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SKEW SEMI-INVARIANT SUBMANIFOLDS
OF A LOCALLY PRODUCT MANIFOLD

Liu Ximin and Fang-Ming Shao

Abstract: In this paper, we defined and studied a new class of submanifolds of a lo-

cally Riemannian product manifold, i.e., skew semi-invariant submanifolds. We give two

sufficient conditions for submanifolds to be skew semi-invariant submanifolds. Moreover,

we discussed the sectional curvature of skew semi-invariant submanifolds and obtained

many interesting results.

1 – Introduction

In the early years of the sixties, S. Tachibana [1] introduced and studied a

class if important manifolds, i.e., locally product manifolds. After that, some

authors discussed this class of manifolds, they obtained many very interesting

results (cf. [2], [3], [4] and [5]). In [6], A. Bejancu defined and studied semi-

invariant submanifolds of a locally product manifold. In this paper, we defined

and discussed a new class of submanifolds of a locally product manifold, i.e.,

skew semi-invariant submanifolds, which contain semi-invariant submanifolds as

a special case.

There are two parts in this paper, in section one we give the definition of skew

semi-invariant submanifolds and some preliminaries which we will use later. In

section two we discuss the parallelism of the canonical structures P and Q and

the sectional curvature of skew semi-invariant submanifolds.
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2 – Definitions and preliminaries

In this paper, we suppose that all manifolds and maps are C∞-differentiable.

Let (M̄, g, F ) be an almost product Riemannian manifold, where g is a Rie-

mannian metric and F is a non-trivial tensor field of type (1, 1), F is called an

almost product structure. Moreover g and F satisfying the following conditions

(1) F 2 = I (F 6= ±I) , g(FX,FY ) = g(X,Y ) ,

where X,Y ∈ TM̄ and I is the identity transformation.

We denote by ∇̄ the Levi–Civita connection on M̄ with respect to g, if

∇̄XF = 0, X ∈ TM̄ , we call M̄ a locally product Riemannian manifold.

Let M be a Riemannian manifold isometrically immersed in M̄ and denote by

the same symbol g the Riemannian metric induced on M , for p ∈M and tangent

vector Xp ∈ TpM , we write

(2) FXp = PXp +QXp

where PXp ∈ TpM is tangent to M and QXp ∈ T⊥
p M is normal to M .

For any two vectors Xp, Yp ∈ TpM , we have g(FXp, Yp) = g(PXp, Yp), which

implies that g(PXp, Yp) = g(Xp, PYp). So P and P 2 are all symmetric operators

on the tangent space TpM . If α(p) is the eigenvalue of P 2 at p ∈M , since P 2 is

a composition of an isometry and a projection, hence α(p) ∈ [0, 1].

For each p ∈ M , we set Dα
p = Ker(P 2 − α(p) I), where I is the identity

transformation on TpM , and α(p) is an eigenvalue of P 2 at p ∈M , obviously, we

have D0
p = KerP , D1

p = KerQ, D1
p is the maximal F invariant subspace of TpM

and D0
p is the maximal F anti-invariant subspace of TpM . If α1(p), ..., αk(p) are

all eigenvalues of P 2 at p, then TpM can be decomposed as the direct sum of the

mutually orthogonal eigenspaces, that is,

TpM = Dα1
p ⊕ · · · ⊕Dαk

p .

Now we give the following definition.

Definition. A submanifold M of a locally product manifold M̄ is called a

skew semi-invariant submanifold if there exists an integer k and constant functions

αi, 1 ≤ i ≤ k, defined on M with values in (0, 1) such that

(i) Each αi, 1 ≤ i ≤ k, is a distinct eigenvalue of P 2 with TpM = D0
p ⊕D1

p ⊕

Dα1
p ⊕ · · · ⊕Dαk

p , for p ∈M .

(ii) The dimensions of D0
p, D

1
p and Dαi

p , 1 ≤ i ≤ k, are independent of p ∈M .
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Remark. Condition (ii) in the above definition implies that D0
p, D

1
p and

Dαi
p , 1 ≤ i ≤ k, defined P invariant, mutually orthogonal distributions which we

denote by D0, D1 and Dαi , 1 ≤ i ≤ k, respectively. Moreover the tangent bundle

of M has the following decomposition

TM = D0 ⊕D1 ⊕Dα1 ⊕ · · · ⊕Dαk .

Particularly if k = 0 then M is a semi-invariant submanifold [6]. If k = 0,

and D0
p(D

1
p) is trivial, then M is an invariant (anti-invariant) submanifold of M̄

[4].

Denote the induced connection in M by ∇, we have the formulas of Gauss

and Weingarten

∇̄XY = ∇XY + h(X,Y ) ,(3)

∇̄XN = −AN X +∇⊥
XN ,(4)

for all vector fields X,Y ∈ TM and N ∈ T⊥M . Here h denotes the second

fundamental form and T⊥M denotes the normal bundle of M in M̄ . Moreover

we have

(5) g
(

h(X,Y ), N
)

= g(ANX,Y ) .

For N ∈ T⊥M , we set

(6) FN = tN + fN

where tN ∈ TM , fN ∈ T⊥M .

From F (∇̄XY ) = ∇̄XFY , (3), (4) and (6) we have

(7) P (∇XY ) +Q(∇XY ) + t h(X,Y ) + f h(X,Y ) =

= ∇XPY + h(X,PY )−AQYX +∇⊥
XQY ,

for X,Y ∈ TM . Comparing tangential and normal components in (7) we obtain

P ∇XY = ∇XPY − t h(X,Y )−AQYX ,(8)

Q∇XY = h(X,PY ) +∇⊥
XQY − f h(X,Y ) ,(9)

for X,Y ∈ TM . From (8) and (9) we can get

P [X,Y ] = ∇XPY −∇Y PX +AQXY −AQYX ,(10)

Q[X,Y ] = h(X,PY )− h(PX, Y ) +∇⊥
Y QX −∇⊥

XQX .(11)
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We have the following lemma immediately from (10) and (11)

Lemma 1.1. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , then

(i) The distribution D0 is integrable if and only if AFXY = AFYX for all

X,Y ∈ D0.

(ii) The distribution D1 is integrable if and only if h(X,FY ) = h(FX, Y ) for

all X,Y ∈ D1.

We define the covariant derivatives of P and Q in a manner as follows

(∇XP )Y = ∇XPY − P ∇XY ,(12)

(∇XQ)Y = ∇⊥
XQY −Q∇XY ,(13)

for all X,Y ∈ TM . Using (8) and (9) we have

(∇XP )Y = t h(X,Y ) +AQYX ,(14)

(∇XQ)Y = f h(X,Y )− h(X,PY ) .(15)

Let D1 and D2 be two distributions defined on a manifold M . We say that D1

is parallel with respect to D2 if for all X ∈ D2 and Y ∈ D1, we have ∇XY ∈ D1.

D1 is called parallel if for X ∈ TM and Y ∈ D1, we have ∇XY ∈ D1, it is easy to

verify that D1 is parallel if and only if the orthogonal complementary distribution

of D1 is also parallel.

Let M be a submanifold of M̄ . A distribution D on M is said to be totally

geodesic if for all X,Y ∈ D we have h(X,Y ) = 0. In this case we say also that

M is D totally geodesic. For two distributions D1 and D2 defined on M , we say

that M is D1-D2 mixed totally geodesic if for all X ∈ D1 and Y ∈ D2 we have

h(X,Y ) = 0.

Proposition 1.1. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , for any distribution Dα, if ANPX = PANX, for all X ∈ Dα

and N ∈ T⊥M , then M is Dα-Dβmixed totally geodesic, where α 6= β.

Proof: From the assumption we have P 2ANX − αANX = 0, which im-

plies that ANX ∈ Dα. So for all Y ∈ Dβ, N ∈ T⊥M , α 6= β, we have

0 = g(ANX,Y ) = g(h(X,Y ), N), that is h(X,Y ) = 0, hence M is Dα-Dβ mixed

totally geodesic.
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From (2) and (6) we can obtain

f QXp = −QPXp ,(16)

QtN = N − f2N ,(17)

for all Xp ∈ TpM , N ∈ T⊥
p M . Furthermore, for Xp ∈ Dαi

p , 1 ≤ i ≤ k, we have

(18) f2QXp = αiQXp .

Also if Xp ∈ D0
p then it is clear that f2QXp = 0. Thus if Xp is an eigenvector

of P 2 corresponding to the eigenvalue α(p) 6= 1, then QXp is an eigenvector of

f2 with the same eigenvalue α(p). (17) implies that α(p) is an eigenvalue of f 2 if

and only if γ(p) = 1−α(p) is an eigenvalue of Qt. Since Qt and f 2 are symmetric

operators on the normal bundle T⊥M , their eigenspaces are orthogonal. The

dimension of the eigenspace of Qt corresponding to the eigenvalue 1 − α(p) is

equal the dimension of Dα
p if α(p) 6= 1. Consequently, we have

Lemma 1.2. Let M be a submanifold of a locally product Riemannian

manifold M̄ . M is a skew semi-invariant submanifold if and only if the eigenvalues

of Qt are constant and the eigenspaces of Qt have constant dimension.

3 – Skew semi-invariant submanifold

Theorem 2.1. Let M be a submanifold of a locally product manifold M̄ , if

∇P = 0, then M is a skew semi-invariant submanifold. Furthermore each of the

P invariant distributions D0, D1 and Dαi , 1 ≤ i ≤ k, is parallel.

Proof: Fix p ∈M , for any Yp ∈ Dαi
p and any vector field X ∈ TM , let Y be

the parallel translation of Yp along the integral curve of X. Since (∇XP )Y = 0,

we have by (8)

∇X(P 2 − α(p)Y ) = P 2∇XY − α(p)∇XY = 0

since P 2Y − α(p)Y = 0 at p, it is identical 0 on M . Thus the eigenvalues of

P 2 are constant. Moreover, parallel translation of TpM along any curve is an

isometry which preserves each Dα. Thus the dimension of each Dα is constant

and M is a skew semi-invariant submanifold.

Now if Y is any vector field in Dα, we have P 2Y = αY (α constant), i.e.,

P 2∇XY = α∇XY which implies that Dα is parallel.
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Next we turn our attention to the vanishing of ∇Q. For X,Y ∈ TM , if

(∇XQ)Y = 0 then (15) yields

(19) f h(X,Y ) = h(X,PY ) .

In particular, if Y ∈ Dα then (19) implies

(20) f2 h(X,Y ) = αh(X,Y )

consequently we have

Proposition 2.1. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , if ∇Q ≡ 0, then M is Dα-Dβ mixed totally geodesic for

all α 6= β. Moreover, if X ∈ Dα then either h(X,X) = 0 or h(X,X) is an

eigenvector of f2 with eigenvalue α.

The next lemma is easy to prove so we omit the proof.

Lemma 2.1. Let M be a submanifold of a locally product manifold M̄ , then

∇Q = 0 if and only if ∇XtN = t∇⊥
XN for all X ∈ TM and N ∈ T⊥M .

Theorem 2.2. Let M be a submanifold of a locally product manifold M̄ , if

∇Q = 0, then M is skew semi-invariant submanifold.

Proof: If TM = D1 then we are done. Otherwise, we may find a point p ∈M

and a vector Xp ∈ Dα
p , α 6= 1. Set Np = QXp, then Np is an eigenvector of Qt

with eigenvalue γ(p) = 1− α(p). Now, let Y ∈ TM and N be the translation of

Np in the normal bundle T⊥M along an integral curve of Y , we have

∇⊥
Y (QtN − γ(p)N) = ∇⊥

Y QtN − γ(p)∇⊥
Y N = Q(∇Y tN)− γ(p)∇⊥

Y N .

By Lemma 2.1, this becomes ∇⊥
Y (QtN − γ(p)N) = Qt∇⊥

Y N − γ(p)∇⊥
Y N = 0.

SinceQtN−γ(p)N = 0 at p, QtN−γ(p)N ≡ 0 onM . It follows from Lemma 1.2

that M is a skew semi-invariant submanifold.

For a submanifold M of a locally product manifold M̄ , let R̄ (resp. R) denote

the curvature tensor of M̄ (resp. M), then the equation of Gauss is given by

(21)
g
(

R(X,Y )Z, W
)

= g
(

R̄(X,Y )Z, W
)

+ g
(

h(X,W ), h(Y,Z)
)

− g
(

h(X,Z), h(Y,W )
)

for X,Y, Z,W ∈ TM .
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The sectional curvature of a plane section of M̄ determined by two orthogonal

unit vectors X,Y ∈ TM̄ is given by

(22) KM̄ (X ∧ Y ) = g
(

R̄(X,Y )Y, X
)

.

The sectional curvature of a plane section of M determined by two orthogonal

unit vectors X,Y ∈ TM is given by

(23) KM (X ∧ Y ) = g
(

R(X,Y )Y, X
)

.

For X,Y ∈ TM , from (21), (22) and (23) we can obtain

(24) KM (X ∧ Y ) = KM̄ (X ∧ Y ) + g
(

h(X,X), h(Y, Y )
)

− |h(X,Y )|2 .

Proposition 2.2. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , if ∇Q = 0, then for any unit vectors X ∈ Dα and Y ∈ Dβ,

α 6= β, we have KM (X ∧ Y ) = KM̄ (X ∧ Y ).

Proof: It can be followed easily from Proposition 2.1.

Lemma 2.2. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , then the followings are equivalent

(i) (∇XQ)Y − (∇YQ)X = 0 for all X,Y ∈ Dα.

(ii) h(P,X, Y ) = h(X,PY ) for all X,Y ∈ Dα.

(iii) Q[X,Y ] = ∇⊥
XQY −∇⊥

Y QX for all X,Y ∈ Dα.

(iv) ANPY − PANY is perpendicular to Dα for all Y ∈ Dα and N ∈ T⊥N .

The proof is very trivial, we omit it here.

We call P α commutative if any of the equivalent conditions in the above

Lemma holds.

For each P invariant Dα, let n(α) = dimDα. For each Dα we may choose

a local orthonormal basis E1, ..., En(α). Define the Dα mean curvature vector

by Hα =
∑n(α)

i=1 h(Ei, Ei), then the mean curvature vector is given by H =
1
n
(H0 +H1 +Hα1 + · · ·+Hαk), n = dimM .

A skew semi-invariant submanifold M of a locally product manifold M̄ is

called Dα minimal if Hα = 0 and minimal if H = 0.

For any unit vector X ∈ Dα, α 6= 0, defined the α sectional curvature of M̄

and M by

H̄α(X) = KM̄ (X ∧ Y ) , Hα(X) = KM (X ∧ Y )



326 LIU XIMIN and FANG-MING SHAO

respectively, where Y = PX√
α
. From (24) we have

(25) Hα(X) = H̄α(X)−
1

α
g
(

h(X,X), h(PX,PX)
)

−
1

α
|h(X,PX)|2 .

Then we have the following proposition

Proposition 2.3. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ , if P is α commutative, α 6= 0, then

Hα(X) = H̄α(X) + |h(X,X)|2 −
1

α
|h(X,PX)|2 .

Let {E1, ..., En(α)} and {F 1, ..., Fn(β)} be the local orthonormal bases for Dα

and Dβ, respectively. We define α-β sectional curvatures of M̄ and M by

ρ̄αβ =

n(α)
∑

i=1

n(β)
∑

j=1

KM̄ (Ei ∧ F j) , ραβ =

n(α)
∑

i=1

n(β)
∑

j=1

KM (Ei ∧ F j) ,

respectively.

From (24) we see that for α 6= β we have

(26) ραβ = ρ̄αβ + g(Hα, Hβ)−

n(α)
∑

i=1

n(β)
∑

j=1

|h(Ei ∧ F j)|2 ,

for α = β we have

(27) ραα = ρ̄αα −

n(α)
∑

i=1

n(β)
∑

j=1

|h(Ei ∧ F j)|2 .

Using (26) and (27) we have the following proposition

Proposition 2.4. Let M be a skew semi-invariant submanifold of a locally

product manifold M̄ .

(i) If Hα is perpendicular to Hβ , α 6= β, then ραβ ≤ ρ̄αβ , and the equality

holds if and only if M is Dα-Dβ mixed totally geodesic.

(ii) If M is Dα minimal, then ραα ≤ ρ̄αα, and the equality holds if and only

if M is Dα totally geodesic.
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