January 15, 1998.
 AMS(MOS) Subject Classification: 35J65, 35J20, 49J45.

