PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 3 – 1999

SKEW SEMI-INVARIANT SUBMANIFOLDS OF A LOCALLY PRODUCT MANIFOLD

LIU XIMIN and FANG-MING SHAO

Abstract: In this paper, we defined and studied a new class of submanifolds of a locally Riemannian product manifold, i.e., skew semi-invariant submanifolds. We give two sufficient conditions for submanifolds to be skew semi-invariant submanifolds. Moreover, we discussed the sectional curvature of skew semi-invariant submanifolds and obtained many interesting results.

1 – Introduction

In the early years of the sixties, S. Tachibana [1] introduced and studied a class if important manifolds, i.e., locally product manifolds. After that, some authors discussed this class of manifolds, they obtained many very interesting results (cf. [2], [3], [4] and [5]). In [6], A. Bejancu defined and studied semi-invariant submanifolds of a locally product manifold. In this paper, we defined and discussed a new class of submanifolds of a locally product manifold, i.e., skew semi-invariant submanifolds, which contain semi-invariant submanifolds as a special case.

There are two parts in this paper, in section one we give the definition of skew semi-invariant submanifolds and some preliminaries which we will use later. In section two we discuss the parallelism of the canonical structures P and Q and the sectional curvature of skew semi-invariant submanifolds.

Received: December 2, 1997.

¹⁹⁹¹ Mathematics Subject Classification: 53C40, 53C15.

Keywords and Phrases: Sectional curvature, Locally product manifold, Skew semi-invariant submanifold.

2 – Definitions and preliminaries

In this paper, we suppose that all manifolds and maps are C^{∞} -differentiable.

Let (\overline{M}, g, F) be an almost product Riemannian manifold, where g is a Riemannian metric and F is a non-trivial tensor field of type (1, 1), F is called an almost product structure. Moreover g and F satisfying the following conditions

(1)
$$F^2 = I \ (F \neq \pm I), \quad g(FX, FY) = g(X, Y),$$

where $X, Y \in T\overline{M}$ and I is the identity transformation.

We denote by $\overline{\nabla}$ the Levi–Civita connection on \overline{M} with respect to g, if $\overline{\nabla}_X F = 0, X \in T\overline{M}$, we call \overline{M} a locally product Riemannian manifold.

Let M be a Riemannian manifold isometrically immersed in \overline{M} and denote by the same symbol g the Riemannian metric induced on M, for $p \in M$ and tangent vector $X_p \in T_p M$, we write

(2)
$$FX_p = PX_p + QX_p$$

where $PX_p \in T_pM$ is tangent to M and $QX_p \in T_p^{\perp}M$ is normal to M.

For any two vectors $X_p, Y_p \in T_pM$, we have $g(FX_p, Y_p) = g(PX_p, Y_p)$, which implies that $g(PX_p, Y_p) = g(X_p, PY_p)$. So P and P^2 are all symmetric operators on the tangent space T_pM . If $\alpha(p)$ is the eigenvalue of P^2 at $p \in M$, since P^2 is a composition of an isometry and a projection, hence $\alpha(p) \in [0, 1]$.

For each $p \in M$, we set $D_p^{\alpha} = \operatorname{Ker}(P^2 - \alpha(p) I)$, where I is the identity transformation on T_pM , and $\alpha(p)$ is an eigenvalue of P^2 at $p \in M$, obviously, we have $D_p^0 = \operatorname{Ker} P$, $D_p^1 = \operatorname{Ker} Q$, D_p^1 is the maximal F invariant subspace of T_pM and D_p^0 is the maximal F anti-invariant subspace of T_pM . If $\alpha_1(p), \ldots, \alpha_k(p)$ are all eigenvalues of P^2 at p, then T_pM can be decomposed as the direct sum of the mutually orthogonal eigenspaces, that is,

$$T_p M = D_p^{\alpha_1} \oplus \cdots \oplus D_p^{\alpha_k}$$
.

Now we give the following definition.

Definition. A submanifold M of a locally product manifold \overline{M} is called a skew semi-invariant submanifold if there exists an integer k and constant functions α_i , $1 \leq i \leq k$, defined on M with values in (0, 1) such that

- (i) Each α_i , $1 \leq i \leq k$, is a distinct eigenvalue of P^2 with $T_p M = D_p^0 \oplus D_p^1 \oplus D_p^{\alpha_1} \oplus \cdots \oplus D_p^{\alpha_k}$, for $p \in M$.
- (ii) The dimensions of D_p^0 , D_p^1 and $D_p^{\alpha_i}$, $1 \le i \le k$, are independent of $p \in M$.

Remark. Condition (ii) in the above definition implies that D_p^0 , D_p^1 and $D_p^{\alpha_i}$, $1 \le i \le k$, defined P invariant, mutually orthogonal distributions which we denote by D^0 , D^1 and D^{α_i} , $1 \le i \le k$, respectively. Moreover the tangent bundle of M has the following decomposition

$$TM = D^0 \oplus D^1 \oplus D^{\alpha_1} \oplus \cdots \oplus D^{\alpha_k}$$
.

Particularly if k = 0 then M is a semi-invariant submanifold [6]. If k = 0, and $D_p^0(D_p^1)$ is trivial, then M is an invariant (anti-invariant) submanifold of \overline{M} [4].

Denote the induced connection in M by ∇ , we have the formulas of Gauss and Weingarten

(3)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X,Y) ,$$

(4)
$$\bar{\nabla}_X N = -A_N X + \nabla_X^{\perp} N ,$$

for all vector fields $X, Y \in TM$ and $N \in T^{\perp}M$. Here *h* denotes the second fundamental form and $T^{\perp}M$ denotes the normal bundle of *M* in \overline{M} . Moreover we have

(5)
$$g(h(X,Y),N) = g(A_NX,Y) .$$

For $N \in T^{\perp}M$, we set

(6)
$$FN = tN + fN$$

where $tN \in TM$, $fN \in T^{\perp}M$.

From $F(\overline{\nabla}_X Y) = \overline{\nabla}_X FY$, (3), (4) and (6) we have

(7)
$$P(\nabla_X Y) + Q(\nabla_X Y) + t h(X, Y) + f h(X, Y) =$$
$$= \nabla_X PY + h(X, PY) - A_{QY}X + \nabla_X^{\perp}QY ,$$

for $X, Y \in TM$. Comparing tangential and normal components in (7) we obtain

(8)
$$P \nabla_X Y = \nabla_X P Y - t h(X, Y) - A_{QY} X ,$$

(9)
$$Q \nabla_X Y = h(X, PY) + \nabla_X^{\perp} QY - f h(X, Y) ,$$

for $X, Y \in TM$. From (8) and (9) we can get

(10)
$$P[X,Y] = \nabla_X PY - \nabla_Y PX + A_{QX}Y - A_{QY}X ,$$

(11)
$$Q[X,Y] = h(X,PY) - h(PX,Y) + \nabla_Y^{\perp}QX - \nabla_X^{\perp}QX .$$

We have the following lemma immediately from (10) and (11)

Lemma 1.1. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , then

- (i) The distribution D^0 is integrable if and only if $A_{FX}Y = A_{FY}X$ for all $X, Y \in D^0$.
- (ii) The distribution D^1 is integrable if and only if h(X, FY) = h(FX, Y) for all $X, Y \in D^1$.

We define the covariant derivatives of P and Q in a manner as follows

(12)
$$(\nabla_X P) Y = \nabla_X P Y - P \nabla_X Y ,$$

(13) $(\nabla_X Q) Y = \nabla_X^{\perp} Q Y - Q \nabla_X Y ,$

for all $X, Y \in TM$. Using (8) and (9) we have

(14)
$$(\nabla_X P) Y = t h(X, Y) + A_{QY} X ,$$

(15)
$$(\nabla_X Q) Y = f h(X, Y) - h(X, PY) .$$

Let D^1 and D^2 be two distributions defined on a manifold M. We say that D^1 is parallel with respect to D^2 if for all $X \in D^2$ and $Y \in D^1$, we have $\nabla_X Y \in D^1$. D^1 is called parallel if for $X \in TM$ and $Y \in D^1$, we have $\nabla_X Y \in D^1$, it is easy to verify that D^1 is parallel if and only if the orthogonal complementary distribution of D^1 is also parallel.

Let M be a submanifold of \overline{M} . A distribution D on M is said to be totally geodesic if for all $X, Y \in D$ we have h(X, Y) = 0. In this case we say also that M is D totally geodesic. For two distributions D^1 and D^2 defined on M, we say that M is $D^1 \cdot D^2$ mixed totally geodesic if for all $X \in D^1$ and $Y \in D^2$ we have h(X, Y) = 0.

Proposition 1.1. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , for any distribution D^{α} , if $A_N PX = PA_N X$, for all $X \in D^{\alpha}$ and $N \in T^{\perp}M$, then M is $D^{\alpha} \cdot D^{\beta}$ mixed totally geodesic, where $\alpha \neq \beta$.

Proof: From the assumption we have $P^2A_NX - \alpha A_NX = 0$, which implies that $A_NX \in D^{\alpha}$. So for all $Y \in D^{\beta}$, $N \in T^{\perp}M$, $\alpha \neq \beta$, we have $0 = g(A_NX, Y) = g(h(X, Y), N)$, that is h(X, Y) = 0, hence M is $D^{\alpha} - D^{\beta}$ mixed totally geodesic.

From (2) and (6) we can obtain

(16)
$$f Q X_p = -Q P X_p$$

for all $X_p \in T_pM$, $N \in T_p^{\perp}M$. Furthermore, for $X_p \in D_p^{\alpha_i}$, $1 \le i \le k$, we have

(18)
$$f^2 Q X_p = \alpha_i Q X_p .$$

Also if $X_p \in D_p^0$ then it is clear that $f^2 Q X_p = 0$. Thus if X_p is an eigenvector of P^2 corresponding to the eigenvalue $\alpha(p) \neq 1$, then $Q X_p$ is an eigenvector of f^2 with the same eigenvalue $\alpha(p)$. (17) implies that $\alpha(p)$ is an eigenvalue of f^2 if and only if $\gamma(p) = 1 - \alpha(p)$ is an eigenvalue of Qt. Since Qt and f^2 are symmetric operators on the normal bundle $T^{\perp}M$, their eigenspaces are orthogonal. The dimension of the eigenspace of Qt corresponding to the eigenvalue $1 - \alpha(p)$ is equal the dimension of D_p^{α} if $\alpha(p) \neq 1$. Consequently, we have

Lemma 1.2. Let M be a submanifold of a locally product Riemannian manifold \overline{M} . M is a skew semi-invariant submanifold if and only if the eigenvalues of Qt are constant and the eigenspaces of Qt have constant dimension.

3 – Skew semi-invariant submanifold

Theorem 2.1. Let M be a submanifold of a locally product manifold \overline{M} , if $\nabla P = 0$, then M is a skew semi-invariant submanifold. Furthermore each of the P invariant distributions D^0 , D^1 and D^{α_i} , $1 \le i \le k$, is parallel.

Proof: Fix $p \in M$, for any $Y_p \in D_p^{\alpha_i}$ and any vector field $X \in TM$, let Y be the parallel translation of Y_p along the integral curve of X. Since $(\nabla_X P) Y = 0$, we have by (8)

$$\nabla_X (P^2 - \alpha(p) Y) = P^2 \nabla_X Y - \alpha(p) \nabla_X Y = 0$$

since $P^2Y - \alpha(p)Y = 0$ at p, it is identical 0 on M. Thus the eigenvalues of P^2 are constant. Moreover, parallel translation of T_pM along any curve is an isometry which preserves each D^{α} . Thus the dimension of each D^{α} is constant and M is a skew semi-invariant submanifold.

Now if Y is any vector field in D^{α} , we have $P^2Y = \alpha Y$ (α constant), i.e., $P^2 \nabla_X Y = \alpha \nabla_X Y$ which implies that D^{α} is parallel.

Next we turn our attention to the vanishing of ∇Q . For $X, Y \in TM$, if $(\nabla_X Q) Y = 0$ then (15) yields

(19)
$$f h(X,Y) = h(X,PY) .$$

In particular, if $Y \in D^{\alpha}$ then (19) implies

(20)
$$f^2 h(X,Y) = \alpha h(X,Y)$$

consequently we have

Proposition 2.1. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , if $\nabla Q \equiv 0$, then M is $D^{\alpha}-D^{\beta}$ mixed totally geodesic for all $\alpha \neq \beta$. Moreover, if $X \in D^{\alpha}$ then either h(X, X) = 0 or h(X, X) is an eigenvector of f^2 with eigenvalue α .

The next lemma is easy to prove so we omit the proof.

Lemma 2.1. Let M be a submanifold of a locally product manifold \overline{M} , then $\nabla Q = 0$ if and only if $\nabla_X tN = t \nabla_X^{\perp} N$ for all $X \in TM$ and $N \in T^{\perp} M$.

Theorem 2.2. Let M be a submanifold of a locally product manifold \overline{M} , if $\nabla Q = 0$, then M is skew semi-invariant submanifold.

Proof: If $TM = D^1$ then we are done. Otherwise, we may find a point $p \in M$ and a vector $X_p \in D_p^{\alpha}$, $\alpha \neq 1$. Set $N_p = QX_p$, then N_p is an eigenvector of Qtwith eigenvalue $\gamma(p) = 1 - \alpha(p)$. Now, let $Y \in TM$ and N be the translation of N_p in the normal bundle $T^{\perp}M$ along an integral curve of Y, we have

$$\nabla_Y^{\perp}(Qt\,N-\gamma(p)\,N) = \nabla_Y^{\perp}Qt\,N-\gamma(p)\,\nabla_Y^{\perp}N = Q(\nabla_Y tN) - \gamma(p)\,\nabla_Y^{\perp}N \;.$$

By Lemma 2.1, this becomes $\nabla_Y^{\perp}(Qt N - \gamma(p) N) = Qt \nabla_Y^{\perp} N - \gamma(p) \nabla_Y^{\perp} N = 0$. Since $Qt N - \gamma(p) N = 0$ at $p, Qt N - \gamma(p) N \equiv 0$ on M. It follows from Lemma 1.2 that M is a skew semi-invariant submanifold.

For a submanifold M of a locally product manifold \overline{M} , let \overline{R} (resp. R) denote the curvature tensor of \overline{M} (resp. M), then the equation of Gauss is given by

(21)
$$g(R(X,Y)Z,W) = g(\bar{R}(X,Y)Z,W) + g(h(X,W),h(Y,Z)) - g(h(X,Z),h(Y,W))$$

for $X, Y, Z, W \in TM$.

The sectional curvature of a plane section of \overline{M} determined by two orthogonal unit vectors $X, Y \in T\overline{M}$ is given by

(22)
$$K_{\bar{M}}(X \wedge Y) = g\Big(\bar{R}(X,Y)Y,X\Big) \ .$$

The sectional curvature of a plane section of M determined by two orthogonal unit vectors $X, Y \in TM$ is given by

(23)
$$K_M(X \wedge Y) = g\Big(R(X,Y)Y,X\Big) .$$

For $X, Y \in TM$, from (21), (22) and (23) we can obtain

(24)
$$K_M(X \wedge Y) = K_{\bar{M}}(X \wedge Y) + g(h(X,X), h(Y,Y)) - |h(X,Y)|^2$$
.

Proposition 2.2. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , if $\nabla Q = 0$, then for any unit vectors $X \in D^{\alpha}$ and $Y \in D^{\beta}$, $\alpha \neq \beta$, we have $K_M(X \wedge Y) = K_{\overline{M}}(X \wedge Y)$.

Proof: It can be followed easily from Proposition 2.1. ■

Lemma 2.2. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , then the followings are equivalent

- (i) $(\nabla_X Q) Y (\nabla_Y Q) X = 0$ for all $X, Y \in D^{\alpha}$.
- (ii) h(P, X, Y) = h(X, PY) for all $X, Y \in D^{\alpha}$.
- (iii) $Q[X,Y] = \nabla_X^{\perp} QY \nabla_Y^{\perp} QX$ for all $X, Y \in D^{\alpha}$.
- (iv) $A_N PY PA_N Y$ is perpendicular to D^{α} for all $Y \in D^{\alpha}$ and $N \in T^{\perp} N$.

The proof is very trivial, we omit it here.

We call $P \alpha$ commutative if any of the equivalent conditions in the above Lemma holds.

For each P invariant D^{α} , let $n(\alpha) = \dim D^{\alpha}$. For each D^{α} we may choose a local orthonormal basis $E^1, ..., E^{n(\alpha)}$. Define the D^{α} mean curvature vector by $H^{\alpha} = \sum_{i=1}^{n(\alpha)} h(E^i, E^i)$, then the mean curvature vector is given by $H = \frac{1}{n} (H^0 + H^1 + H^{\alpha_1} + \dots + H^{\alpha_k}), n = \dim M$.

A skew semi-invariant submanifold M of a locally product manifold \overline{M} is called D^{α} minimal if $H^{\alpha} = 0$ and minimal if H = 0.

For any unit vector $X \in D^{\alpha}$, $\alpha \neq 0$, defined the α sectional curvature of \overline{M} and M by

$$\bar{H}_{\alpha}(X) = K_{\bar{M}}(X \wedge Y), \quad H_{\alpha}(X) = K_M(X \wedge Y)$$

respectively, where $Y = \frac{PX}{\sqrt{\alpha}}$. From (24) we have

(25)
$$H_{\alpha}(X) = \bar{H}_{\alpha}(X) - \frac{1}{\alpha} g\Big(h(X,X), h(PX,PX)\Big) - \frac{1}{\alpha} |h(X,PX)|^2 .$$

Then we have the following proposition

Proposition 2.3. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} , if P is α commutative, $\alpha \neq 0$, then

$$H_{\alpha}(X) = \bar{H}_{\alpha}(X) + |h(X,X)|^2 - \frac{1}{\alpha} |h(X,PX)|^2 .$$

Let $\{E^1, ..., E^{n(\alpha)}\}$ and $\{F^1, ..., F^{n(\beta)}\}$ be the local orthonormal bases for D^{α} and D^{β} , respectively. We define α - β sectional curvatures of \overline{M} and M by

$$\bar{\rho}_{\alpha\beta} = \sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} K_{\bar{M}}(E^i \wedge F^j), \quad \rho_{\alpha\beta} = \sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} K_M(E^i \wedge F^j),$$

respectively.

From (24) we see that for $\alpha \neq \beta$ we have

(26)
$$\rho_{\alpha\beta} = \bar{\rho}_{\alpha\beta} + g(H^{\alpha}, H^{\beta}) - \sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} |h(E^{i} \wedge F^{j})|^{2} ,$$

for $\alpha = \beta$ we have

(27)
$$\rho_{\alpha\alpha} = \bar{\rho}_{\alpha\alpha} - \sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} |h(E^i \wedge F^j)|^2 .$$

Using (26) and (27) we have the following proposition

Proposition 2.4. Let M be a skew semi-invariant submanifold of a locally product manifold \overline{M} .

- (i) If H^{α} is perpendicular to H^{β} , $\alpha \neq \beta$, then $\rho_{\alpha\beta} \leq \bar{\rho}_{\alpha\beta}$, and the equality holds if and only if M is $D^{\alpha}-D^{\beta}$ mixed totally geodesic.
- (ii) If M is D^{α} minimal, then $\rho_{\alpha\alpha} \leq \bar{\rho}_{\alpha\alpha}$, and the equality holds if and only if M is D^{α} totally geodesic.

REFERENCES

- TACHIBANA, S. Some theorems on a locally product Riemannian manifold, *Tôhoku Math. J.*, 12 (1960), 281–292.
- [2] OKUMURA, M. Totally umbilical hypersurfaces of a locally product manifold, *Kodai Math. Sem. Rep.*, 19 (1976), 35–42.
- [3] ADATY, T. and MIYAZAYA, T. Hypersurfaces immersed in a locally product Riemannian manifold, *TRU Math.*, 14(2) (1978), 17–26.
- [4] ADATY, T. Submanifolds of an almost product Riemannian manifold, Kodai Math. J., 4(2) (1981), 327–343.
- [5] PITIS, G. On some submanifolds of a locally product manifold, Kodai Math. J., 9 (1986), 329–333.
- [6] BEJANCU, A. Semi-invariant submanifolds of locally product Riemannian manifold, Ann. Univ. Timisoara S. Math., XXII (1984), 3–11.
- [7] RONSSE, G.S. Generic and skew CR submanifolds of a Kaekler manifold, Bull. Inst. Math. Acad. Sini., 10 (1990), 127–141.
- [8] YANO, K. Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, 1965.

Liu Ximin, Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 – P.R. CHINA

and

Fang-Ming Shao, Department of Basic Science, Dalian Maritime University, Dalian 116024 – P.R. CHINA