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COMMUTING EXPANDING DYNAMICS

M. Carvalho

Abstract: There are several indications that the commutativity between two dynam-

ics induces restrictions at very important levels. The event of two commuting distinct

dynamics is rather rare, at least among special families like Anosov diffeomorphisms, as

explained in [PY1] and [PY2]. Since it is unusual, if commutativity is present a price is

expected, as a relative scarcity of common invariants. The best sources to evince rigidity

instances among commuting expanding dynamics are [F], [L] and [R]. We intend to add

here another example.

1 – Introduction

The subject we address here had its origin in [F]. It was proved there that

every closed invariant set for a non-lacunary semigroup of endomorphisms of the

circle is finite or the whole circle. And it was conjectured that the set of ergodic

probabilities invariant by both the expanding maps z ∈ S1 7→ zp and z ∈ S1 7→ zq,

where p and q are positive relatively prime integers greater than 2, is reduced to

the Lebesgue measure and probabilities supported on common periodic orbits.

This is so far still unproved. But in [L] a partial incentive was brought to light

when it was concluded that a borelean non-atomic measure invariant for both zp

and zq and mixing for one of the dynamics is the Lebesgue measure. In [R] it

was achieved a wider characterization of the common invariant measures in this

context, namely that a probability invariant by both zp and zq and ergodic for

the semigroup they generate must either be the Lebesgue measure (the measure

of maximal entropy of zp and zq) or have zero metric entropy with respect to both

zp and zq. These results are extensible to commuting differentiable expanding

maps of the circle through their conjugacies with the models zk.
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The natural environments to generalize this discussion are the tori Td, d ≥ 2,

similarly considered as compact additive groups. For Anosov systems, the dy-

namics, like the ones of zp or zq or any other differentiable map (see [Sh1]), may

be codified by shifts, also have a unique fixed point (due to the hyperbolicity)

and always induce an expanding invariant direction. However, to understand

the array of rigidity present in this context we have to begin establishing the

corresponding vocabulary. For example, a suitable analogue to a non-lacunary

semigroup generated by multiplications of integers may be a semigroup generated

by the composition of linear Anosov diffeomorphisms provided their centralizers

are not trivial; this is a convenient way to translate the relative primeness de-

manded above between the degrees of the expanding maps, and it is achieved if

we reduce the analysis to diffeomorphisms f and g verifying the independence

condition
[

fn ◦ gm = Id, (n,m) ∈ Z2
]

⇒
[

n = m = 0
]

.

The most comprising works on conjectures similar to the ones mentioned

above, within semigroups containing a codimension one Anosov element, belong

to [Fk2], [H], [B] and [KS]. In the first two it is settled that there are topological

constraints to commutativity of hyperbolic automorphisms acting on the bidi-

mensional torus. Namely that a compact common invariant set which contains

a C2 arc must be the whole torus and, moreover, the only common invariant

compact connected submanifold of class Cr, r ≥ 2, is the torus. The result in

[B] is the version of [F] on the tori: it is established that the minimal subsets for

linear hyperbolic multi-parameter actions of homomorphisms on Td are finite. In

particular, common orbits of commuting automorphisms (diffeomorphisms which

are projections on Td of hyperbolic matrices of Gld(Z) acting on Rd through the

universal covering π : Rd → Td) are dense, apart from the finite (periodic) ones.

In [KS] it was concluded the analogue of [R], that the set of common invariant

probabilities, ergodic by the action of commuting codimension one Anosov dif-

feomorphisms, reduces to the Haar measure (this is the Lebesgue measure on Td)

and probabilities with zero metric entropy. So far it remains unknown if, in this

latter case, the support of the measure is a periodic orbit.

Codimension one Anosov diffeomorphisms are always transitive and, in fact,

they may only live on tori where all Anosov diffeomorphisms are conjugate to

linear models. See [Fk1] and [Mn] for details. This simplification of the envi-

ronments and the dynamics justifies our choice of commuting codimension one

Anosov diffeomorphisms as the starting point to add to the list above one more

example of rigidity among expanding maps. There is indeed more to trace in the

general context but we will stay within the bidimensional torus, although some

conclusions hold in higher dimensions.
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Let A and B denote two commuting codimension one Anosov automorphisms

on T2 such that, if n and m are in Z, then
[

An ◦ Bm = Identity
]

⇒
[

m = n = 0
]

.

Denote by A and B the corresponding matrices acting in R2. The hyperbolicity

of A and B is in general not inherited by their composition, so we assume in the

sequel that
[

spectrum ofA ◦ B
]

∩ S1 = ∅ .

This assumption is essential to entangle the dynamics of A and B through A◦B.

We will verify in what follows that A, B and A ◦ B share the same unique fixed

point, say P , and that we may assume without loss of generality that they also

have in common the one-dimensional unstable foliation. Denote by FA and FB
the restrictions of A and B to the unstable manifolds Wu(P,A) and Wu(P,B).

As assumed, Wu(P,A) = Wu(P,B), so these maps have the same domain, we

will abbreviate into W(P ). Due to the hyperbolicity of A and B, the maps FA
and FB are differentiable and expanding: there is a constant ρ bigger than 1 such

that, in the adapted Riemannian metric, for each x belonging to W(P ), each

nonzero vector v of TxW
u(P ) and positive iterate n, we have

‖Dfnx (v)‖ = ‖DF
n
x (v)‖ ≥ ρn ‖v‖ .

As A and B are linear projections, the liftings to R2 of FA and FB, within the

subspace Eu(A) = Eu(B), are multiplications by numbers βA and βB greater

than 1. These liftings are essentially commuting expanding maps defined on R
and, since the quotient Log βA

Log βB
is irrational, otherwise A and B would not be

independent, the expanding maps x ∈ R 7→ βA x and x ∈ R 7→ βB x form a

non-lacunary semigroup acting on R. But to apply [F] we should envisage FA
and FB as liftings to R of commuting maps of the circle and this is not possible

because, as A and B are hyperbolic, βA and βB are never integers. So this does

not seem to be the right approach.

We are then led to another way to lift the Anosov diffeomorphisms to a lesser

dimensional dynamics. Denote the stable foliations assigned to A and B by

Ws(A) and Ws(B). Given two close points R and S in T2 and local unstable

manifolds Wu
loc(R) and W

u
loc(S), the holonomy between these two sections maps

each point x in Wu
loc(R) to the intersection of the local stable manifold of x with

Wu
loc(S). In general, the holonomy associated to a foliation is not even absolutely

continuous (see [RY]). Anyway, among Anosov diffeomorphisms, we know that
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Theorem ([HP], [PS]).

(a) If a hyperbolic diffeomorphism is of class C1+ε, ε > 0, then the holonomy

is Hölder continuous.

(b) If a C2 hyperbolic diffeomorphism has codimension one, then the holon-

omy is C1.

(c) The holonomy of a C2 hyperbolic diffeomorphism is absolutely continuous.

(d) For a toral Anosov automorphism the holonomy is C∞.

So the holonomies of the foliationsWs(A) andWs(B) are C∞ and, in particu-

lar, they are absolutely continuous. That is, their holonomies take zero Lebesgue

measure subsets of Ws(A) into zero Lebesgue measure sets. More precisely, they

have a positive Jacobian with respect to the probability induced on the foliations

by the Lebesgue measure inside T2. Using the holonomy of the stable leaves and

a convenient Markov partition, we will construct two maps FA and FB that are

essentially one-dimensional, since they are defined on a non-trivial subset of the

unstable foliation, and are expanding maps according to a more general definition

we will present on a comming section. Their domain, say X, is made of a finite

union of local stable manifolds intersected with the subset of the torus, which we

denote by M0, whose points have itineraries, along a chosen Markov partition,

that never reach its boundary; and is endowed with a Lebesgue measure mX on

its boreleans.

The most interesting dynamical attributes of the Anosov diffeomorphisms are

evinced through these expanding maps. For instance, FA shares with A the

same topological entropy and preserves a unique exact probability, say λA, that

is absolutely continuous with respect to the Lebesgue measure of its domain,

verifies

lim
n→+∞

mX (F−nA (L)) = λA(L) ∀ borelean L

and whose projection on the torus is the Bowen–Ruelle–Sinai measure of A. It

is expected that the rigidity found in [B] or [KS] manifests through geometric

restrictions on the common FA, FB-invariants. We thereby conclude that

Theorem.

(a) If K is a FA, FB invariant closed set, then K = X or K is finite.

(b) If σ is a FA, FB invariant exact probability, then σ = mX or its entropy

is zero.
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We will start with some definitions and notation, pursue with straight con-

sequences of the commutativity of the dynamics and resume the proof of the

Theorem in the last section.

2 – Definitions

We now recall the basic tenets of dynamical systems we will use. We follow

Mañé’s presentation of the theory of expanding maps, to be found in his book

[M].

(1) Given a family of diffeomorphisms F, a set L is F-invariant if f(L) = L

for all f ∈ F.

(2) A subset L is minimal if it is non-empty, closed, F-invariant and it

contains no closed F-invariant proper subset. That is, L 6= ∅, L is closed, f(L) =

L for all f in F, and if N is a closed non-empty subset of L such that f(N) = N

for all f in F, then N = L.

(3) Let f : M → M be a diffeomorphism and T =
⋃

x∈M TxM the tangent

bundle of M . Denote the derivative of f by Df : T → T , where Dxf : TxM →

Tf(x)M is the corresponding linear map. A closed subset Λ ⊆M is hyperbolic if

f(Λ) = Λ and each tangent space TxM , with x in Λ, can be written as a direct

sum TxM = Es
x(f)⊕ Eu

x(f) of subspaces such that

(i) Dxf(E
s(f)) = Es

f(x)(f);

(2i) Dxf(E
u(f)) = Eu

f(x)(f);

(3i) ∃C > 0 ∃λ ∈ ]0, 1[: ∀x ∈ Λ ∀ v ∈ Es
x(f) ∀w ∈ Eu

x(f) ∀n ∈ N we have

‖Dxf
n(v)‖ ≤ C λn ‖v‖ and ‖Dxf

−n(w)‖ ≤ C λn ‖w‖ ;

(4i) the maps x 7→ Es
x(f) and x 7→ Eu

x(f) are continuous.

This hyperbolic splitting of the tangent bundle at each x is integrable and the

corresponding foliations define two families of submanifolds immersed in M , the

stable and unstable manifolds, which are transversal at x and invariant by f .

(4) Given a diffeomorphism f , the spectrum of Dxf is the set of eigen-

values of Dxf . A family F of diffeomorphisms acting on M is hyperbolic if

[spectrumDxf ] ∩ S
1 = ∅ for all f in F and x in M . Denote by spc(f) the union

⋃

x∈M spectrum(Dxf).
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(5) If M is a hyperbolic set of f , we say that f is an Anosov diffeomorphism.

This restricts the possible eigenvalues of the linear maps Dxf and means that

spc(f) ∩ S1 = ∅. By the continuity demanded in (3) and the connectedness

of M , the dimension of each of the subspaces forming the splitting of (3) is

constant on M . We say that f is of codimension one if its hyperbolic splitting

TxM = Es
x(f)⊕ Eu

x(f) verifies one of the equalities

dimensionEu(f) = 1 or dimensionEs(f) = 1 .

(6) Two elements f and g of F are rationally independent if for all n,m ∈ Z,
we have

fn ◦ gm = Identity ⇔ n = m = 0 .

(7) Let (X,D, ν) be a compact metric space endowed with a distance D and

a borelean probability ν and G an endomorphism of (X,D, ν). G is expanding if

there is a sequence of partitions P = P0,P1, ... such that

(i) the closure of
⋃

O∈P

O is X and inf
O∈P

ν[G(O)] > 0;

(2i) ∀n ≥ 0 ∀O ∈ Pn+1, G(O) is covered, modulo a set with zero ν-measure,

by atoms of Pn and G is injective in O;

(3i) the local inverses of G are contractions, that is, there are 0 < ω < 1 and

c > 0 such that, in each atom Pn(x) that contains x, we have

D(x, y) ≤ c ωn D[Gn(x), Gn(y)] ∀n ≥ 0 ∀x ∈ X ∀ y ∈ Pn(x) ;

(4i) ∀U ,V ∈ P ∃n > 0 such that ν[G−n(U) ∩ V] 6= 0;

(5i) ∃ J : X → R+ ∃ 0 < θ < 1 ∃C > 0 such that

1. ∀ borelean L inside an atom of P, ν(G(L)) =
∫

L J dν;

2. ∀n ≥ 0 ∀x, y in the same atom of Pn we have
∣

∣

∣

∣

J(x)

J(y)
− 1

∣

∣

∣

∣

≤ C
{

D[G(x), G(y)]
}θ

.

This definition, although cumbersome, extends the notion of differentiable

expanding map. It includes Markov maps and the topogically mixing subshifts.

(8) Given an Anosov diffeomorphism f on a Riemannian manifold (M,D),

there is a constant (of expansivity) εf > 0 such that

∀x, y ∈M, x 6= y, ∃n ∈ Z such that D[fn(x), fn(y)] > εf .
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It is known that M has a local product structure, that is, there is a positive

constant ρf less than εf such that the crochet

[[x, y]] : (x, y) 7→ Ws
ρf
(x) ∩Wu

ρf
(y)

is a well defined continuous map. ρf may be chosen so that the crochet determines

a homeomorphism between the product
◦
W

u

ρf
(x)×

◦
W

s

ρf
(x) and a neighbourhood

of x in M . By Ws
f,ρf

(x) we mean the set

{

z ∈ Ws
f (x) : D(x, y) ≤ ρf

}

,

which by hyperbolicity coincides with

{

z ∈M : D[fk(x), fk(z)] ≤ ρf for all k ∈ N0

}

;

◦
W

s

ρf
(x) is the subset of Ws

ρf
(x) given by the points z such that D(x, y) < ρf .

A subset R of M is called a rectangle for f if its diameter is less than ρf and

it is stable for the crochet that is, for all x and y in R, [[x, y]] belongs to R. We

say that R is proper if it is the closure of its interior (notice that, in this case, R

is closed).

A Markov partition of M for f is a finite collection R = {R1, ..., Rm} by

proper rectangles verifying

(a) M =
m
⋃

i=1

Ri;

(b) the interiors of distinct rectangles are disjoint and the diameter of each

rectangle is less than ρf ;

(c) when x is in the interior of Ri and f(x) is in the interior of Rj , then

f [Ws
f,ρf

(x)] ∩Ri ⊆ Ws
f,ρf

(f(x)) ∩Rj ;

(d) when x is in the interior of Ri and f−1(x) is in the interior of Rj , then

f [Wu
f,ρf

(x)] ∩Ri ⊇ Wu
f,ρf

(f(x)) ∩Rj .

A general construction of Markov partitions for AxiomA diffeomorphisms may

be found in [Sh2].
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3 – Preliminaries

Consider two Anosov automorphisms A and B which commute and the cor-

responding matrices A and B acting in R2. Obviously all the iterates of A and B

also commute. Let us start with an account of the role played by the facts that

A and B commute and the hyperbolicity of A ◦ B.

Let PA and PB be the fixed points of A and B respectively. They are unique

due to the hyperbolicity and

Claim 1.

(a) PA ≡ PB.

(b) If ℘(A) denotes the A-invariant probabilities, then ℘(A)∩℘(B) is a non-

empty convex set.

(c) If µ is in ℘(A) ∩ ℘(B), then µ is also A ◦ B-invariant.

Proof:

(a) Since A(B(PB)) = A(PB) = B(A(PB)) and the fixed point for an Anosov

diffeomorphism is unique, we conclude that PB = A(PB) and thus PB = PA. In

the sequel we will denote by P this common fixed point.

(b) By continuity, ℘(A) and ℘(B) are non-empty. Besides if ν belongs to℘(A)

and the probability B∗ ν is given by

(B∗ ν) (K) = ν[B−1(K)] ∀measurable set K ,

then the sequence
(

1

n

[

ν + B∗ ν + · · ·+ (Bn−1)∗ ν
]

)

n∈N

has an accumulation point which is in ℘(A) ∩ ℘(B) because A and B commute.

(c) For all borelean K, we have

µ
[

(A ◦ B)−1(K)
]

= µ
[

(B−1 ◦ A−1)(K)
]

= µ(A−1(K))

because µ is B-invariant

= µ(K)

because µ is A-invariant.

Claim 2. If [spectrumA ◦ B] ∩ S1 = ∅, then the stable / unstable foliations

of A, B and A ◦ B coincide.
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Proof: Consider the hyperbolic splitting of A and B in stable / unstable

vector spaces Es(A)⊕ Eu(A) and Es(B)⊕ Eu(B). If v 6= 0 is an eigenvector for

A with eigenvalue αA with |αA| < 1, then

A(B(v)) = B(A(v)) = B(αA v) = αAB(v)

and therefore the non-zero vector B(v) is also an eigenvector forA with eigenvalue

αA. But the eigenspace E(αA) is Es(A) and its dimension is equal to 1. Thus

B(v) is a generator of Es(A) and so there exists ρ in R such that B(v) = ρ v.

However B has only two proper invariant directions, the ones corresponding to

Es(B) and Eu(B), so we must have either

|ρ| > 1 and E(ρ) = Es(A) = Eu(B)
or

|ρ| < 1 and E(ρ) = Es(A) = Es(B) .

An analogous argument leads to the conclusion that Eu(A) is invariant by B

and therefore Es, u(A) = Es, u(B). That is, the subspaces generated by Es(A) and

Eu(A) coincide with the ones generated by Es(B) and Eu(B), although they may

have complementary dynamics and certainly have different rates of expansion or

contraction. In particular, since we are dealing with codimension one systems, A

and B always exhibit one real eigenvalue which we may assume (considering A−1

or B−1 if necessary) having absolute value greater than one, whose eigenspace

generates the unstable direction of both A and B. This reduces the dimension

of the subspace where we have to pursue the analysis of the dynamics of A ◦ B.

In the complement of this unstable direction the dynamics of both A and B is

contracting (stable) and so is the one of A ◦ B.

Therefore, in dimension two, if in the basis given by the direct sum Es(A)⊕

Eu(A) and Es(B)⊕ Eu(B), the matrices A and B are written as

A =

(

α 0
0 β

)

, B =

(

α 0
0 β

)

,

where |α|< 1, |β|> 1, |α|< 1, |β|> 1, | detA|=1= |αβ| and | detB|=1= |αβ|,

then:

(1) If Es(A) = Es(B), A ◦ B is the Anosov diffeomorphism whose linear

lifting in the basis Es(A)⊕ Eu(A) = Es(B)⊕ Eu(B) is written as

AB =

(

αα 0
0 β β

)

with |αα| < 1 and |β β| > 1.
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(2) If Es(A) = Eu(B), A ◦ B is the Anosov diffeomorphism whose linear

lifting in the basis Es(A)⊕ Eu(A) = Eu(B)⊕ Es(B) is expressed as

AB =

(

αβ 0
0 αβ

)

with |αβ| 6= 1, because | detAB| = |αβ αβ| = 1 yields |αβ| = 1 and |αβ| = 1,

contradicting the initial hypothesis that does not allow an eigenvalue of AB in

S1; and so |αβ| < 1 or |αβ| > 1, in which case |αβ| 6= 1.

These equalities extend to the invariant manifolds (stable, unstable) tangent

to these subspaces. In fact, if π : R2 → T2 denotes the universal covering of

T2 and v, w are eigenvectors of A which determine the directions of Es(A) and

Eu(A), respectively, then, for each point Q = π(x0, y0) of the torus, the stable

manifold of f at Q is the projection by π of the line

(x, y)− (x0, y0) = t v : t ∈ R

and the unstable manifold at Q is the projection of

(x, y)− (x0, y0) = t w : t ∈ R .

These are orthogonal lines for the metric in R2. Since v and w also determine the

stable and unstable directions for B, the corresponding foliations are the ones of

A for all point Q. In particular, if ρ is the least number among ρA, ρB and ρA◦B
(see definition (8)), then the corresponding local stable manifolds for A, B and

A ◦ B coincide:

Ws
A, ρ(x) =

{

z ∈ Ws
A(x) : D(x, z) ≤ ρ

}

=

=Ws
B, ρ(x) =

{

z ∈ Ws
B(x) : D(x, z) ≤ ρ

}

=

=Ws
A◦B, ρ(x) =

{

z ∈ Ws
A◦B(x) : D(x, z) ≤ ρ

}

.

Notice that, for each Q in T2,Ws(Q) andWu(Q) are C∞ submanifolds, invariant

by both A and B, but they are not closed. Their closures are the whole torus,

which serves as a fair example of what was settled in [Fk] and [H].

Corollary. βA and βB cannot be rational numbers.

Proof: Since A belongs to Gld(Z), we have detA = 1 and trA ∈ Z, so

det(ρ Id − A) is a polinomial in ρ with integer coefficients, independent term

equal to 1 and coefficient of highest degree equal to 1. Therefore its rational

zeros can only be 1 or −1, which are forbidden by hyperbolicity.
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Corollary. If d = 2, there is a Markov partition, with arbitrarily small

diameter, for A, B and A ◦ B.

Proof: Let us start sketching the construction of a Markov partition for a

linear Anosov diffeomorphism f on T2. The torus may be decomposed in two

closed sets, we denote by S1 and S2, whose interiors have no elements in common

and which are the projections by π of the two rectangles in R2 with sides parallel

to the directions of the eigenspaces of f (the stable and unstable directions, as

we know). We get a Markov partition for f considering as rectangles the sets

+Z
⋂

k=−Z

fk(Sαk
)

where αk belongs to {1, 2} and Z ∈ N is big enough in order to guarantee that

these sets have a requested small diameter.

As mentioned in the preceding Claim, the stable and unstable foliations as-

sociated with A, B and A ◦ B coincide. Therefore, the starting sets S1 and S2

serve as well in the general procedure described above when applied to A, B or

A ◦ B. Notice that the sides of the two rectangles S1 and S2 in R2, when pro-

jected onto T2 by π, become part of the stable manifold of the fixed point P since

π(O) = π(C1) = π(C2) = π(C3).

Thus the collections of sets

+J
⋂

k=−J

Ak(Sαk) ,
+L
⋂

k=−L

Bk(Sαk
) ,

+N
⋂

k=−N

(A ◦ B)k (Sαk
) ,
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where J , L and N are positive integers big enough to guarantee that each of

these sets has diameter less than ρ = min{ρA, ρB, ρA◦B}, are Markov partitions

for A, B and A◦B. Moreover, if we let B act on the Markov partition of A, that

is, if we consider instead the family of all sets of the form

+L
⋂

k=−L

Bk
( +J
⋂

j =−J

Aj(Sαj
)

)

then we obtain a Markov partition for A, B and A ◦ B. This is so on account

of the hypothesis that A and B commute and the connection between these sets

and the already defined rectangles of the Markov partitions for B and A ◦ B.

4 – Proof of the Theorem

Let R = (Ri)i=1,···,k be a Markov partition with small diameter common to A

and B and (pi)i=1,···,k be chosen points inside each rectangle Ri. We may assume

that these points (pi)i belong to the same connected component of an unstable

manifoldWu(Q), because this foliation has dense leaves on the torus. ByWu(Q)

we mean the unstable manifold of Q for the dynamics of A, B or A◦B since they

coincide. Consider then

(1) ε > 0 smaller than ρA and ρB.

(2) M0 =
⋂

m∈Z
Am

(

T2 −
k
⋃

i=1

∂Ri

)

= T2 −
⋃

m∈Z
Am

( k
⋃

i=1

∂Ri

)

.

M0 is also given by the intersection
⋂

m∈Z B
m(T2 −

⋃k
i=1 ∂Ri), is invariant by A

and B, not closed and the Lebesgue measure in T2 of its complement is zero as a

consequence of the absolute continuity of the holonomy (which implies that the

Lebesgue measure of the boundary of R is zero) and the fact that A and B are

area preserving. We recall that

M0 = T2 −
(

Ws(P ) ∪Wu(P )
)

since R was constructed upon these two manifolds because the boundary of S1

and S2 was made of the stable/unstable foliation of the fixed point P .

(3) If Wu
ε (pi) is the local unstable manifold of pi of size ε, consider the set

X =
k
⋃

i=1

[

Wu
ε (pi) ∩Ri

]

∩M0 .
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The subset
⋃k
i=1[W

u
ε (pi)∩Ri] is a compact non-connected manifold with boundary

and dimension one, but the intersection with M0 turns X into a domain with a

very intrincate structure. In any case, X has a well defined Lebesgue measure

mX on its boreleans.

(4) h : M0 → X such that h(x) =Ws
ε (x) ∩ X.

The map h is well defined since each point ofM0 has an unambiguous itinerary

through the Markov partition and the choice of ε implies that each local stable

manifold has only one point of intersection with X. Recall that A and B have

the same stable foliations, so h is the same for both dynamics.

Lemma 1. If m and mX denote the Lebesgue measure on T2 and on X
respectively, then

mX (A) = 0 ⇒ m (h−1(A)) = 0 .

Proof: This is a direct consequence of the fact that the holonomy of the

stable foliation of A or B is absolutely continuous.

(5) Define in X the following metric D

D(x, y) = 1 if x and y are in different rectangles of the partition R ;

D(x, y) = sup
z∈Rj

Du

(

h−1(x) ∩Wu
ε (z) ∩Rj , h

−1(y) ∩Wu
ε (z) ∩Rj

)

if x and y are in Wu
ε (pj) ∩Rj .

Here Du denotes the Riemannian distance in Wu(z) induced by the Riemannian

metric D in T2. Notice that, with respect to this metric, we have

Du

[

g−1(x), g−1(y)
]

≤ γDu(x, y) ∀x, y ∈ T2 ,

where y is in Wu
ε (x), g = A or B and γ is equal to γA or γB given respectively by

γA = sup
{

‖DxA|Es(x)‖, ‖DxA
−1
|Eu(x)‖

}

x∈T2
,

γB = sup
{

‖Dx B|Es(x)‖, ‖Dx B
−1
|Eu(x)‖

}

x∈T2
.

(6) Consider FA : X → X, FB : X → X given by FA = h ◦ A, FB = h ◦ B.

Lemma 2. FA and FB are commuting expanding maps with respect to the

metric D.
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Proof: By definition, FA(h(x)) = h(A(x)) and FB(h(x)) = h(B(x)) for all x

in M0, and the same holds for (FA)
n and An, n ≥ 0. Therefore

FA ◦ FB = FA ◦ (h ◦ B) = (h ◦ A) ◦ B = h ◦ (B ◦ A) =

= (FB ◦ h) ◦ A = FB ◦ (h ◦ A) = FB ◦ FA .

Take now the following ingredients for FA. They are enough to check definition

(7) on FA. Similar argument for FB.

(a) mX = Lebesgue measure on the boreleans of X.

(b) P given by Pj =W
u
ε (pj) ∩Rj ∩M0.

(c) Pn =
n
∨

0

(FA)
−j(P).

(d) cA = 1.

(e) ω = γA.

(f) θA, CA the constants associated to the Hölder continuity of the map

z →
∣

∣

∣detDz A|Eu(z)

∣

∣

∣ .

(g) In each atom Pn,

JA(x) = Hn ∗
∣

∣

∣detDxA|Eu(x)

∣

∣

∣ = Hn ∗ βA ,

where Hn is the Jacobean of the holonomy of the stable foliation in this

atom.

Since A and B are linear Anosov diffeomorphisms, the maps Hn are constant

and equal to 1. See for instance their construction in [M]. Therefore, in this

context, JA ≡ βA and JB ≡ βB. Thus the property (5i) of definition (7) means

that, for all borelean L inside an atom of P,

mX (FA(L)) =

∫

L
JA dmX =

∫

L
βA dmX = βA ∗ mX(L) .

Corollary. The probability mX is ergodic for both FA and FB.

Proof: From [M] we know that the expanding maps FA and FB leave in-

variant (unique) probabilities λA and λB which are exact (in particular ergodic)
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and equivalent to mX, with an Hölder continuous Radon-Nykodim derivative and

metric entropy given by

hλA
(FA) =

∫

X
log(JA) dλA =

∫

X
log βA dλA = log(βA) = htop(A) ,

hλB
(FB) =

∫

X
log(JB) dλB =

∫

X
log βB dλB = log(βB) = htop(B) .

This implies thatmX is ergodic even though we do not know yet if it is invariant.

Our goal now is to complement this transition between (X, FA, FB,mX, λA, λB)
and (T2,A,B,m) regarding invariant probabilities and closed invariant sets with

the purpose of detecting rigidity among FA and FB. We will analyse first the

invariant sets for both dynamics and resume the proof studying the common

invariant probabilities.

(I) Closed invariant sets

Let ∅ 6= L ⊆ T2 be a A, B-minimal set. Then, by [B], L is finite. Moreover, if

L ∩Wu(P ) 6= ∅ (or L ∩Ws(P ) 6= ∅), then P is in L because, for all x in Wu(P ),

we know that

lim
n→+∞

A−m(x) = P

and L is closed. Therefore L must be {P} in account of its minimality.

Similar argument with the stable manifold. Besides, if L ∩ Ws(P ) = ∅, then

L ∩ (T2 −M0) = L ∩ [Wu(P ) ∪Ws(P )] = ∅. And so we may lift L to X, that is,

K∗ = h(L) is well defined. And K∗ is FA, FB-minimal. In fact

(i) K∗ is non-empty;

(ii) K∗ is FA and FB invariant since FA(K
∗) = FA(h(L)) = hA(L) = h(L) =

K∗;

(iv) K∗ is closed in X because L is compact and h is continuous;

(iv) K∗ is minimal: if ∅ 6= N∗ ⊆ K∗ is closed in X and FA, FB-invariant, then

L1 = h−1(N∗)∩L is a closed subset of L (since N ∗ and L are closed and

h is continuous), and L1 is invariant by both A and B because

A(L1) = A(h
−1(N∗) ∩ L) = A(h−1(N∗)) ∩ A(L)

= h−1FA(N
∗) ∩ L = h−1(N∗) ∩ L = L1 ;

thus L1 = L and therefore, by definition of h, N ∗ = K∗.
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And K∗ is finite because L is finite and h is a function. This is a way to produce

FA, FB minimal sets and they suit the part (a) of the Theorem. But there may

be others not yet obtained.

Given a FA, FB-invariant closed minimal set K in X, its pre-image by h,

h−1(K), is a subset of M0 which is A,B-invariant since M0 is A,B-invariant and

h−1(K) =
{

x : h(x) =Ws(x, ε) ∩ X ∈ K
}

=
⋃

x∈K

Ws(x, ε) ∩M0 .

But in general it is not closed in T2. So we have to consider its closure, say L,

which is still A,B-invariant, since A and B are homeomorphisms. Therefore, by

[B], either L is the whole torus T2 or it contains a minimal, which is finite.

If L = T2, then

X = h
[

h−1(K) ∩M0

]

⊆ h
[

h−1(K)
]

∩ h(M0)

= h[h−1(K)] ∩ h(M0)

= h[h−1(K)] ∩X

= h[h−1(K)] .

But h[h−1(K)] = K because h is surjective. Hence we conclude that, in this case,

X = K as claimed.

If L has a finite minimal Λ, consider Λ∩M0 and Γ = h(Λ∩M0). Γ is a closed

subset of K which is FA, FB invariant. If Γ is non-empty then, by the minimality

of K, Γ = K. As Γ is finite, K is finite. We are then left to know if there is always

a minimal inside L which intersects M0. Suppose, on the contrary, that there is a

set L for which all minimals are disjoint from M0. If Λ is one of these minimals,

then Λ∩M0 = ∅, that is, Λ is contained in Wu(P )∪Ws(P ); but inside these two

manifolds, only {P} is closed and invariant. Therefore Λ = {P}. Meanwhile, the

set L is given by

L = h−1(K) =
(

⋃

x∈K

Ws(x, ε) ∩M0

)

which is contained in
⋃

x∈KW
s(x, ε). Thus P belongs to one of the sets in these

union, that is, there exists x0 in K such that P is in the closure of Ws(x0, ε).

Moreover as Ws(x0, ε) is an embbeded disk, if P is in its closure, then x0 in

Ws(P ). But this contradicts the fact that K is a subset of X and X is contained

in M0.
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(II) Invariant probabilities

Let us now analyse part (b) of the Theorem. Take an ergodic probability µ

on T2, invariant by A and B. By [KS], µ is the Haar measure or has zero entropy.

Its support, say Sµ, is closed and A,B-invariant so we have

Claim.

(a) Sµ ∩W
u(P ) 6= ∅ ⇔ {P} ⊆ Sµ.

(b) Sµ ∩W
s(P ) = ∅ ⇒ Sµ ⊆M0 ⇒ µ(M0) = 1 and Sµ = T2.

(c) If Sµ ⊆ W
u(P ) ∪Ws(P ), then µ(M0) = 0 and µ = δP .

Proof:

(a) If x belongs to Sµ ∩W
u(P ), then the sequence ((A)−n(x))n∈N approaches

P as n goes to +∞; as Sµ is A-invariant and closed, {P} ⊆ Sµ.

(b) As M0 is invariant and µ is ergodic, we have µ(M0) = 0 or µ(M0) = 1.

Besides if Sµ∩W
s(P ) is empty, then P is not in Sµ and therefore Sµ∩W

u(P ) = ∅.

This implies, by definition of M0, that Sµ is contained in M0 and so µ(M0) ≥

µ(Sµ)= 1. Moreover since Sµ is closed and M0 is dense on the torus, we conclude

that Sµ = T2.

(c) If Sµ ⊆ W
u(P ) ∪Ws(P ), then M0 is contained in the complement of Sµ;

this implies that µ(M0) = 0. Besides, in Wu(P ) ∪Ws(P ), only {P} is closed in

T2 and left invariant by A (or B); so Sµ = {P} and µ = δP .

For our purposes, we reduce further analysis to ergodic probabilities µ such

that µ(M0) = 1, although it is not known if there are exceptions to this equality

besides δP or other Dirac probabilities supported on periodic orbits. Given one

of such a probability µ, define ν at each borelean K of X by

ν(K) =
µ [h−1(K)]

µ (M0)
= µ[h−1(K)] .

Lemma 3. ν is a FA, FB-invariant ergodic probability on X. And either

ν = λA = λB or it has zero entropy.

Proof: Given a borelean K in X, we have

ν [F−1
A (K)] = µ [h−1(F−1

A (K))] = µ [A−1h−1(K))] = µ [h−1(K)] = ν(K) .
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Let now K verify FA(K) = K. Clearly Ah−1(K) = h−1FA(K) = h−1(K), so

µ[h−1(K)] is equal to 0 or 1, which yields ν(K) = 0 or 1. Analogous argument

for B and FB. Thus ν is ergodic with respect to both dynamics.

If µ is the Lebesgue measure on T2, then ν is absolutely continuous with

respect to mX according to Lemma 1. By uniqueness, ν = λA = λB.

If µ has zero entropy, then ν has zero entropy since the entropy of µ is mainly

aware of the expanding nature of its component along X. In fact, the map

h : M0 → X is surjective and continuous, that is, a semiconjugacy between A|M0

and FA; so X may be seen as a quotient of M0 under an equivalence relation ∼

given by

x ∼ y ⇔ h(x) = h(y) .

Moreover µ[h−1(K)] = ν(K) for all K, therefore h is an isomorphism in measure.

Then

0 = hµ(A) ≥ hν(FA)

and the claim follows. Similar comments hold for B and FB.

This way we produce probabilities, ergodic and invariant by FA and FB,

directly from the ones invariant by A and B and they fit the contents of the

Theorem. We need now to check how are the others.

Given a FA, FB invariant probability σ, there is a natural way to lift it into a

measure on T2. Associated to σ and the algebra of the boreleans of X, say BX,
we may consider, for each m ≥ 0 and j ≥ 0, the sequence of probabilities

(1) µ0 : h
−1(BX → R+ such that µ0[h

−1(Y )] = σ(Y ) ∀Y ∈ BX.

Since FA ◦ h = h ◦ A, we have, for each element Y of BX, A−1h−1(Y ) =

(h ◦ A)−1(Y ) = (FA ◦ h)
−1(Y ) = h−1(FA(Y )) and this set belongs to h−1(BX).

That is, A−1h−1(BX) is contained in h−1(BX). From here it follows that, for all

m ∈ N0, A
m+1h−1(BX) contains Amh−1(BX).

(2) µm,j : A
mBj h−1(BX)→ R+ given, for each Y in BX, by

µm,j

[

AmBj h−1(Y )
]

= µ0

[

A−mB−j AmBj h−1(Y )
]

= µ0

[

h−1(Y )
]

= σ(Y ) .

Notice that, for each such Y , the following equalities hold,

µm+1, j

[

AmBj h−1(Y )
]

= µ0

[

A−m−1B−jAmBj h−1(Y )
]

=

= µ0

[

A−1 h−1(Y )
]

= µ0

[

(h ◦ A)−1(Y )
]

= µ0

[

(FA ◦ h)
−1(Y )

]

=

= µ0

[

h−1(FA)
−1(Y )

]

= σ
[

(FA)
−1(Y )

]

= σ(Y )
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and the same is valid for the iterates by B since it commutes with A; so we may

proceed defining

(3) µ∞ :
⋃

m≥0

⋃

j≥0A
mBj h−1(BX) → R+ such that, if Y is in BX and

Y = AmBj(h−1(Y )), then µ∞(Y ) = µm,j(Y ).

µ∞ is σ-aditive, A,B-invariant, satisfies µ∞(M0) = 1 and is a probability

acting on the σ-algebra
⋃

m≥ 0

⋃

j≥ 0A
mBj h−1(BX). It may be extended to the

σ-algebra of the boreleans of M0, which is given by
∨

m≥0

∨

j≥0

AmBj h−1(BX) ,

yielding an A,B-invariant probability µ∨. Notice that the σ-algebra of M0 is the

σ-algebra of T2 modulus a set of measure zero, since µ∞(M0) = 1; to reach all

boreleans of T2 we only have to settle that, for each borelean M,

µ(M) = µ∨(M∩M0)

and the result is a probability µ invariant by A and B such that µ(M0) = 1.

Besides, by definition, µ[h−1(Y )] = σ(Y ) for all Y in BX. Moreover

Lemma 4. If σ is exact, then so is µ with respect to A and B.

Proof: We will use the dynamics of A, the argument is easily repeated

for B. As mentioned already, the σ-algebra h−1(BX) verifies A−1 h−1(BX) ⊆
h−1(BX) and the union

⋃

m≥ 0 A
mh−1(BX) is the σ-algebra of boreleans of M0,

so it is, modulus zero, the σ-algebra of boreleans of T2. Finally, given Z in
⋂

m≥ 0A
mh−1(BX), then C belongs to

⋂

m≥ 0 h
−1(FA)

m (BX) =

h−1(
⋂

m≥ 0(FA)
m(BX)) and so there is C in

⋂

m≥ 0(FA)
m (BX) such that

C = h−1(C). As σ is exact, we have σ(C) = 0 or σ(C) = 1, thus µ(C) =

µ[h−1(C)] = σ(C) is equal to 0 or 1.

Corollary. If σ is an exact probability for FA and FB, then σ = mX or has

zero entropy. In particular, λA = λB = mX.

Proof: By previous Lemma, the probability µ is invariant and ergodic by

both A and B, and so by [KS], µ is the Lebesgue measure or has zero entropy. Use

now the proof of the Lemma to conclude that, in the former case, σ is λA (that

is, the unique probability invariant by FA and absolutely continuous with respect

to mX is exactly the lifting of the Bowen–Ruelle–Sinai measure of A which is the

Lebesgue measure on the torus) and, in the latter, σ has zero entropy. Analogous

calculations hold for B. Thus we have λA = λB = σ.
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Besides since A and B are linear Anosov diffeomorphisms, by previous Lemma

we also conclude that, for the Lebesgue measure m and a borelean L of X, we

have

λA(L) = m(h−1(L)) ;

and moreover this is mX(L) because, as mentioned before, the Jacobean Hn of

the holonomy is identically one and so the density of mX with respect to m (see

Lemma 1) is identically one. Therefore we ultimately settle that there does exist

an exact invariant probability for both FA and FB and is precisely mX.
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