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ON SECOND GRADE FLUIDS
WITH VANISHING VISCOSITY

V. Busuioc

Abstract: We consider the equation of a second grade fluid with vanishing viscosity,

also known as Camassa–Holm equation, and we prove local existence and uniqueness of

solutions for smooth initial data. We also give a blow-up condition which implies that

the solution is global in dimension 2. Finally, we prove the convergence of the solutions

of second grade fluid equation to the solution of the Camassa–Holm equation as the

viscosity tends to zero.

Introduction

This paper is devoted to the study of a family of incompressible, non new-

tonian fluids of grade two with vanishing viscosity whose flow is given by the

equation

∂t(u− α∆u)− ν∆u+ (u− α∆u)j ∇uj + u∇(u− α∆u) = ∇P + f ,(1)

where u is the velocity field, P is the pressure and the constant α is positive.

We suppose that we are in the incompressible case, i.e.,

div u = 0 .(2)

The domain under consideration is Rn.

We are here interested in equation (1) when ν = 0, that is to say

∂t(u− α∆u) + (u− α∆u)j ∇uj + u∇(u− α∆u) = ∇P + f .(3)
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In the one-dimensional case, this equation is the shallow water Camassa–Holm

equation (see, for instance, Camassa and Holm [4] and Camassa, Holm and Hy-

man [5]). There is a wide literature on this equation, we refer the reader, for

instance, to Constantin [9], Constantin and Escher [10]. Equation (3) can be

considered as the generalization to higher dimensions of the space of the shallow

water equation. In the sequel, we will refer to (3) as the Camassa–Holm equation.

On the other hand, observe that for α = 0, equation (3) is nothing else than

the classical Euler equation. It is known that the Euler equation describes the

geodesics on the volume-preserving diffeomorphism group for the L2-norm as

shown in Ebin and Marsden [12], see also Chemin [6]. Let us mention that (3)

also describes the geodesics on the volume-preserving diffeomorphism group but

for the H1
α-norm defined by

‖u‖H1
α
=
(
‖u‖2L2 + α ‖∇u‖2L2

)1/2
.

This was proved by Holm, Marsden and Ratiu in [15] and [16]. It is why (3) is

also called the α-Euler equation (see for further details Shkoller [20]).

Fluids of second grade (or grade-two fluids) are a particular class of the non

newtonian Rivlin–Ericksen fluids of differential type (see Noll and Truesdell [18]).

Their general constitutive law is

σ = −p I + νA1 + α1A2 + α2A
2
1 ,(4)

where σ is the stress tensor, the scalar function p represents the pressure and A1,

A2 are defined by

A1 = L+ LT , Lij =
∂ui

∂xj
,(5)

A2 = Ȧ1 +A1L+ L
TA1 ,(6)

where the dot denotes the derivative ∂t + u · ∇. The constant ν is the kinematic

viscosity, α1 and α2 are normal stress moduli. Hence, the equation of motion of

incompressible fluids of second grade is




div(−p I + νA1 + α1A2 + α2A

2
1) + f = u̇ ,

div u = 0 ,
(7)

whose unknowns are u and p. One has to add of course, initial conditions and

boundary conditions if one has to solve this problem in a bounded domain Ω.
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In 1974, Dunn and Fosdick [11] (see also Fosdick and Rajagopal [13]) studied

the thermodynamics and stability of this type of special fluids. Their analysis

established that ν, α1 and α2 have to verify

ν ≥ 0 , α1 + α2 = 0 ,(8)

as a consequence of Clausius–Duhem inequality, and

α1 ≥ 0 ,

if the Helmholtz free energy is minimum at the equilibrium. We will actually

assume that α1 > 0 as if α1 = 0 we obtain the Navier–Stokes equations which

are extensively studied. Consequently, using (5), (6), (7) and (8) one can further

write div σ in the form

div σ = −∇p+ ν∆u+ α∂t∆u+ α curl∆u× u ,(9)

where α = α1 = −α2. Replacing (9) into (7), leads to the system



∂t(u− α∆u)− ν∆u+ curl(u− α∆u)× u = ∇P̃ + f ,

div u = 0 ,
(10)

where

P̃ = p−
1

2
|u|2 −

α

2
|∇u|2 − α u ·∆u .

An easy computation shows that the equation in (10) is of the form (1) with

a modified pressure P (see, for instance, [3]).

The existence and uniqueness of solutions of (1) for a bounded domain with

Dirichlet condition on the boundary ∂Ω, was proved by Cioranescu and Ouazar

[8]. This solution was obtained as an element of H3(Ω). Moreover, in [8] it

is also proved that in the two-dimensional case the solution is global in time,

and local for small data in the three-dimensional case. This last result was im-

proved by Cioranescu and Girault in [7], which showed that the solution in the

three-dimensional case is global under some appropriate assumptions on the data.

A fixed point method is used by Galdi and Sequeira [14] to obtain similar results

and global existence for small 3D initial data. The proof of a priori estimates in

the three-dimensional case relies on the “damping term” −ν∆u. Consequently,

one cannot take directly ν = 0 in (1). The situation is simpler in the two-

dimensional case. Indeed, the a priori estimates from [8] are independent of ν.

Following the method from [8], one gets without any difficulty the existence and

uniqueness of the solution of (3), belonging to L∞(0,∞;H3(Ω)).
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As mentioned before, we are here concerned by equation (3) in the case where

Ω is the entire space Rn. We will prove that for smooth enough data, there

exists a local in time unique strong solution of (3). This solution is global in

the two-dimensional case. Finally, we prove that the solution of Camassa–Holm

equation (3) is the limit, when ν → 0, of the solution of (1). Let us mention that

for a two-dimensional bounded domain, a convergence result in L∞(0,∞;H3(Ω))

is straightforward by using the estimates from [8].

The paper is organized as follows. In Section 1 we prove some a priori esti-

mates satisfied by the solutions of problem (3). These estimates imply the local

existence of strong solutions; the uniqueness of the solution is also proved.

In Section 2 it is shown that if the solution fails to exist over a certain interval

of time, then the supremum of the ‖curl(u−α∆u)‖L∞ has to blow up. This result

is similar to that proved by Beale, Kato and Majda [1] for the Euler equations

(see also [19]) and relies on a logarithmic estimate. In Section 3, we show that in

the two-dimensional case the blow-up can never occur in finite time. Hence, in

this case, the solution is global in time.

Finally, in Section 4, we prove the strong convergence of the solution uν of

equation (1) to the solution u of the equation (3) when ν → 0. The convergence

holds on the time interval where the local solution of the Camassa–Holm equation

exists and in dimension two, on any bounded interval of time. To do so, we are

first led to give existence and uniqueness theorems for equation (1) in the whole

space. The existence is global in time in R2 and local in Rn for any n > 2.

To prove the convergence of uν to u in the two-dimensional case, we establish

a bound for the Hs-norm of the solution uν that is independent of ν.

These results can be summarized in the following theorem:

Theorem. Let s > n
2 + 1, u0 ∈ H

s+2, f ∈ L1(0,∞;Hs). Then, there exists

a unique solution u of system (3) such that

u ∈ L∞(0, T ;Hs+2) ,

where

T =
C

‖u0‖s+2 + ‖f‖L1(0,∞;Hs)
,(11)

where C is a constant independent of s and the data u0 and f .

If T ?, the maximal time for which one has the existence of u, is finite, then

necessarily ∫ T ?

0
‖curl(u− α∆u)‖L∞ = +∞ .
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In the two-dimensional case, the solution is global in time, i.e.,

u ∈ L∞(0,+∞;Hs+2) .

Consider now a family of initial data uν0 belonging to Hs+2, such that

lim
ν→0

uν0 = u0 in Hs+2. Then, when ν → 0, the solution uν of (1) exists at least

on (0, T ) with T given in (11) and converges strongly to u in L∞(0, T ;Hs+2−ε),

∀ ε > 0. In the two-dimensional case, the solutions to both systems are global in

time and the result of convergence holds for all T <∞.

1 – A local existence and uniqueness theorem

We place ourselves in Rn, we denote byHs the usual Sobolev space and by ‖·‖s
the corresponding Hs norm. The following classical properties will be frequently

used:

• If s > n
2 then the following embedding holds: H

s ⊂ L∞.

• If s > n
2 then H

s is an algebra and we have the following tame estimates

(see Chemin [6]):

‖u · v‖s ≤ C
(
‖u‖L∞ ‖v‖s + ‖u‖s ‖v‖L∞

)
.(12)

• If s ≥ 0 and D is a partial derivative of order less or equal to s, then we

have the following commutator type estimate (see Klainermann and Majda

[17]):

∣∣∣∣
∫
D(u · ∇v)Dv

∣∣∣∣ ≤ C ‖v‖s
(
‖u‖s ‖∇v‖L∞ + ‖∇u‖L∞ ‖v‖s

)
.(13)

Let us consider the system





∂tv + vj∇uj + u∇v = ∇p+ f ,

v = u− α∆u ,

div u = 0 ,

u(0, x) = u0(x) .

(14)
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Theorem 1.1. Let s > n
2 + 1, u0 ∈ Hs+2, f ∈ L1(0,∞;Hs). Then, there

exist a constant C and an unique local solution of system (14) such that

u ∈ L∞(0, T ;Hs+2) ,

where

T =
C

‖u0‖s+2 + ‖f‖L1(0,∞;Hs)
.(15)

Proof of the existence: Let D be a partial derivative of order not greater

than s, D = Dβ, |β| ≤ s. Applying D to the equation of v and multiplying by

Dv yields

∂t‖Dv‖
2
L2 ≤

∣∣∣∣
∫
D(vj∇uj)Dv

∣∣∣∣+
∣∣∣∣
∫
D(u∇v)Dv

∣∣∣∣+
∣∣∣∣
∫
Df Dv

∣∣∣∣

≤

∣∣∣∣
∫
D(uj∇uj)Dv

∣∣∣∣+
∣∣∣∣α
∫
D(∆uj∇uj)Dv

∣∣∣∣

+

∣∣∣∣
∫
D(u∇v)Dv

∣∣∣∣+
∣∣∣∣
∫
Df Dv

∣∣∣∣ .

(16)

We now estimate each of the integrals from the right-hand side. An integration

by parts shows that the first term vanishes:

I1 =

∣∣∣∣
∫
D(uj∇uj)Dv

∣∣∣∣ =
1

2

∣∣∣∣
∫
D∇(|u|2)Dv

∣∣∣∣ =
1

2

∣∣∣∣
∫
D(|u|2)D div v

∣∣∣∣ = 0 ,(17)

since v is divergence free.

The second integral

I2 =

∣∣∣∣
∫
D(∆ul∇ul)Dv

∣∣∣∣ ,

can be written as a sum of terms of the type
∣∣∣∣
∫
D(∂iul ∂jul)D∂kv

∣∣∣∣ .

Indeed, integrating by parts we have

I2 =

∣∣∣∣∣
∑

i,j,l

∫
D(∂2

i ul ∂jul)Dvj

∣∣∣∣∣

=

∣∣∣∣∣
∑

i,j,l

∫
D(∂iul ∂jul)D∂ivj +

∑

i,j,l

∫
D(∂iul ∂j ∂iul)Dvj

∣∣∣∣∣ .
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The first term is now of the required form. The second one vanishes, since the

equality

∂iul ∂j ∂iul =
1

2
∂j(∂iul)

2

implies that

2
∑

i,j,l

∫
D(∂iul ∂j ∂iul)Dvj = −

∑

i,j,l

∫
D(∂iul)

2D∂jvj

= −
∑

i,l

∫
D(∂iul)

2D(div v) = 0 .

Observe further that, using (12), one has the estimate

∣∣∣∣
∫
D(∂iul ∂jul)D∂kv

∣∣∣∣ =
∣∣∣∣
∫
∂kD(∂iul ∂jul)Dv

∣∣∣∣

≤ ‖∂kD(∂iul ∂jul)‖L2 ‖Dv‖L2

≤ ‖∂iul ∂jul‖s+1 ‖u‖s+2

≤ C ‖u‖2s+2 ‖∇u‖L∞ ,

(18)

so the same inequality holds for I2.

The third integral is estimated with the commutator inequality (13). One has

I3 =

∣∣∣∣
∫
D(u∇v)Dv

∣∣∣∣ ≤ C ‖v‖s
(
‖u‖s ‖∇v‖L∞ + ‖∇u‖L∞ ‖v‖s

)

≤ C ‖u‖2s+2

(
‖∇v‖L∞ + ‖∇u‖L∞

)
.

(19)

Finally, one can write the following estimate for the last term in (16):

∣∣∣∣
∫
Df Dv

∣∣∣∣ ≤ ‖f‖s ‖u‖s+2 .(20)

Using now relations (17), (18), (19) and (20) in (16) one obtains

∂t‖Dv‖
2
L2 ≤ C ‖u‖2s+2

(
‖∇v‖L∞ + ‖∇u‖L∞

)
+ ‖f‖s ‖u‖s+2 .

Summing over all partial derivatives D yields

∂t‖u‖
2
s+2 ≤ C ‖u‖2s+2

(
‖∇v‖L∞ + ‖∇u‖L∞

)
+ C ‖f‖s ‖u‖s+2 ,

which implies the following a priori estimate

∂t‖u‖s+2 ≤ C ‖u‖s+2

(
‖∇v‖L∞ + ‖∇u‖L∞

)
+ C ‖f‖s .(21)
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We now prove that one can remove ‖∇u‖L∞ from the above inequality. Since

v = u− α∆u, we infer that ∇u can be obtained from ∇v via a Bessel potential:

∇u = (I − α∆)−1∇v .

On the other hand, according to Proposition 2, page 132 of Stein [21], the Bessel

potential (I−α∆)−1 is an operator of convolution with a L1 function. Therefore,

Young’s inequality implies that

‖∇u‖L∞ ≤ C ‖∇v‖L∞ .(22)

So, we obtain from (21) that

∂t‖u‖s+2 ≤ C ‖u‖s+2 ‖∇v‖L∞ + C ‖f‖s .(23)

Using that Hs−1 ⊂ L∞ we finally get

∂t‖u‖s+2 ≤ C1 ‖u‖
2
s+2 + C1 ‖f‖s ,(24)

for some constant C1.

At this stage of the proof we are going to estimate the maximal time existence

of the solution. Let

T = sup
{
t such that ‖u(τ)‖s+2 ≤ K‖u0‖s+2, ∀ 0 ≤ τ ≤ t

}
,

where

K = 4 +
8C1 ‖f‖L1(0,∞;Hs)

‖u0‖s+2
.

We want to show that

T ≥
1

16C1 ‖u0‖s+2 + 64C2
1 ‖f‖L1(0,∞;Hs)

.

We will show it by contradiction. Assume that

T <
1

16C1 ‖u0‖s+2 + 64C2
1 ‖f‖L1(0,∞;Hs)

.

Consequently,

T <
1

8C1K ‖u0‖s+2
.

Then, for t ∈ [0, T ], the a priori estimate (24) and the definition of T imply

∂t‖u‖s+2 ≤ C1K
2 ‖u0‖

2
s+2 + C1 ‖f‖s .
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Integrating from 0 to T gives

‖u(T )‖s+2 ≤ ‖u0‖s+2 + C1K
2 ‖u0‖

2
s+2 T + C1‖f‖L1(0,∞;Hs)

≤ ‖u0‖s+2 + C1K
2 ‖u0‖

2
s+2

1

8C1K ‖u0‖s+2
+
K ‖u0‖s+2

8

= ‖u0‖s+2 +
K

8
‖u0‖s+2 +

K

8
‖u0‖s+2

≤
K

2
‖u0‖s+2 ,

which contradicts the definition of T . The existence now follows from a “modi-

fied Galerkin method”, also known as Friedrichs method, which will be sketched

later.

Proof of the uniqueness: Let u1 and u2 be two solutions with the same

initial data

u1(0) = u2(0) .

Subtracting the equations verified by u1 and u2 gives

∂t(w − α∆w) + v1
j ∇wj + (wj − α∆wj)∇u

2
j

+ u2∇(w − α∆w) + w∇v1 = ∇(p1− p2) ,

where w = u1 − u2. Multiplying by w − α∆w and integrating in space yields,

after some classical estimates,

∂t‖w‖
2
2 ≤ C ‖v1‖s ‖wj‖1 ‖w‖2 + C ‖w‖L2 ‖w‖2 ‖v

1‖s + C ‖w‖22 ‖∇u
2
j‖s−1

≤ C ‖w‖22

(
‖u1‖s+2 + ‖u

2‖s+2

)
,

from which, by Gronwall’s inequality, one has

‖w‖22 ≤ ‖w0‖
2
2 exp

(
C

∫ t

0

(
‖u1‖s+2 + ‖u

2‖s+2

))
.

This implies the result since w0 = 0.

Sketch of the “Galerkin method”: We follow the proof of the short-time

existence of strong solutions for quasi-linear symmetric hyperbolic systems given

in Taylor [22]. We denote by a Friedrichs mollifier the operator Jε given by the

convolution:

Jεu = jε ∗ u ,

where

jε(x) = ε−n j (ε−1 x) ,
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and j is a function whose Fourier transform is a compactly supported smooth

function equal to 1 in a neighborhood of 0. We now consider the system

(Sε)





∂tv
ε + Jε

(
Jεv

ε
j ∇Jεu

ε
j + Jεuε∇Jεvε

)
= ∇pε + Jεf ,

vε = uε − α∆uε ,

div uε = 0 ,

uε(0, x) = Jεu0(x) .

One can apply the divergence to the equation of vε to find ∆pε in terms of uε,

that is pε in terms of uε without time derivatives. In this way, as in [22], or

simply by applying the projection on the divergence-free vector fields to (Sε),

system (Sε) can be regarded as a system of ODEs for u
ε. By Cauchy’s theorem,

we know that this sytem has a unique smooth solution. The a priori estimates

previously proved implies that uε exists up to the time given in the statement of

the theorem and that

‖uε‖L∞(0,T ;Hs+2)

is bounded independently of ε. It is classical that this is enough to pass to the

limit (see [22]).

Remark 1.1. It is easy to prove, as in [22], that relation (24) and the

equation imply a stronger regularity result for the solution u:

u ∈ C([0, T ];Hs+2) ∩ C1([0, T ];Hs+1) ,

provided that f is regular enough (continous in time).

2 – A necessary condition for blow-up

Let us first notice that if T ?, the maximal time-existence of the solution given

in Theorem 1.1 is finite, then we must necessarily have

lim
t→T ?

‖u(t)‖s+2 = +∞ .

Indeed, suppose that there exists tk → T ? such that ‖u(tk)‖s+2 is bounded inde-

pendently of k. Theorem 1.1 gives a local solution starting at each tk whose time

existence may be chosed independent of k (see (15)). Since tk → T ?, it follows

that the solution may be extended over T ? but this contradicts the maximality

of T ?.
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In fact, a stronger blow-up condition holds:

Proposition 2.1. Assume that T ?, the maximal time-existence of the solu-

tion given in Theorem 1.1, is finite. Then the following relation:

∫ T ?

0
‖curl v‖L∞ = +∞(25)

holds.

Proof: Applying Gronwall’s lemma in (23), we get

‖u(t)‖s+2 ≤ ‖u0‖s+2 exp

(
C

∫ t

0
‖∇v‖L∞

)

+ C exp

(
C

∫ t

0
‖∇v‖L∞

) ∫ t

0
‖f‖s .

(26)

The blow-up condition (25) will be proved by contradiction. To do so, let us

introduce the function

φ(t) =

∫ t

0
‖∇v‖L∞ .(27)

The divergence-free condition on v enables us to express v in terms of curl v,

so one has (see [6])

φ′(t) = ‖∇v(t)‖L∞ ≤
∑

i,j

‖∂i∂j∆
−1 curl v‖L∞ .(28)

In the sequel, in order to simplify the computations, we introduce the notation

ω = curl v.

We will now make use of the following logarithmic inequality (see, for instance,

Chemin [6]):

‖∂i∂j∆
−1ω‖L∞ ≤ C ‖ω‖L∞ log

(
e+

‖ω‖r
‖ω‖L∞

)
+ C ‖ω‖L2 ,(29)

where r > n
2 .

It is easy to bound ‖ω‖L2 . The equation of ω is

∂tω + u∇ω + ω∇u = curl f ,

if the dimension is 3. In dimension 2, the last term of the left-hand side dissapears

(see [7], [8]). In both cases, multiplying by ω, integrating in space and using that
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div u = 0 yields

1

2
∂t‖ω‖

2
L2 ≤ ‖ω‖L2 ‖ω‖L∞ ‖∇u‖L2 + ‖ω‖L2 ‖curl f‖L2

≤ ‖ω‖L2 ‖ω‖L∞ ‖∇v‖L2 + ‖ω‖L2 ‖curl f‖L2

≤ C ‖ω‖2L2 ‖ω‖L∞ + ‖ω‖L2 ‖f‖s ,

where we have used that ‖∇v‖L2 ≤ C ‖curl v‖L2 ; this can be immediately deduced

by using Plancherel’s theorem or simply by using the more general relation for

La, ∀ 1 < a <∞, which is proved in [6]. Gronwall’s lemma now gives

‖ω(t)‖L2 ≤

(
‖ω0‖L2 +

∫ t

0
‖f‖s

)
exp

(
C

∫ t

0
‖ω‖L∞

)
.(30)

We now go back to (29) and we use the fact that for all α > 0, the function

x −→ x log

(
e+

α

x

)

is increasing to obtain

‖∂i∂j∆
−1ω‖L∞ ≤ C

(
1 + ‖ω‖L∞

)
log

(
e+

‖ω‖r
1 + ‖ω‖L∞

)
+ C ‖ω‖L2

≤ C
(
1 + ‖ω‖L∞

)
log
(
e+ ‖ω‖r

)
+ C ‖ω‖L2 .

Choosing r = s− 1 and recalling (28) and (26) yields

φ′(t) ≤ C
(
1 + ‖ω‖L∞

)
log
(
e+ ‖ω‖s−1

)
+ C ‖ω‖L2

≤ C
(
1 + ‖ω‖L∞

) (
1 + log+ ‖v‖s

)
+ C ‖ω‖L2

≤ C
(
1 + ‖ω‖L∞

)(
1 + log+‖u0‖s+2 + φ(t) + log+

(∫ t

0
‖f‖s

))
+ C‖ω‖L2 ,

where log+= max(log, 0). Therefore, by using (30), we get

φ′(t) ≤ C
(
1 + ‖ω‖L∞

) (
φ(t) + g(t)

)
,

where

g(t) = 1+log+‖u0‖s+2+log+

(∫ t

0
‖f‖s

)
+

(
‖ω0‖L2+

∫ t

0
‖f‖s

)
exp

(
C

∫ t

0
‖ω‖L∞

)

is a function which is bounded as long as
∫ t
0 ‖ω‖L∞ is bounded. Gronwall’s lemma

gives

φ(t) ≤ C

∫ t

0

(
1 + ‖ω‖L∞

)
g dτ exp

(
C

∫ t

0

(
1 + ‖ω‖L∞

))
.(31)
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Suppose that (25) does not hold, i.e.,
∫ T ?

0
‖ω‖L∞ < ∞ ,

This would imply that

φ(t) <∞ , ∀ t ≤ T ? .

Consequently, from (26) and (27) we have

‖u(t)‖s+2 ≤ C1 , ∀ t < T ? ,

where C1 is a constant depending on ‖u0‖s+2, ‖f‖L1(0,∞;Hs) and
∫ T ?
0 ‖ω‖L∞ . But,

as noticed at the begining of the section, this contradicts the maximality of T ?.

3 – The global existence in dimension 2

The equation of the curl in dimension two implies that the blow-up condition

proved in the previous section can not occur in finite time.

Theorem 3.1. In dimension two, the solution given in Theorem 1.1 is global

in time.

Proof: In order to prove the global existence, it is sufficient to prove that

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ +

∫ t

0
‖curl f‖L∞ ,(32)

since it would imply that
∫ t

0
‖ω‖L∞ <∞ , ∀ t <∞ ,

which contradicts the blow-up condition (25). To this end, we start by giving the

equation satisfied by ω,

∂tω + u∇ω = curl f .(33)

It is obtained by applying the curl in (14). Let us note that the equation of the

curl has this form only in dimension two.

We now define the flow of u.

Definition 3.1. The flow of u, denoted by ψ, is a continuous application

from R×R2 to R2 such that



∂tψ = u(t, ψ) ,

ψ(0, x) = x .
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It is well-known that the divergence-free condition on u implies that, for each t,

the flow is a diffeomorphism which preserves the measure (see [6]). The definition

of the flow and relation (33) shows that curl v is transported by the flow

∂t(ω(t, ψ)) = ∂tω + ∂1ω ∂tψ1 + ∂2ω ∂tψ2 = ∂tω + u∇ω = curl f(t, ψ) .

Consequently,

ω(t, ψ(t, x)) = ω0(x) +

∫ t

0
curl f(τ, ψ(τ, x)) dτ ,

and we obtain (32) by taking the L∞ norm in space.

4 – Limit of second grade fluids as the viscosity tends to zero

In absence of boundaries, it is easy to prove a convergence theorem for the

solutions of (1) to the solution of Camassa–Holm equation (3), when the viscosity

goes to 0.

Theorem 4.1. Consider a family of initial data uν0 belonging to Hs+2,

s > n
2 + 1, such that

lim
ν→0

uν0 = u0 strongly in Hs+2 .

Let uν be the solution of the second grade equation





∂t(u− α∆u)− ν∆u+ (u− α∆u)j∇uj + u∇(u− α∆u)−∇P = f ,

div u = 0 ,

u(x, 0) = u0 .

(34)

Then, when ν → 0, uν exists at least on the time interval given in Theorem 1.1

and moreover,

uν → u strongly in L∞(0, T ;Hs+2−ε), ∀ ε > 0 ,

where u is the solution of system (13), given in Theorem 1.1 and T is given in

(15).

In R2, the solutions of both systems are global in time and the convergence

result holds for all T <∞.
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Proof: The assertion on the short-time existence of uν follows trivially from

the convergence of the initial data and from the remark that when making energy

estimates, the viscosity term has the good sign, so it can be neglected to obtain

the same estimates on the short-time existence as in the zero-viscosity case.

In dimension two, further uniform estimate for curl v, namely (32), has been

used to deduce the global existence of the solution of the Camassa–Holm equation.

Lemma 4.1 below proves that such an estimate holds also for the second grade

fluid. This a priori estimate will imply the global existence of the solution of

system (34), since they can be used in the same way in the Galerkin method as

we did in the proof of Theorem 2.1. Note that the additional viscosity term is

linear, so it does not count in the limiting process. The uniqueness also holds true

since it was proved via energy estimates. Therefore, we obtain a global existence

and uniqueness theorem for solutions of system (34) in R2.

From the estimates in the proof of Theorem 1.1 one can deduce that the

solution uν is bounded in L∞(0, T ;Hs+2) independently of ν, where T is given

in Theorem 1.1. In dimension two, Lemma 4.1 as well as relations (26), (27) and

(31) show that the same holds for all T <∞.

We now prove that if T is such that uν is bounded in L∞(0, T ;Hs+2), then uν

converges to u, strongly in L∞(0, T ;Hs+2−ε), ∀ ε > 0. To do so, it is sufficient

to prove that uν converges to u in L∞(0, T ;H2). The result will follow from the

following well-known interpolation inequality:

‖u‖s+2−ε ≤ ‖u‖2
ε
s ‖u‖s+2

1− ε
s .

Therefore, it is sufficient to prove that vν → v in L∞([0, T ];L2). In order to

estimate vν− v we subtract the equations satisfied by vν and v to obtain:

∂t(v
ν−v)−ν∆uν+(vj

ν−vj)∇u
ν
j +vj∇(u

ν
j −uj)+u

ν ∇(vν−v)+(uν−u)∇v =

= ∇(pν− p) .

Multiplying by vν − v and integrating in space gives

∂t‖v
ν− v‖2L2 ≤ ν

∣∣∣∣
∫
∆uν(vν− v)

∣∣∣∣ +
∣∣∣∣
∫
(vνj − vj)∇u

ν
j (v

ν
j − vj)

∣∣∣∣

+

∣∣∣∣
∫
vj ∇(u

ν
j− uj) (v

ν− v)

∣∣∣∣ +
∣∣∣∣
∫
(uν− u)∇v (vν− v)

∣∣∣∣ .

Let us bound the right-hand side. One has
∣∣∣∣
∫
∆uν (vν− v)

∣∣∣∣ ≤ ‖uν‖s+2 ‖v
ν− v‖L2 .
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Clearly ∣∣∣∣
∫
(vνj − vj)∇u

ν
j (v

ν
j − vj)

∣∣∣∣ ≤ C ‖uν‖s+2 ‖v
ν− v‖2L2 .

We also have that
∣∣∣
∫
vj ∇(u

ν
j− uj) (v

ν− v)
∣∣∣ ≤ C ‖u‖s+2 ‖v

ν − v‖2L2 .

and that ∣∣∣∣
∫
(uν− u)∇v (vν− v)

∣∣∣∣ ≤ C ‖u‖s+2 ‖v
ν− v‖2L2 .

Putting together the above inequalities yields

∂t‖v
ν− v‖2L2 ≤ C ν ‖uν‖s+2 ‖v

ν− v‖L2 + C ‖u‖s+2 ‖v
ν− v‖2L2 .(35)

Let K be such that

‖uν‖L∞(0,T ;Hs+2) + ‖u‖L∞(0,T ;Hs+2) ≤ K .

It follows from (35) that

∂t‖v
ν− v‖L2 ≤ C K

(
ν + ‖vν− v‖L2

)
,

or, equivalently,

∂t

(
log
(
ν + ‖vν− v‖L2

))
≤ CK .

Integrating in time yields

log
ν + ‖vν− v‖L2

ν
≤ CK t ,

so

‖vν− v‖L2 ≤ ν
(
exp(CK t)− 1

)
≤ ν

(
exp(CKT )− 1

)
.

Taking the upper bound in t implies

‖vν− v‖L∞(0,T ;L2) ≤ ν
(
exp(CKT )− 1

)
,

which gives

vν → v in L∞(0, T ;L2) ,

and this ends the proof of Theorem 4.1.

It remains to prove a priori estimates in R2 for the solutions of (1). These

are given by the following lemma:
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Lemma 4.1. Consider a two-dimensional solution of the second grade equa-

tion (34) with u0 ∈ H
s+2. There exists a constant C independent of the viscosity

ν such that

‖curl v(t)‖L∞ ≤

(
‖curl v(0)‖L∞ +

∫ t

0
‖curl f‖L∞

)
eCtν/α .

Proof: Applying the curl to relation (34), one finds the following equation

for curl v:

∂t curl v + u∇ curl v − ν∆curlu = curl f .

As in (32), we deduce that

‖curl v(t)‖L∞ ≤ ‖curl v(0)‖L∞ +

∫ t

0
‖ν∆curlu+ curl f‖L∞ .(36)

We know that v = u− α∆u. Taking the curl we get

curl v = curlu− α∆curlu ,

which implies

∆ curlu =
1

α
(curlu− curl v) .

Using this in (36), one obtains

‖curl v(t)‖L∞ ≤ ‖curl v(0)‖L∞

+
ν

α

∫ t

0

(
‖curl v‖L∞ + ‖curlu‖L∞

)
+

∫ t

0
‖curl f‖L∞ .

Since curlu is obtained from curl v via a Bessel potential,

curlu = (I − α∆)−1 curl v ,

we have as in (22) that

‖curlu‖L∞ ≤ C ‖curl v‖L∞ .

Therefore

‖curl v(t)‖L∞ ≤ ‖curl v(0)‖L∞ + C
ν

α

∫ t

0
‖curl v‖L∞ +

∫ t

0
‖curl f‖L∞ .(37)

Let

h(t) = ‖curl v(0)‖L∞ +

∫ t

0
‖curl f‖L∞ .
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We have from (37) that

∂t

(
e−Ctν/α

∫ t

0
‖curl v‖L∞

)
=

(
‖curl v‖L∞ − C

ν

α

∫ t

0
‖curl v‖L∞

)
e−Ctν/α

≤ h(t) e−Ctν/α .

Integrating in time yields

∫ t

0
‖curl v‖L∞ ≤

∫ t

0
h(τ) eC(t−τ)ν/α dτ ≤ h(t) (eCtν/α − 1)

α

ν C
.

Using this in (37) gives

‖curl v(t)‖L∞ ≤

(
‖curl v(0)‖L∞ +

∫ t

0
‖curl f‖L∞

)
eCtν/α ,

which is the desired inequality.
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Collège de France Seminar, Vol. VI (Paris, 1982/1983), Pitman, Boston (1984),
178–197.

[9] Constantin, A. – On the spectral problem for the periodic Camassa–Holm equa-
tion, J. Math. Anal. Appl., 210 (1997), 215–230.

[10] Constantin, A. and Escher, J. – Global existence and blow-up for a shallow
water equation, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303–328.



ON SECOND GRADE FLUIDS WITH VANISHING VISCOSITY 65

[11] Dunn, J.E. and Fosdick, R.L. – Thermodynamics, stability, and boundedness
of fluids of complexity 2 and fluids of second grade, Arch. Rational Mech. Anal.,

56 (1974), 191–252.
[12] Ebin, D.G. and Marsden, J. – Groups of diffeomorphisms and the motion of an

incompressible fluid, Ann. of Math., 92(2) (1970), 102–163.
[13] Fosdick, R.L. and Rajagopal, K.R. – Anomalous features in the model of

“second order fluids”, Arch. Rational Mech. Anal., 70(2) (1979), 145–152.
[14] Galdi, G.P. and Sequeira, A. – Further existence results for classical solutions

of the equations of a second-grade fluid, Arch. Rational Mech. Anal., 128(4) (1994),
297–312.

[15] Holm, D.D.; Marsden, J.E. and Ratiu, T. – Euler-Poincaré models of ideal
fluids with nonlinear dispersion, Phys. Rev. Lett., 349 (1998), 4173–4177.

[16] Holm, D.D.; Marsden, J.E. and Ratiu, T.S. – The Euler-Poincare equa-
tions and semidirect products with applications to continuum theories, Advances
in Math., 137 (1998), 1–81.

[17] Klainerman, S. and Majda, A. – Singular limits of quasilinear hyperbolic sys-
tems with large parameters and the incompressible limit of compressible fluids,
Comm. Pure Appl. Math., 34(4) (1981), 481–524.

[18] Noll, W. and Truesdell, C. – The Nonlinear Field Theory of Mechanics, in
“Handbuch für Physics”, Vol. III, Springer, Berlin (1965).

[19] Ponce, G. – Remarks on a paper: “Remarks on the breakdown of smooth solutions
for the 3-D Euler equations” by J.T. Beale, T. Kato and A. Majda, Comm. Math.

Phys., 98(3) (1985), 349–353.
[20] Shkoller, S. – Geometry and curvature of diffeomorphism groups with H1 metric

and mean hydrodynamics, J. Func. Anal., 160 (1998), 337–365.
[21] Stein, E.M. – Singular integrals and differentiability properties of functions,

Princeton Mathematical Series, No. 30, Princeton University Press, Princeton
(1970).

[22] Taylor, M.E. – Partial differential equations. III, Springer–Verlag, New York
(1997).

Valentina Busuioc,

Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, BC 187,
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