SKEW SEMI-INVARIANT SUBMANIFOLDS OF A LOCALLY PRODUCT MANIFOLD

Liu Ximin and Fang-Ming Shao

Abstract

In this paper, we defined and studied a new class of submanifolds of a locally Riemannian product manifold, i.e., skew semi-invariant submanifolds. We give two sufficient conditions for submanifolds to be skew semi-invariant submanifolds. Moreover, we discussed the sectional curvature of skew semi-invariant submanifolds and obtained many interesting results.

1 - Introduction

In the early years of the sixties, S. Tachibana [1] introduced and studied a class if important manifolds, i.e., locally product manifolds. After that, some authors discussed this class of manifolds, they obtained many very interesting results (cf. [2], [3], [4] and [5]). In [6], A. Bejancu defined and studied semiinvariant submanifolds of a locally product manifold. In this paper, we defined and discussed a new class of submanifolds of a locally product manifold, i.e., skew semi-invariant submanifolds, which contain semi-invariant submanifolds as a special case.

There are two parts in this paper, in section one we give the definition of skew semi-invariant submanifolds and some preliminaries which we will use later. In section two we discuss the parallelism of the canonical structures P and Q and the sectional curvature of skew semi-invariant submanifolds.

[^0]
2 - Definitions and preliminaries

In this paper, we suppose that all manifolds and maps are C^{∞}-differentiable.
Let (\bar{M}, g, F) be an almost product Riemannian manifold, where g is a Riemannian metric and F is a non-trivial tensor field of type $(1,1), F$ is called an almost product structure. Moreover g and F satisfying the following conditions

$$
\begin{equation*}
F^{2}=I \quad(F \neq \pm I), \quad g(F X, F Y)=g(X, Y) \tag{1}
\end{equation*}
$$

where $X, Y \in T \bar{M}$ and I is the identity transformation.
We denote by $\bar{\nabla}$ the Levi-Civita connection on \bar{M} with respect to g, if $\bar{\nabla}_{X} F=0, X \in T \bar{M}$, we call \bar{M} a locally product Riemannian manifold.

Let M be a Riemannian manifold isometrically immersed in \bar{M} and denote by the same symbol g the Riemannian metric induced on M, for $p \in M$ and tangent vector $X_{p} \in T_{p} M$, we write

$$
\begin{equation*}
F X_{p}=P X_{p}+Q X_{p} \tag{2}
\end{equation*}
$$

where $P X_{p} \in T_{p} M$ is tangent to M and $Q X_{p} \in T_{p}^{\perp} M$ is normal to M.
For any two vectors $X_{p}, Y_{p} \in T_{p} M$, we have $g\left(F X_{p}, Y_{p}\right)=g\left(P X_{p}, Y_{p}\right)$, which implies that $g\left(P X_{p}, Y_{p}\right)=g\left(X_{p}, P Y_{p}\right)$. So P and P^{2} are all symmetric operators on the tangent space $T_{p} M$. If $\alpha(p)$ is the eigenvalue of P^{2} at $p \in M$, since P^{2} is a composition of an isometry and a projection, hence $\alpha(p) \in[0,1]$.

For each $p \in M$, we set $D_{p}^{\alpha}=\operatorname{Ker}\left(P^{2}-\alpha(p) I\right)$, where I is the identity transformation on $T_{p} M$, and $\alpha(p)$ is an eigenvalue of P^{2} at $p \in M$, obviously, we have $D_{p}^{0}=\operatorname{Ker} P, D_{p}^{1}=\operatorname{Ker} Q, D_{p}^{1}$ is the maximal F invariant subspace of $T_{p} M$ and D_{p}^{0} is the maximal F anti-invariant subspace of $T_{p} M$. If $\alpha_{1}(p), \ldots, \alpha_{k}(p)$ are all eigenvalues of P^{2} at p, then $T_{p} M$ can be decomposed as the direct sum of the mutually orthogonal eigenspaces, that is,

$$
T_{p} M=D_{p}^{\alpha_{1}} \oplus \cdots \oplus D_{p}^{\alpha_{k}}
$$

Now we give the following definition.
Definition. A submanifold M of a locally product manifold \bar{M} is called a skew semi-invariant submanifold if there exists an integer k and constant functions $\alpha_{i}, 1 \leq i \leq k$, defined on M with values in $(0,1)$ such that
(i) Each $\alpha_{i}, 1 \leq i \leq k$, is a distinct eigenvalue of P^{2} with $T_{p} M=D_{p}^{0} \oplus D_{p}^{1} \oplus$ $D_{p}^{\alpha_{1}} \oplus \cdots \oplus D_{p}^{\alpha_{k}}$, for $p \in M$.
(ii) The dimensions of D_{p}^{0}, D_{p}^{1} and $D_{p}^{\alpha_{i}}, 1 \leq i \leq k$, are independent of $p \in M$.

Remark. Condition (ii) in the above definition implies that D_{p}^{0}, D_{p}^{1} and $D_{p}^{\alpha_{i}}, 1 \leq i \leq k$, defined P invariant, mutually orthogonal distributions which we denote by D^{0}, D^{1} and $D^{\alpha_{i}}, 1 \leq i \leq k$, respectively. Moreover the tangent bundle of M has the following decomposition

$$
T M=D^{0} \oplus D^{1} \oplus D^{\alpha_{1}} \oplus \cdots \oplus D^{\alpha_{k}}
$$

Particularly if $k=0$ then M is a semi-invariant submanifold [6]. If $k=0$, and $D_{p}^{0}\left(D_{p}^{1}\right)$ is trivial, then M is an invariant (anti-invariant) submanifold of \bar{M} [4].

Denote the induced connection in M by ∇, we have the formulas of Gauss and Weingarten

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{3}\\
& \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\frac{1}{X}} N, \tag{4}
\end{align*}
$$

for all vector fields $X, Y \in T M$ and $N \in T^{\perp} M$. Here h denotes the second fundamental form and $T^{\perp} M$ denotes the normal bundle of M in \bar{M}. Moreover we have

$$
\begin{equation*}
g(h(X, Y), N)=g\left(A_{N} X, Y\right) . \tag{5}
\end{equation*}
$$

For $N \in T^{\perp} M$, we set

$$
\begin{equation*}
F N=t N+f N \tag{6}
\end{equation*}
$$

where $t N \in T M, f N \in T^{\perp} M$.
From $F\left(\bar{\nabla}_{X} Y\right)=\bar{\nabla}_{X} F Y$, (3), (4) and (6) we have

$$
\begin{align*}
P\left(\nabla_{X} Y\right)+Q\left(\nabla_{X} Y\right)+ & t h(X, Y)+f h(X, Y)= \tag{7}\\
& =\nabla_{X} P Y+h(X, P Y)-A_{Q Y} X+\nabla_{X}^{\frac{1}{X}} Q Y,
\end{align*}
$$

for $X, Y \in T M$. Comparing tangential and normal components in (7) we obtain

$$
\begin{align*}
& P \nabla_{X} Y=\nabla_{X} P Y-t h(X, Y)-A_{Q Y} X, \tag{8}\\
& Q \nabla_{X} Y=h(X, P Y)+\nabla_{X}^{\frac{1}{X}} Q Y-f h(X, Y), \tag{9}
\end{align*}
$$

for $X, Y \in T M$. From (8) and (9) we can get

$$
\begin{align*}
& P[X, Y]=\nabla_{X} P Y-\nabla_{Y} P X+A_{Q X} Y-A_{Q Y} X, \tag{10}\\
& Q[X, Y]=h(X, P Y)-h(P X, Y)+\nabla_{Y}^{\perp} Q X-\nabla_{X}^{\frac{1}{X}} Q X . \tag{11}
\end{align*}
$$

We have the following lemma immediately from (10) and (11)
Lemma 1.1. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, then
(i) The distribution D^{0} is integrable if and only if $A_{F X} Y=A_{F Y} X$ for all $X, Y \in D^{0}$.
(ii) The distribution D^{1} is integrable if and only if $h(X, F Y)=h(F X, Y)$ for all $X, Y \in D^{1}$.

We define the covariant derivatives of P and Q in a manner as follows

$$
\begin{align*}
& \left(\nabla_{X} P\right) Y=\nabla_{X} P Y-P \nabla_{X} Y, \tag{12}\\
& \left(\nabla_{X} Q\right) Y=\nabla_{X}^{\frac{1}{X}} Q Y-Q \nabla_{X} Y, \tag{13}
\end{align*}
$$

for all $X, Y \in T M$. Using (8) and (9) we have

$$
\begin{align*}
& \left(\nabla_{X} P\right) Y=t h(X, Y)+A_{Q Y} X, \tag{14}\\
& \left(\nabla_{X} Q\right) Y=f h(X, Y)-h(X, P Y) . \tag{15}
\end{align*}
$$

Let D^{1} and D^{2} be two distributions defined on a manifold M. We say that D^{1} is parallel with respect to D^{2} if for all $X \in D^{2}$ and $Y \in D^{1}$, we have $\nabla_{X} Y \in D^{1}$. D^{1} is called parallel if for $X \in T M$ and $Y \in D^{1}$, we have $\nabla_{X} Y \in D^{1}$, it is easy to verify that D^{1} is parallel if and only if the orthogonal complementary distribution of D^{1} is also parallel.

Let M be a submanifold of \bar{M}. A distribution D on M is said to be totally geodesic if for all $X, Y \in D$ we have $h(X, Y)=0$. In this case we say also that M is D totally geodesic. For two distributions D^{1} and D^{2} defined on M, we say that M is $D^{1}-D^{2}$ mixed totally geodesic if for all $X \in D^{1}$ and $Y \in D^{2}$ we have $h(X, Y)=0$.

Proposition 1.1. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, for any distribution D^{α}, if $A_{N} P X=P A_{N} X$, for all $X \in D^{\alpha}$ and $N \in T^{\perp} M$, then M is D^{α} - D^{β} mixed totally geodesic, where $\alpha \neq \beta$.

Proof: From the assumption we have $P^{2} A_{N} X-\alpha A_{N} X=0$, which implies that $A_{N} X \in D^{\alpha}$. So for all $Y \in D^{\beta}, N \in T^{\perp} M, \alpha \neq \beta$, we have $0=g\left(A_{N} X, Y\right)=g(h(X, Y), N)$, that is $h(X, Y)=0$, hence M is $D^{\alpha}-D^{\beta}$ mixed totally geodesic.

From (2) and (6) we can obtain

$$
\begin{align*}
f Q X_{p} & =-Q P X_{p}, \tag{16}\\
Q t N & =N-f^{2} N, \tag{17}
\end{align*}
$$

for all $X_{p} \in T_{p} M, N \in T_{p}^{\perp} M$. Furthermore, for $X_{p} \in D_{p}^{\alpha_{i}}, 1 \leq i \leq k$, we have

$$
\begin{equation*}
f^{2} Q X_{p}=\alpha_{i} Q X_{p} . \tag{18}
\end{equation*}
$$

Also if $X_{p} \in D_{p}^{0}$ then it is clear that $f^{2} Q X_{p}=0$. Thus if X_{p} is an eigenvector of P^{2} corresponding to the eigenvalue $\alpha(p) \neq 1$, then $Q X_{p}$ is an eigenvector of f^{2} with the same eigenvalue $\alpha(p)$. (17) implies that $\alpha(p)$ is an eigenvalue of f^{2} if and only if $\gamma(p)=1-\alpha(p)$ is an eigenvalue of $Q t$. Since $Q t$ and f^{2} are symmetric operators on the normal bundle $T^{\perp} M$, their eigenspaces are orthogonal. The dimension of the eigenspace of $Q t$ corresponding to the eigenvalue $1-\alpha(p)$ is equal the dimension of D_{p}^{α} if $\alpha(p) \neq 1$. Consequently, we have

Lemma 1.2. Let M be a submanifold of a locally product Riemannian manifold $\bar{M} . M$ is a skew semi-invariant submanifold if and only if the eigenvalues of $Q t$ are constant and the eigenspaces of $Q t$ have constant dimension.

3 - Skew semi-invariant submanifold

Theorem 2.1. Let M be a submanifold of a locally product manifold \bar{M}, if $\nabla P=0$, then M is a skew semi-invariant submanifold. Furthermore each of the P invariant distributions D^{0}, D^{1} and $D^{\alpha_{i}}, 1 \leq i \leq k$, is parallel.

Proof: Fix $p \in M$, for any $Y_{p} \in D_{p}^{\alpha_{i}}$ and any vector field $X \in T M$, let Y be the parallel translation of Y_{p} along the integral curve of X. Since $\left(\nabla_{X} P\right) Y=0$, we have by (8)

$$
\nabla_{X}\left(P^{2}-\alpha(p) Y\right)=P^{2} \nabla_{X} Y-\alpha(p) \nabla_{X} Y=0
$$

since $P^{2} Y-\alpha(p) Y=0$ at p, it is identical 0 on M. Thus the eigenvalues of P^{2} are constant. Moreover, parallel translation of $T_{p} M$ along any curve is an isometry which preserves each D^{α}. Thus the dimension of each D^{α} is constant and M is a skew semi-invariant submanifold.

Now if Y is any vector field in D^{α}, we have $P^{2} Y=\alpha Y$ (α constant), i.e., $P^{2} \nabla_{X} Y=\alpha \nabla_{X} Y$ which implies that D^{α} is parallel.

Next we turn our attention to the vanishing of ∇Q. For $X, Y \in T M$, if $\left(\nabla_{X} Q\right) Y=0$ then (15) yields

$$
\begin{equation*}
f h(X, Y)=h(X, P Y) . \tag{19}
\end{equation*}
$$

In particular, if $Y \in D^{\alpha}$ then (19) implies

$$
\begin{equation*}
f^{2} h(X, Y)=\alpha h(X, Y) \tag{20}
\end{equation*}
$$

consequently we have
Proposition 2.1. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, if $\nabla Q \equiv 0$, then M is $D^{\alpha}-D^{\beta}$ mixed totally geodesic for all $\alpha \neq \beta$. Moreover, if $X \in D^{\alpha}$ then either $h(X, X)=0$ or $h(X, X)$ is an eigenvector of f^{2} with eigenvalue α.

The next lemma is easy to prove so we omit the proof.
Lemma 2.1. Let M be a submanifold of a locally product manifold \bar{M}, then $\nabla Q=0$ if and only if $\nabla_{X} t N=t \nabla_{\bar{X}}^{\frac{1}{2}} N$ for all $X \in T M$ and $N \in T^{\perp} M$.

Theorem 2.2. Let M be a submanifold of a locally product manifold \bar{M}, if $\nabla Q=0$, then M is skew semi-invariant submanifold.

Proof: If $T M=D^{1}$ then we are done. Otherwise, we may find a point $p \in M$ and a vector $X_{p} \in D_{p}^{\alpha}, \alpha \neq 1$. Set $N_{p}=Q X_{p}$, then N_{p} is an eigenvector of $Q t$ with eigenvalue $\gamma(p)=1-\alpha(p)$. Now, let $Y \in T M$ and N be the translation of N_{p} in the normal bundle $T^{\perp} M$ along an integral curve of Y, we have

$$
\nabla_{Y}^{\frac{1}{Y}}(Q t N-\gamma(p) N)=\nabla_{Y}^{\frac{1}{Y}} Q t N-\gamma(p) \nabla_{Y}^{\frac{1}{Y}} N=Q\left(\nabla_{Y} t N\right)-\gamma(p) \nabla_{Y}^{\frac{1}{Y}} N .
$$

By Lemma 2.1, this becomes $\nabla_{⿳}^{\perp}(Q t N-\gamma(p) N)=Q t \nabla_{Y}^{\perp} N-\gamma(p) \nabla_{Y}^{\perp} N=0$. Since $Q t N-\gamma(p) N=0$ at $p, Q t N-\gamma(p) N \equiv 0$ on M. It follows from Lemma 1.2 that M is a skew semi-invariant submanifold.

For a submanifold M of a locally product manifold \bar{M}, let \bar{R} (resp. R) denote the curvature tensor of \bar{M} (resp. M), then the equation of Gauss is given by

$$
\begin{align*}
g(R(X, Y) Z, W)= & g(\bar{R}(X, Y) Z, W)+g(h(X, W), h(Y, Z)) \tag{21}\\
& -g(h(X, Z), h(Y, W))
\end{align*}
$$

for $X, Y, Z, W \in T M$.

The sectional curvature of a plane section of \bar{M} determined by two orthogonal unit vectors $X, Y \in T \bar{M}$ is given by

$$
\begin{equation*}
K_{\bar{M}}(X \wedge Y)=g(\bar{R}(X, Y) Y, X) \tag{22}
\end{equation*}
$$

The sectional curvature of a plane section of M determined by two orthogonal unit vectors $X, Y \in T M$ is given by

$$
\begin{equation*}
K_{M}(X \wedge Y)=g(R(X, Y) Y, X) \tag{23}
\end{equation*}
$$

For $X, Y \in T M$, from (21), (22) and (23) we can obtain

$$
\begin{equation*}
K_{M}(X \wedge Y)=K_{\bar{M}}(X \wedge Y)+g(h(X, X), h(Y, Y))-|h(X, Y)|^{2} \tag{24}
\end{equation*}
$$

Proposition 2.2. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, if $\nabla Q=0$, then for any unit vectors $X \in D^{\alpha}$ and $Y \in D^{\beta}$, $\alpha \neq \beta$, we have $K_{M}(X \wedge Y)=K_{\bar{M}}(X \wedge Y)$.

Proof: It can be followed easily from Proposition 2.1.
Lemma 2.2. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, then the followings are equivalent
(i) $\left(\nabla_{X} Q\right) Y-\left(\nabla_{Y} Q\right) X=0$ for all $X, Y \in D^{\alpha}$.
(ii) $h(P, X, Y)=h(X, P Y)$ for all $X, Y \in D^{\alpha}$.
(iii) $Q[X, Y]=\nabla_{X}^{\perp} Q Y-\nabla_{Y}^{\perp} Q X$ for all $X, Y \in D^{\alpha}$.
(iv) $A_{N} P Y-P A_{N} Y$ is perpendicular to D^{α} for all $Y \in D^{\alpha}$ and $N \in T^{\perp} N$.

The proof is very trivial, we omit it here.
We call $P \alpha$ commutative if any of the equivalent conditions in the above Lemma holds.

For each P invariant D^{α}, let $n(\alpha)=\operatorname{dim} D^{\alpha}$. For each D^{α} we may choose a local orthonormal basis $E^{1}, \ldots, E^{n(\alpha)}$. Define the D^{α} mean curvature vector by $H^{\alpha}=\sum_{i=1}^{n(\alpha)} h\left(E^{i}, E^{i}\right)$, then the mean curvature vector is given by $H=$ $\frac{1}{n}\left(H^{0}+H^{1}+H^{\alpha_{1}}+\cdots+H^{\alpha_{k}}\right), n=\operatorname{dim} M$.

A skew semi-invariant submanifold M of a locally product manifold \bar{M} is called D^{α} minimal if $H^{\alpha}=0$ and minimal if $H=0$.

For any unit vector $X \in D^{\alpha}, \alpha \neq 0$, defined the α sectional curvature of \bar{M} and M by

$$
\bar{H}_{\alpha}(X)=K_{\bar{M}}(X \wedge Y), \quad H_{\alpha}(X)=K_{M}(X \wedge Y)
$$

respectively, where $Y=\frac{P X}{\sqrt{\alpha}}$. From (24) we have

$$
\begin{equation*}
H_{\alpha}(X)=\bar{H}_{\alpha}(X)-\frac{1}{\alpha} g(h(X, X), h(P X, P X))-\frac{1}{\alpha}|h(X, P X)|^{2} . \tag{25}
\end{equation*}
$$

Then we have the following proposition
Proposition 2.3. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}, if P is α commutative, $\alpha \neq 0$, then

$$
H_{\alpha}(X)=\bar{H}_{\alpha}(X)+|h(X, X)|^{2}-\frac{1}{\alpha}|h(X, P X)|^{2} .
$$

Let $\left\{E^{1}, \ldots, E^{n(\alpha)}\right\}$ and $\left\{F^{1}, \ldots, F^{n(\beta)}\right\}$ be the local orthonormal bases for D^{α} and D^{β}, respectively. We define $\alpha-\beta$ sectional curvatures of \bar{M} and M by

$$
\bar{\rho}_{\alpha \beta}=\sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} K_{\bar{M}}\left(E^{i} \wedge F^{j}\right), \quad \rho_{\alpha \beta}=\sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)} K_{M}\left(E^{i} \wedge F^{j}\right),
$$

respectively.
From (24) we see that for $\alpha \neq \beta$ we have

$$
\begin{equation*}
\rho_{\alpha \beta}=\bar{\rho}_{\alpha \beta}+g\left(H^{\alpha}, H^{\beta}\right)-\sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)}\left|h\left(E^{i} \wedge F^{j}\right)\right|^{2}, \tag{26}
\end{equation*}
$$

for $\alpha=\beta$ we have

$$
\begin{equation*}
\rho_{\alpha \alpha}=\bar{\rho}_{\alpha \alpha}-\sum_{i=1}^{n(\alpha)} \sum_{j=1}^{n(\beta)}\left|h\left(E^{i} \wedge F^{j}\right)\right|^{2} . \tag{27}
\end{equation*}
$$

Using (26) and (27) we have the following proposition
Proposition 2.4. Let M be a skew semi-invariant submanifold of a locally product manifold \bar{M}.
(i) If H^{α} is perpendicular to $H^{\beta}, \alpha \neq \beta$, then $\rho_{\alpha \beta} \leq \bar{\rho}_{\alpha \beta}$, and the equality holds if and only if M is $D^{\alpha}-D^{\beta}$ mixed totally geodesic.
(ii) If M is D^{α} minimal, then $\rho_{\alpha \alpha} \leq \bar{\rho}_{\alpha \alpha}$, and the equality holds if and only if M is D^{α} totally geodesic.

REFERENCES

[1] Tachibana, S. - Some theorems on a locally product Riemannian manifold, Tôhoku Math. J., 12 (1960), 281-292.
[2] Okumura, M. - Totally umbilical hypersurfaces of a locally product manifold, Kodai Math. Sem. Rep., 19 (1976), 35-42.
[3] Adaty, T. and Miyazaya, T. - Hypersurfaces immersed in a locally product Riemannian manifold, TRU Math., 14(2) (1978), 17-26.
[4] Adaty, T. - Submanifolds of an almost product Riemannian manifold, Kodai Math. J., 4(2) (1981), 327-343.
[5] Pitis, G. - On some submanifolds of a locally product manifold, Kodai Math. J., 9 (1986), 329-333.
[6] Bejancu, A. - Semi-invariant submanifolds of locally product Riemannian manifold, Ann. Univ. Timisoara S. Math., XXII (1984), 3-11.
[7] Ronsse, G.S. - Generic and skew CR submanifolds of a Kaekler manifold, Bull. Inst. Math. Acad. Sini., 10 (1990), 127-141.
[8] Yano, K. - Differential Geometry on Complex and Almost Complex Spaces, Pergamon Press, 1965.

Liu Ximin,
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 - P.R. CHINA
and
Fang-Ming Shao,
Department of Basic Science, Dalian Maritime University, Dalian 116024 - P.R. CHINA

[^0]: Received: December 2, 1997.
 1991 Mathematics Subject Classification: 53C40, 53C15.
 Keywords and Phrases: Sectional curvature, Locally product manifold, Skew semi-invariant submanifold.

