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FORBIDDEN PERIODS IN
DELAY DIFFERENTIAL EQUATIONS

L.A.V. Carvalho *, L.A.C. Ladeira ** and M. Martelli

Abstract: We study the one-parameter family of scalar differential-difference equa-
tions

x′(t) = f
(

α, x(t), x(t−1)
)

,

and establish some results on the period of periodic solutions and its relations with the

parameter α.

1 – Introduction

The primary goal of this article is to establish conditions for the non-existence

of certain nonconstant periodic orbits of scalar differential-delay equations of the

form

x′(t) = f
(

α, x(t), x(t−1)
)

,(1)

where f : R3 → R is a continuous map and α is a real parameter. The solution

of the initial value problem associated with the above equation, which requires

that

x(t) = φ(t) , −1 ≤ t ≤ 0 ,(2)

where φ is given in C, the Banach space of continuous maps φ : [−1, 0] → R
equipped with the uniform convergence norm, will be denoted by x(·, φ). It is

said to be periodic (of period T ) if x(t, φ) = x(t+T, φ) for all t ∈ R. Thus,

periodic solutions of Eq. (1) are of class C1. When f(α, a, a) = 0, x(t) ≡ a is a
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constant solution, said to be an “equilibrium” or a “trivial solution” of Eq. (1)

(observe that trivial solutions are periodic of any period T ). When this happens

for a = 0, the corresponding equilibrium is the null equilibrium or null solution.

The shorter locution “T -periodic” is often used to abbreviate “periodic of period

T”. We assume, from now on, that f(α, 0, 0) = 0. Note, incidentally, that if x(t)

is T -periodic for some T > 0, then, automatically, it is also nT -periodic for any

n ∈ Z, where Z denotes the set of integers. In particular, a T -periodic map is

also (−T )-periodic. The subject of this work has been frequently investigated

([1]–[4], [6]–[14]), due to its importance both in pure and applied mathematics.

2 – Notations and definitions

Given a solution x(·, φ) of (1)–(2), we define xt(·, φ)∈C by xt(θ, φ)=x(t+θ, φ).

Then, Γ = {xt(·, φ), t ≥ 0} is a continuous curve in C and is called the positive

orbit of φ. This curve is closed (in C) if and only if x(·, φ) is a periodic solution

([4]). Observe that in terms of xt(·, φ), Eqs. (1)–(2) can be written as

x′t(θ) = f
(

α, xt(θ), xt−1(θ)
)

, θ ∈ [−1, 0], t+θ ≥ 0 ,(3)

x0 = φ .(4)

The orbit of φ identifies in a natural way the sequence of maps in C, {xn(·, φ)}
∞
0 .

Since φ = x0(·, φ) it is simpler to think of φ as fixed and denote the solution

x(·, φ) simply by x, and thus identify it with the sequence {xn}
∞
0 . It is clear that

a solution x is k-periodic (where k is a positive integer) iff {xn} is k-periodic, i.e.,

iff xk = x0. Note, incidentally, that x satisfies the family of integral equations

xn(θ) = xn(0) +

∫ θ

0
f
(

α, xn(s), xn−1(s)
)

ds , n = 1, 2, ... .(5)

In view of the above, we can also say that a k-periodic solution of Eq. (1) is a

finite sequence {xn}
k−1
o satisfying (5), or else, satisfying the ODE system

x′1(θ) = f
(

α, x1(θ), x0(θ)
)

x′2(θ) = f
(

α, x2(θ), x1(θ)
)

...

x′k−1(θ) = f
(

α, xk−1(θ), xk−2(θ)
)

x′0(θ) = f
(

α, x0(θ), xk−1(θ)
)

, θ ∈ [−1, 0] ,

(6)
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subject to the boundary conditions

xn(−1) = xn−1(0), n = 1, 2, ..., k−1 , x0(−1) = xk−1(0) .(7)

Equations of this kind are known as “cyclic ordinary differential equations”. They

are often studied ([3], [9]–[12]). It is important to observe that (6) allows us to

study solutions with integral periods in a k-dimensional space, instead of the

natural infinite dimensional phase space C, mentioned in Section 1. Observe,

nevertheless, that the boundary conditions (7) are not the usual ones for ODE’s

(namely, the pointwise initial value problem (IVP)):

xo(0) = ξo , x1(0) = ξ1 , ..., xk−1(0) = ξk−1 , ξj ∈ R, j= 0, 1, ..., k−1 .(8)

However, if f(α, x, y) is locally Lipschitz (see [5]), then, once a solution of (6)–(7)

is found, it is the unique solution through this found functional initial condition xo
(=φ, if we recall our previous notation convention). It is also the unique solution

of the corresponding IVP (6)–(8). This property shows that the uniqueness of

the functional initial value problem (3)–(4) corresponds to uniqueness of solution

of either the related boundary conditions (7) or the related ordinary IVP (8), and

conversely.

An analysis of the above arguments shows that the restriction θ ∈ [−1, 0] is

superfluous if we let xn(t) =: x(t+n), t ∈ R. In this case, xn is just a phase shift

of x(t), thus just another solution of Eq. (1), which shares the same orbit as x(t).

We shall freely make use of this dual interpretation.

3 – Results

In this section we shall use (6)–(7) and (6)–(8) in order to establish some

important features of the phenomenon of existence of k-periodic solutions of

Eq. (1).

The following theorem is immediate and is included here just for reference.

Theorem 1. Equation (1) has no nontrivial 1-periodic solution.

Proof: If it had one, then there would exist a nonconstant solution of the au-

tonomous scalar ODE x′(t)=f(α, x(t), x(t)) satisfying the corresponding bound-

ary condition x(−1)=x(0), an obvious impossiblity (unless f were trivial).

The next theorem has been proved before (see [12], [14]). We offer here a

simple proof of it, whose extension to the general k-periodic case furnishes a

useful characterization of trivial solutions of Eq. (1) (Theorem 5).
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Theorem 2. If the IVP (6)–(8) has a unique solution when k = 2, then

Eq. (1) cannot have a nontrivial 2-periodic solution.

Proof: Suppose k = 2. If it had one such solution, say x, then we would have

a corresponding, nontrivial, solution pair (x0, x1) of (6)–(7). By the intermediate

value theorem of calculus there would exist b∈ [−1, 0] such that xo(b)=x1(b)=:ξ.

But then, (xo, x1) would also satisfy the IVP

x0(b) = ξ , x1(b) = ξ(9)

attached to (6). Let y be the solution of the ODE y′(t)=f(α, y(t), y(t)) such that

y(b) = ξ. Then, (y, y) is a solution of (6)–(9). The uniqueness of this solution

implies that x0 = x1 = y. As a consequence, x(t) is in fact a nonconstant

1-periodic solution of Eq. (1), an impossibility by Theorem 1.

The above argument can be easily adapted to the general case of k-periodic

solutions:

Theorem 3. Suppose the solution of (6)–(8) is unique. Then, a necessary

and sufficient condition for a k-periodic solution x(t) of Eq. (1) to be trivial is

the existence for it of a point x(t∗) of period 1, that is, x(t∗) = x(t∗− i),

i = 1, 2, ..., k−1.

Proof: In a similar way as in the proof of the above theorem, it is enough

to see that the unique solution of the IVP y′(t) = f(α, y(t), y(t)), y(t∗) = x(t∗)

yields that xi(t) = y(t), t∗− 1 ≤ t ≤ t∗ , i=0, 1, ..., k−1 as the unique possible

solution of the corresponding problem (6)–(8).

As a consequence of Theorem 3 we obtain the following.

Corollary 1. Under the hypothesis of the theorem, a necessary and sufficient

condition for a k-periodic solution x(t) of Eq. (1) to be trivial is the existence of

an m-periodic point t∗ such that k and m are relatively prime.

Proof: If k and m are relatively prime, then x(t∗) being at the same time

k- and m-periodic implies that it is indeed 1-periodic, and the result follows.

The following lemma is obvious and will be used repeatedly in the sequel.

Lemma 1. Let x(t) be a k-periodic map. Then g(t) = : x(t) + x(t−1) +

· · ·+ x(t−k+1) is 1-periodic.

It is interesting to note that g describes, in a certain sense, important features

of the map x, as is the case g = 0. When x(t)+x(t−1)+ ...+x(t−k+1) = g(t),

we say that x is g-harmonic. If g = 0, we simply say that x is harmonic. Other
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sums of x(t− i)′s may lead to various interesting results, like the one in the next

theorem. We say a T -periodic map x(t) is odd-harmonic if x(t) = −x(t− T
2 ).

Theorem 4. Suppose x(t) is a 4-periodic solution of Eq. (1) in its linear

form,

(∗) x′(t) = αx(t) + β x(t− 1) ,

where β 6= 0. Then, x is odd-harmonic.

Proof: If we take y(t)=:x(t)+x(t−2), it easily follows that y is a 2-periodic

solution of (∗). But, the unique such solution is x(t) ≡ 0, so that x(t) = −x(t−2)

and x is odd-harmonic, as we wished to prove.

Likewise, if x(t) is k-periodic, j1< j2 <...< jm ≤ k, {xj1+p, xj2+p, ..., xjm+p}

= {xj1 , xj2 , ..., xjm}, p < k, then y(t) =: x(t−j1) + x(t−j2) + ... + x(t−jm) is

p-periodic. In particular, if f is linear and x(t) is a solution of Eq. (1), then y(t)

is a p-periodic solution of it as well.

In the case of an equation of the form

x′(t) = f
(

α, x(t−1)
)

,(10)

we can provide an alternative proof of Theorem 2, without the uniqueness of

solution hypothesis, a proof that gives geometrical insight into the impossibility

of existence of 2-periodic solutions. Indeed, let F be a primitive of f with respect

to x and put Φ(u, v) =: F (u)−F (v). For every c ∈ R the level curve γ = {(u, v) :

Φ(u, v) = c} defines v as a function of u and conversely. We take x0 as the solution

of the ODE y′(t) = f(α, v(y(t))) (or of y′(t) = f(α, u(y(t)))) and put x1(t) =:

v(x0(t)) (x1(t)=:u(x0(t))). It follows that {xi}
1
0 is a solution of (6) (with k=2)

since x′0(t)=f(α, x1(t)) and x′1(t)=
d
du
v(x0(t))x

′
0(t) =

f(α,xo(t))
f(α,v(xo(t)) .f(α, v(x0(t)) =

f(α, x0(t)) (the converse situation is similar). This shows that Eq. (10) has a non-

trivial 2-periodic solution only if Φ(u, v) has a nonsingular closed level curve γ.

Thus, if Eq. (10) had a 2-periodic solution x(t), this solution would just be a

parametrization of γ, 0 ≤ t ≤ 2. Note, however, that Φ(u, u) = 0, so that γ

cannot cross the diagonal of R2 unless c = 0, a case which leads to a constant

solution x = a, where a is a zero of f . As a consequence, x(t) 6= x(t + 1) for

any t ∈ R, which precludes the existence of any nontrivial 2-periodic solution for

Eq. (10). Note that γ is a projection into R2 of the orbit Γ of x.

We can also use the (uniqueness) argument of the above remark in order to

prove that Eq. 10 cannot have nontrivial 3-periodic solutions of certain specific

types. Recall that a map x is said to be even when x(t) = x(−t) and odd when

x(t) = −x(−t).
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Theorem 5. Suppose that the solution of (6)–(8) when k = 3 is unique

in the case of Eq. (10). Then, this equation cannot have a nontrivial 3-periodic

solution which is either even or odd.

Proof: Let x be an even 3-periodic solution of Eq. (10) and let {xn}
2
0 be

the corresponding solution of (6)–(8) with k = 3. Then, as it is easy to check,

we must have: x0(t) = x2(−1 − t) and x1(t) = x1(−1 − t) for t in [−1, 0]. The

boundary conditions (7) automatically become

x0(−1) = x2(0) , x1(−1) = x0(0) , x2(−1) = x1(0) .(11)

It also follows that:

x′0(t) = −x
′
2(−1− t) = −f(α, x1(−1− t)) = −f(α, x1(t)) = −x

′
2(t) ,

x′1(t) = −x
′
1(−1− t) = −f(α, x0(−1− t)) = −f(α, x2(t)) = −x

′
0(t) .

Hence,

x0(t) + x2(t) = c , x1(t) + x0(t) = d(12)

where c and d are constants. Let x0(−1) = a and x0(0) = b. Then, using (11)

and (12) at t = −1 and at t = 0 we get

a+ b = c , 2 b = d , a+ b = d ,

which readily implies that c = d and a = b. Hence, {x0, x1, x2} satisfies the

initial condition

x0(0) = x1(0) = x2(0) = a .

Let y be the solution of the ODE y′(t) = f(α, y(t)) such that y(0) = a. Since

(y, y, y) is a solution of (6)–(8) that satisfies the above initial condition, and

f(α, ·) is locally Lipschitz, we must have x0 = x1 = x2 = y as long as these maps

are defined, due to the uniqueness of the solution. But then, x(t) is 1-periodic,

and, by Theorem 1, it must be constant.

Suppose now that x(t) is an odd 3-periodic solution of Eq. (10). It is easily

seen that x0(t)=−x2(−1− t) and x1(t)=−x1(−1− t), t ∈ [−1, 0]. The boundary

conditions (7) combined with the constraint of glueing together the three parts

x0(θ), x1(θ), x2(θ), θ ∈ [−1, 0] to get the odd solution x(t) imply

x0(0)=−x1(−1)=x1(−1)= −x1(0)= −x0(0) , x0(−1) = −x2(0) = x2(0) .

From these equalities we derive x0(0) = x1(0) = x2(0) = 0. The result follows

just as above, with a = 0, and this finishes the proof of the theorem.
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We have:

Theorem 6. If the map f(α, ·) is not odd, then Eq. (10) cannot have non-

trivial 3-periodic solutions, which are odd-harmonic.

Proof: Suppose that there exists one such solution x(t). Then, the sequence

{xk}
2
0 would satisfy:

x0(t) = −x1(t+
1
2), x1(t) = −x2(t+

1
2), x2(t) = −x0(t+

1
2) , t ∈ [−1,−1

2 ] ,

x0(t) = −x2(t−
1
2), x1(t) = −x0(t−

1
2), x2(t) = −x1(t−

1
2) , t ∈ [−1

2 , 0] .

As a consequence of this, we have (using Eqs. (6) with k = 3):

x′0(t) = −x′1(t+
1
2) = f(α, x0(t+

1
2))

= −f(α,−x2(t)) = f(α, x2(t)), for t ∈ [−1,− 1
2 ]

x′0(t) = −x′2(t−
1
2) = −f(α, x1(t−

1
2))

= −f(α,−x2(t)) = f(α, x2(t)), for t ∈ [−1
2 , 0] .

Hence, f(α,−x2(t)) = −f(α, x2(t)) for t ∈ [−1, 0]. In a similar way, one can show

that f(α,−x0(t)) = −f(α, x0(t)) and f(α,−x1(t)) = −f(α, x1(t)) for t ∈ [−1, 0],

which indicates that f(α, ·) is odd in the range of x(t), in contradiction to the

other hypothesis of the theorem.

Let us now give some information about the distribution (as a function of the

parameter α) of the period of periodic orbits of the following form of Eq. (1):

x′(t) = α f
(

x(t), x(t−1)
)

.(13)

Theorem 7. Suppose that Eq. (13) has at α = α0 a (T−1)-periodic solution.

Then, it has at α = αn=: [n(T−1) + 1]α0, n = 0, 1, 2, ..., a ( T−1
n(T−1)+1)-periodic

solution. And, conversely, if Eq. (13) has at α a T−1
n(T−1)+1 -periodic solution, then

it has at β =: (n−1)(T−1)+1
n(T−1)+1 α a T−1

(n−1)(T−1)+1 -periodic solution, n = 1, 2, ... .

Moreover, if one of these periods is minimum, so is the other one.

Proof: Let y(t) be a (T−1)-periodic solution of Eq. (13) when α = α0. Put

x(t) = y(Tt). Then,

x′(t) = T y′(Tt) = α0 Tf
(

y(tT ), y(tT−1)
)

= α0 Tf
(

y(tT ), y(Tt−1−T+1)
)

= α0 Tf
(

y(Tt), y(T (t−1))
)

= α0 Tf
(

x(t), x(t−1)
)

,
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so that x is a solution of (13) at α = α0 T . Moreover, we have: x(t + T−1
T

) =

y(T (t+ T−1
T

)) = y(Tt+ T − 1)) = y(Tt) = x(t), so that x is T−1
T

-periodic. Thus,

the result of the theorem holds when n = 1. Put now S−1 =: T−1
T

. Then,

repeating the above argument with T replaced by S, we obtain that Eq. (13) has

an (S−1
S

)-periodic solution when α = S Tα0. But, since S−1
S

=
T−1

T
T−1

T
+1

= T−1
2T−1

we obtain that S Tα0 = (T−1
T

+ 1)Tα0 = (2T − 1)α0, which is the result of

the theorem when n = 2. An induction argument easily finishes this part of the

proof. The converse part of the theorem can be proved in a similar way if one

takes x(t) = y
(

(n−1)(T−1)+1
n(T−1)+1 t

)

. The statement concerning the minimality of the

periods is transparent from the technique used in the above proof.

The idea of this proof was known to Cooke (see [10]) who used it in the case

of the equation x′(t) = −α f(x(t −1)) to show that the existence of slowly (see

also [2]) oscillating solutions implies the existence of rapidly oscillating (resonant)

ones.

Theorem 8. If the solution of (6)–(8) is unique, then Eq. (13) cannot have

nontrivial periodic solutions of period 2
2n−1 for any integer n ∈ Z.

Proof: The cases n = 0 and n = 1 are straightforward translations of the

results of Theorem 2. For the other values of n, if we use Theorem 7 in conjunction

with Theorem 2, we see that Eq. (13) cannot have any nontrivial (T−1)-periodic

solution such that T−1
n(T−1)+1 = 2 for some n ∈ Z+, since this would imply the

existence of a nontrivial 1-periodic orbit of this equation. But, T−1
n(T−1)+1 = 2 iff

T−1 = − 2
2n−1 . The result follows now from the property that an orbit which is

S-periodic is automatically (−S)-periodic.

The theorem below is a simple corollary of Theorem 1, since the 1
n
-periodic

maps are automatically 1-periodic. It is also a corollary of Theorem 7, since we

clearly see that Eq. (13) cannot have a nontrivial (T−1)-periodic solution such

that n(T−1) + 1 = 0, i.e., when T−1 = 1
n
, n ∈ Z.

Theorem 9. Eq. (13) cannot have 1
n
-periodic solution for any n ∈ Z.

As an application, let’s consider the scalar case of Wright’s equation,

x′(t) = −αx(t−1) [1 + x(t)] , α 6= 0 .(14)

We already know (as shown above) that this equation cannot have 1- and

2-periodic solutions. It also cannot have nontrivial 3- and 4-periodic solutions
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as shown in [6] by Carvalho and Ladeira (see also Nussbaum [9], for the case of

nonexistence of 4-periodic solutions). In Nussbaum [8] it is shown that it has a

nonconstant T -periodic solution for each T > 4 (at a corresponding convenient

value of the parameter α). Hence, the above results imply, in particular, that the

range of periods of Wright’s equation is dense in R and every interval ( 4
2n+1 ,

4
2n ),

n = 1, 2, ... is in the range of periods of this equation.

An interesting bound relating the period and the Lipschitz constant is given

by the following theorem.

Theorem 10. Let x(t) be a nontrivial T -periodic solution of the scalar

delay differential equation x′(t) = f(x(t − 1)). Assume that f is Lipschitz with

constant L on the interval [minx(t),maxx(t)]. Then, TL ≥ 2π.

Proof: Recall that for every φ(t) such that φ, φ′ ∈ L2[0, T ] and
∫ T
0 φ(t) dt = 0

(φ has mean value 0) we have (Wirtinger’s inequality)

∫ T

0
φ2(t) dt ≤

(

T

2π

)2 ∫ T

0
φ′2(t) dt .

Let φ(t) = x(t)− x(t−h) where h ∈ (0, T ). Then φ has mean value 0 and we can

write:

∫ T

0

(

x(t)− x(t− h)
)2
dt ≤

(

T

2π

)2∫ T

0

(

x′(t)− x′(t− h)
)2
dt

≤

(

T

2π

)2∫ T

0

[

f
(

x(t− 1)
)

− f
(

x(t− h− 1)
)]2

dt

≤

(

T

2π

)2∫ T

0

[

f
(

x(t)
)

− f
(

x(t− h)
)]2

dt

≤

(

L
T

2π

)2∫ T

0

(

x(t)− x(t− h)
)2
dt ,

so that the result follows immediately.

Of course, if f depends on α as is the case of Eq. (10), then L = L(α). Note,

moreover, that this result may also cover equations of the form

x′(t) = g(x(t))h(x(t− 1)) ,(15)

as is the case of Eq. (13), since they can, sometimes, be written in the form

x′(t) = f(x(t− 1)). In fact, if z(t) is a nontrivial solution of z ′(t) = g(z(t)), then,

for each solution y(t) of Eq. (15) we can implicitly define x(t) by means of the
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equality z(x(t)) =: y(t). It follows that

y′(t) = z′(x(t))x′(t) = g(z(x(t)))x′(t)

= g(y(t))h(y(t−1)) = g(z(x(t)))h(z(x(t−1))) ,

from where we obtain x′(t) = h(z(x(t−1))), i.e., x(t) is a solution of an equation

of the type of Eq. (10) with f = h ◦ z. Clearly, x is T -periodic if, and only if, y is

T -periodic. For instance, in the case of Eq. (13), we have that z ′(t) = 1 + z(t) =

g(z(t)) has z(t) = et−1 as nonconstant solution, so that Eq. (14) becomes

x′(t) = −α
(

ex(t−1) − 1
)

(=: f(x(t− 1)) .(16)

As we mentioned previously, this scalar case of Wright’s equation has a T -periodic

solution for each T > 4 and a suitable value of α. As a consequence of Theorem 10,

we see that a solution pair (α, x(t)) satisfies a particular constraint. By selecting

h very small we can see that |f(x(t))− f(x(t− h))| ≤ α eη|x(t)− x(t−h)|, where

η ∈ [minx(t),maxx(t)] is given by the Mean Value Theorem of calculus. Hence,

if |x(t)| ≤ a we may take, in particular, L = α ea and write

TL = |α|Tea ≥ 2π ,

which shows that as α→ 0 we must have either T→∞ or a→∞. In the parti-

cular case described by Theorem 7, if we let, say, αn= (nT+1)α and Tn =
T

nT+1 ,

the product αnTn = αT is constant. Clearly, the amplitude of these Tn-periodic

solutions is also constant.

As another example, consider the following simple linear equation:

x′(t) = αx(t− 1) ,(17)

Here, f(α, x) = αx, α 6= 0, has Lipschitz constant L = L(α) = |α|, and the next

theorem holds (see [7]):

Theorem 11. Eq. (17) has nonzero periodic solutions with integer period

if and only if α ∈ {4m−1
2 π : m ∈ Z}. In this case the minimum period is 4

4m−1

(hence, the minimum integer period is 4) and the periodic solutions are given by

x(t) = γ cosα t + δ sinα t , γ, δ ∈ R .

If we apply Theorem 11 with T = 4 (this implies m = 0 is the tightest choice

in the corresponding formula for α) and α = −π
2 (thus L = π

2 ), we see that we

have Tα = 4 π
2 = 2π, and the theorem is satisfied in this case.
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Note that the reasoning of Theorem 10 remains unchanged if x is a vector

in Rn or in a infinite dimensional Hilbert space H. In case of a Banach space

E setting for the equations discussed in this paper, we have the following result,

adapted from the one given by Busenberg, Fisher and Martelli in [13].

Theorem 12. If f is Lipschitz with constant L in the range of a nontrivial

T -periodic solution x(t) of x′(t) = f(x(t)), where f maps a Banach space E into

itself, then LT ≥ 6.

Their proof is based on the fact that for any T -periodic differentiable map

y(t) ∈ E (let the norm of E be denoted by ‖·‖) such that ‖y′(t)‖ is integrable,

we have
∫ T

0

∫ T

0
‖y(t)− y(s)‖ ds dt ≤

T

6

∫ T

0

∫ T

0
‖y′(t)− y′(s)‖ ds dt .

We can easily adapt the above property to an equation of the form (10).

In fact, assume that x(t) is a T -periodic solution of Eq. (9) and that f(α, ·)

is Lipschitz with constant L = L(α) in the interval [m,M ], where m = min{x(t),

t ∈ [0, T ]}, M = max{x(t), t ∈ [0, T ]}. Then,
∫ T

0

∫ T

0
‖x(t)− x(s)‖ ds dt ≤

T

6

∫ T

0

∫ T

0
‖x′(t)− x′(s)‖ ds dt

=
T

6

∫ T

0

∫ T

0

∥

∥

∥

∥

f
(

α, x(t− r)
)

− f
(

α, x(s− r)
)

∥

∥

∥

∥

ds dt

≤
TL

6

∫ T

0

∫ T

0

∥

∥

∥x(t− r)− x(s− r)
∥

∥

∥ ds dt

=
TL

6

∫ T

0

∫ T

0
‖x(t)− x(s)‖ ds dt .

Thus:

Theorem 13. Suppose f(α, ·) : R → R is Lipschitz with constant L(α).

Then if x(t) is a nontrivial T -periodic solution of x′(t) = f(α, x(t−1)), we must

have TL(α) ≥ 6.

A little trick will allow us to use this result also in the case of Wright’s equation

in its form (14), instead of (16) as done above, and compare the results. In fact,

let x(t) be a T -periodic solution of Eq. (14), with amplitude a. Observe that
∣

∣

∣

∣

x(t)
[

1 + x(t−1)
]

− x(t−s)
[

1 + x(t−s−1)
]

∣

∣

∣

∣

≤

≤ (a+1)
∣

∣

∣x(t)− x(t−s)
∣

∣

∣ + a
∣

∣

∣x(t−1)− x(t−s−1)
∣

∣

∣ ,

(18)
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a bound that is easily obtained by inserting x(t−s) [1−x(t−1)]−x(t−s) [1−x(t−1)]

into the left hand side of (18), and then using the triangle inequality and

|x(t−s)| ≤ a and |1 + x(t−1)| ≤ a + 1. Adapting the argument of the proof

of Theorem 13 to the present situation, we get
∫ T

0

∫ T

0

∣

∣

∣x(t)− x(t−s)
∣

∣

∣ ds dt ≤
T

6

∫ T

0

∫ T

0

∣

∣

∣x′(t)− x′(t−s)
∣

∣

∣ ds dt

≤
T

6
|α| (1+a)

∫ T

0

∫ T

0

∣

∣

∣x(t)− x(t−s)
∣

∣

∣ ds dt

+
T

6
|α| a

∫ T

0

∫ T

0

∣

∣

∣x(t−1)− x(t−1−s)
∣

∣

∣ ds dt

=
T

6
|α| (2 a+ 1)

∫ T

0

∫ T

0

∣

∣

∣x(t)− x(t−s)
∣

∣

∣ ds dt ,

from where we obtain the estimate T |α| (2 a + 1) ≥ 6. As before, as α → 0 we

must have either T → ∞ or a → ∞. The graph in Fig. 1 shows that the bound

ea |α|T ≥ 2π is better than the bound (2 a+1) |α|T ≥ 6 for a < 1.35966..., but

is worse after that.

2a+1

6

ea

a1.61.41.21.8.6.4.2

5

4

3

2

1

Fig. 1: Comparison between the bounds e
a |α|T ≥ 2π and (2a+ 1) |α|T ≥ 6 .
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