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A GENERAL EXISTENCE THEOREM FOR

DIFFERENTIAL INCLUSIONS IN THE VECTOR VALUED CASE

B. Dacorogna and G. Pisante

Abstract: We discuss the existence of solutions, u ∈ ϕ+W 1,∞

0
(Ω; Rm), for differ-

ential inclusions of the form

Du(x) ∈ E, a.e. in Ω .

1 – Introduction

In this article we discuss the existence of solutions, u ∈W 1,∞(Ω; Rm), for the

Dirichlet problem involving differential inclusions of the form

{

Du(x) ∈ E , a.e. in Ω

u(x) = ϕ(x) , x ∈ ∂Ω

where ϕ is a given function and E ⊂ R
m×n is a given set.

In the scalar case (n = 1 or m = 1) a sufficient condition for solving the

problem is

Dϕ(x) ∈ E ∪ int coE, a.e. in Ω

where int coE stands for the interior of the convex hull of E. This fact was

observed by several authors, with different proofs and different levels of generality;

notably in [1], [2], [5], [6], [8], [12] or [13]. It should be noted that this sufficient

condition is very close from the necessary one.

When turning to the vectorial case (n,m ≥ 2) the problem becomes con-

siderably harder and no result with such a degree of elegancy and generality is

available. The first general results were obtained by Dacorogna and Marcellini
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(see the bibliography, in particular [8]). At the same time Müller and Sverak

[16] introduced the method of convex integration of Gromov in this framework,

obtaining comparable results.

The present paper is, in part, a review article of results by Dacorogna–

Marcellini [8]. It however provides a sharp theorem generalizing their results.

The main theorem below was first proved by Dacorogna–Marcellini in [7] (cf. also

[8]) under a further hypothesis (see below for details). This hypothesis was later

removed by Sychev in [20] (see also Müller and Sychev [17]), using the theory of

convex integration. Kirchheim in [14] pointed out that using a classical result in

function theory (Theorem 17) then the proof of Dacorogna–Marcellini was still

valid without the extra hypothesis on E.

2 – Preliminaries

We recall the main notations that we will use throughout the article and we

refer, if necessary, for more details to Dacorogna–Marcellini [8].

In the sequel we will always assume that Ω ⊂ R
n is a bounded open set,

however the boundedness is not a real restriction, since all the constructions are

local.

Notation 1. We will denote by

• W 1,∞(Ω; Rm) the space of maps u : Ω ⊂ R
n → R

m such that

u ∈ L∞(Ω; Rm) and Du =

(

∂ui

∂xj

)1≤i≤m

1≤j≤n

∈ L∞(Ω; Rm×n) ;

• W 1,∞
0 (Ω; Rm) = W 1,∞(Ω; Rm) ∩W 1,1

0 (Ω; Rm);

• Affpiec(Ω; Rm) will stand for the subset of W 1,∞(Ω; Rm) consisting of piece-

wise affine maps;

• C1
piec(Ω; Rm) will denote the subset of W 1,∞(Ω; Rm) consisting of piecewise

C1 maps.

For higher derivatives we will adopt the following notations.
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Notation 2.

• Let N,n,m ≥ 1 be integers. For u : R
n → R

m we write

DNu =

(

∂Nui

∂xj1 ...∂xjN

)1≤i≤m

1≤j1,...,jN≤n

∈ R
m×nN

s .

(The index s stands here for all the natural symmetries implied by the

interchange of the order of differentiation). When N = 1 we have

R
m×n
s = R

m×n

while if m = 1 and N = 2 we obtain

R
n2

s = R
n×n
s

i.e., the usual set of symmetric matrices.

• For u : R
n → R

m we let

D[N ]u =
(

u,Du, ...,DNu
)

stand for the matrix of all partial derivatives of u up to the order N .

Note that

D[N−1]u ∈ R
m×MN
s = R

m × R
m×n × R

m×n2

s × ...× R
m×n(N−1)

s ,

where

MN = 1 + n+ ...+ n(N−1) =
nN − 1

n− 1
.

Hence

D[N ]u =
(

D[N−1]u,DNu
)

∈ R
m×MN
s ×R

m×nN

s .

We therefore have the following

Notation 3. We will denote by

• WN,∞(Ω; Rm) the space of maps u : Ω ⊂ R
n → R

m such that D[N ]u ∈ L∞;

• WN,∞
0 (Ω; Rm) = WN,∞(Ω; Rm) ∩WN,1

0 (Ω; Rm);

• Aff N
piec(Ω; Rm) will stand for the subset of WN,∞(Ω; Rm) so that DNu is

piecewise constant;

• CNpiec(Ω; Rm) will denote the subset of WN,∞(Ω; Rm) so that DNu is piece-

wise continuous.
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We finally recall the notations for various convex hulls of sets.

Notation 4. We let, for E ⊂ R
m×n,

FE =
{

f : R
m×n → R = R∪{+∞} : f |E ≤ 0

}

,

FE =
{

f : R
m×n → R : f |E ≤ 0

}

.

We then have respectively, the convex, polyconvex, rank one convex and (closure

of the) quasiconvex hull defined by

coE =
{

ξ ∈ R
m×n : f(ξ) ≤ 0, for every convex f ∈ FE

}

,

PcoE =
{

ξ ∈ R
m×n : f(ξ) ≤ 0, for every polyconvex f ∈ FE

}

,

RcoE =
{

ξ ∈ R
m×n : f(ξ) ≤ 0, for every rank one convex f ∈ FE

}

,

QcoE =
{

ξ ∈ R
m×n : f(ξ) ≤ 0, for every quasiconvex f ∈ FE

}

.

We should point out that by replacing FE by FE in the definitions of coE

and PcoE we get their closures denoted by coE and PcoE. However if we do so

in the definition of RcoE we get a larger set than the closure of RcoE.

3 – The main theorem

We start with the following definition introduced by Dacorogna–Marcellini in

[7] (cf. also [8]), which is the key condition to get existence of solutions.

Definition 5 (Relaxation property). Let E,K ⊂ R
m×n. We say that K has

the relaxation property with respect to E if for every bounded open set Ω ⊂ R
n,

for every affine function uξ satisfying

Duξ(x) = ξ ∈ K ,

there exist a sequence uν ∈ Affpiec(Ω; Rm)

uν ∈ uξ +W 1,∞
0 (Ω; Rm) , Duν(x) ∈ E ∪K, a.e. in Ω ,

uν
∗
⇀ uξ in W 1,∞ ,

∫

Ω
dist(Duν(x);E) dx → 0 as ν → ∞ .
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Remark 6.

(i) It is interesting to note that in the scalar case (n = 1 or m = 1) then

K = int coE has the relaxation property with respect to E.

(ii) In the vectorial case we have that, if K has the relaxation property with

respect to E, then necessarily

K ⊂ QcoE .

Indeed first recall that the definition of quasiconvexity implies that, for

every quasiconvex f ∈ FE ,

f(ξ)meas Ω ≤

∫

Ω
f
(

Duν(x)
)

dx .

Combining this last result with the fact that {Duν} is uniformly bounded,

the fact that any quasiconvex function is continuous and the last property

in the definition of the relaxation property, we get the inclusion K ⊂

QcoE.

The main theorem is then.

Theorem 7. Let Ω ⊂ R
n be open. Let E,K ⊂ R

m×n be such that E is

compact and K is bounded. Assume that K has the relaxation property with

respect to E. Let ϕ ∈ Affpiec(Ω; Rm) be such that

Dϕ(x) ∈ E ∪K, a.e. in Ω .

Then there exists (a dense set of) u ∈ ϕ+W 1,∞
0 (Ω; Rm) such that

Du(x) ∈ E, a.e. in Ω .

Remark 8.

(i) According to Chapter 10 in [8], the boundary datum ϕ can be more

general if we make the following extra hypotheses:

• in the scalar case, if K is open, ϕ can be even taken in W 1,∞(Ω; Rm),

with Dϕ(x) ∈ E ∪K (cf. Corollary 10.11 in [8]);

• in the vectorial case, if the setK is open, ϕ can be taken in C1
piec(Ω;Rm)

(cf. Corollary 10.15 or Theorem 10.16 in [8]), with Dϕ(x) ∈ E ∪K.

While if K is open and convex, ϕ can be taken in W 1,∞(Ω; Rm) pro-

vided

Dϕ(x) ∈ C, a.e. in Ω ,

where C ⊂ K is compact (cf. Corollary 10.21 in [8]).
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(ii) As already mentioned this theorem was first proved by Dacorogna–

Marcellini in [7] (cf. also Theorem 6.3 in [8]) under the further hypothesis

that

E =
{

ξ ∈ R
m×n : Fi(ξ) = 0, i = 1, 2, ..., I

}

where Fi : R
m×n → R, i = 1, 2, ..., I, are quasiconvex. This hypothesis

was later removed by Sychev in [20] using the theory of convex integra-

tion (see also Müller and Sychev [17]). Kirchheim in [14] and [15] also

showed, using a classical result (Theorem 17) applied to the gradient

operator (Corollary 19), that the extra hypothesis on E of Dacorogna–

Marcellini [8] can be removed. The proof that we provide here is a

combination of the original one of Dacorogna–Marcellini with the one

of Kirchheim. More precisely we replace the density argument in [8],

which was based on weak lower semicontinuity and quasiconvexity, by

Corollary 19.

(iii) It should be pointed out that in the scalar case the theorem is in fact

more general, since then no restriction on E has to be imposed and we

can choose the largest possible K namely int coE.

(iv) For recent applications of this theorem see Croce [3], Dacorogna–Pisante–

Ribeiro [9] or Dacorogna–Ribeiro [10].

Proof: We let V be the closure in L∞(Ω; Rm) of

V =
{

u ∈ Affpiec(Ω; Rm) : u = ϕ on ∂Ω and Du(x) ∈ E ∪K
}

.

V is non empty since ϕ ∈ V . Let, for k ∈ N,

V k = int

{

u ∈ V :

∫

Ω
dist

(

Du(x);E
)

dx ≤
1

k

}

where int stands for the interior of the set. We claim that V k, in addition to be

open, is dense in the complete metric space V . Postponing the proof of the last

fact for the end of the proof, we conclude by Baire category theorem that

∞
⋂

k=1

V k ⊂
{

u ∈ V : dist
(

Du(x), E
)

= 0, a.e. in Ω
}

⊂ V

is dense, and hence non empty, in V . The result then follows, since E is compact.
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We now show that V k is dense in V . So let u ∈ V and ǫ > 0 be arbitrary.

We wish to find v ∈ V k so that

‖u− v‖L∞ ≤ ǫ .

We recall (cf. Appendix) that

ωD(α) = lim
δ→0

sup
v,w∈B∞(α,δ)

‖Dv −Dw‖L1(Ω)

where

B∞(α, δ) =
{

u ∈ V : ‖u− α‖L∞< δ
}

.

• We start by finding α ∈ V a point of continuity of the operator D so that

‖u− α‖L∞ ≤
ǫ

3
.

This is always possible by virtue of Corollary 19. In particular we have that the

oscillation ωD(α) of the gradient operator at α is zero.

• We next approximate α ∈ V by β ∈ V so that

‖β − α‖L∞ ≤
ǫ

3
and ωD(β) <

1

2k
.

This is possible since by Proposition 16 we know that for every ε > 0 the set

Ωε
D :=

{

u ∈ V : ωD(u) < ε
}

is open in V .

• Finally we use the relaxation property on every piece where Dβ is constant

and we then construct v ∈ V , by patching all the pieces together, such that

‖β − v‖L∞ ≤
ǫ

3
, ωD(v) <

1

2k
and

∫

Ω
dist

(

Dv(x);E
)

dx <
1

2k
.

Moreover since ωD(v) < 1
2k we can find δ = δ(k, v) > 0 so that

‖v − ψ‖L∞ ≤ δ =⇒ ‖Dv −Dψ‖L1 ≤
1

2k

and hence
∫

Ω
dist

(

Dψ(x);E
)

dx ≤

∫

Ω
dist

(

Dv(x);E
)

dx + ‖Dv −Dψ‖L1 <
1

k

for every ψ ∈ B∞(v, δ); which implies that v ∈ V k.

Combining these three facts we have indeed obtained the desired density

result.
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To conclude this section we give a sufficient condition that ensures the re-

laxation property. In concrete examples this condition is usually much easier to

check than the relaxation property. We start with a definition.

Definition 9 (Approximation property). Let E ⊂ K(E) ⊂ R
m×n. The sets

E and K(E) are said to have the approximation property if there exists a family

of closed sets Eδ and K(Eδ), δ > 0, such that

(1) Eδ ⊂ K(Eδ) ⊂ intK(E) for every δ > 0;

(2) for every ǫ > 0 there exists δ0 = δ0(ǫ) > 0 such that dist(η;E) ≤ ǫ for

every η ∈ Eδ and δ ∈ [0, δ0];

(3) if η ∈ intK(E) then η ∈ K(Eδ) for every δ > 0 sufficiently small.

We therefore have the following theorem (cf. Theorem 6.14 in [8] and for a

slightly more flexible one see Theorem 6.15).

Theorem 10. Let E ⊂ R
m×n be compact and RcoE has the approximation

property with K(Eδ) = RcoEδ, then int RcoE has the relaxation property with

respect to E.

4 – Some extensions

In the present section we will extend the results of the preceding section.

We first define the relaxation property in a more general context.

Definition 11 (Relaxation property). Let E,K ⊂ R
n × R

m×MN
s × R

m×nN

s .

We say that K has the relaxation property with respect to E if for every bounded

open set Ω ⊂ R
n, for every uξ ∈ Aff N (Ω; Rm) with DNuξ(x) = ξ, satisfying

(

x,D[N−1]uξ(x), D
Nuξ(x)

)

∈ K ,

there exists a sequence uν ∈ Aff N
piec(Ω; Rm) such that

uν ∈ uξ +WN,∞
0 (Ω; Rm) , uν

∗
⇀ uξ in WN,∞ ,

(

x,D[N−1]uν(x), D
Nuν(x)

)

∈ E ∪K, a.e. in Ω ,
∫

Ω
dist

(

(

x,D[N−1]uν(x), D
Nuν(x)

)

;E
)

dx → 0 as ν → ∞ .

In the sequel we will denote points of E by (x, s, ξ) with x ∈ R
n, s ∈ R

m×MN
s

and ξ ∈ R
m×nN

s .
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The following theorem is the main abstract existence theorem. The proof

will be done essentially following the same argument of the proof of Theorem 7

and using the standard procedure of freezing the lower order terms as in [8]

Theorem 6.3.

Theorem 12. Let Ω ⊂ R
n be open. Let E,K ⊂ R

n × R
m×MN
s × R

m×nN

s be

such that E is closed, and both E and K are bounded uniformly for x ∈ Ω and

whenever s vary on a bounded set of R
m×MN
s . Assume that K has the relaxation

property with respect to E. Let ϕ ∈ Aff N
piec(Ω; Rm) be such that

(

x,D[N−1]ϕ(x), DNϕ(x)
)

∈ E ∪K, a.e. in Ω ;

then there exists (a dense set of) u ∈ ϕ+WN,∞
0 (Ω; Rm) such that

(

x,D[N−1]u(x), DNu(x)
)

∈ E, a.e. in Ω .

Remark 13.

(i) The boundedness of E (or of K) stated in the theorem should be un-

derstood as follows. For every R > 0, there exists γ = γ(R) so that

(x, s, ξ) ∈ E, x ∈ Ω and |x| + |s| ≤ R =⇒ |ξ| ≤ γ .

(ii) In this theorem if K is open (in the relative topology of R
n×R

m×MN
s ×

R
m×nN

s ) we can also take ϕ ∈ CNpiec(Ω; Rm) according to Corollary 10.18

in [8] (for a detailed proof of this statement see [19]).

(iii) As in the previous section, a theorem such as Theorem 10 is also available

in the present context, but we do not discuss the details and we refer to

Theorem 6.14 and Theorem 6.15 in [8].

Proof: Since ϕ ∈WN,∞(Ω; Rn) we can find R > 0 so that
∣

∣D[N−1]ϕ(x)
∣

∣ < R .

We let V be the closure in CN−1(Ω; Rm) of

V =

{

u ∈ Aff N
piec(Ω; Rm) : u ∈ ϕ+WN,∞

0 (Ω; Rm),
∣

∣D[N−1]u(x)
∣

∣<R

and
(

x,D[N−1]u(x), DNu(x)
)

∈ E ∪K

}

.

V is non empty since ϕ ∈ V and V is a complete metric space when endowed

with the CN−1 norm.
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Let, for k ∈ N,

V k = int

{

u ∈ V :

∫

Ω
dist

(

(

x,D[N−1]u(x), DNu(x)
)

;E
)

dx ≤
1

k

}

.

The result will follow as in the proof of Theorem 7 once we have proved that

V k is dense in the complete metric space V .

So let u ∈ V and ǫ > 0 be arbitrary. We wish to find v ∈ V k so that

‖u− v‖N−1,∞ ≤ ǫ .

We recall (cf. the Appendix) that

ωDN (u) = lim
δ→0

sup
ϕ,ψ∈BN−1,∞(u,δ)

‖DNϕ−DNψ‖L1 ,

where BN−1,∞(u, δ) = {v ∈ V : ‖u− v‖N−1,∞ < δ}.

• We start by finding α ∈ V a point of continuity of the operator DN

(in particular ωDN (α) = 0) so that

‖u− α‖N−1,∞ ≤
ǫ

3
.

• We next approximate α ∈ V by β ∈ V so that,

‖β − α‖N−1,∞ ≤
ǫ

3
and ωDN (β) <

1

3k
.

Since |D[N−1]β(x)| < R, from now on all the approximations can be supposed,

without loss of generality, sufficiently small in order to work always under the

hypothesis

|D[N−1]u(x)| < R .

• By working on each piece where DNβ is constant, without loss of gener-

ality, we can assume that β ∈ CN (Ω; Rm) with DNβ(x) = constant in Ω and

(x,D[N−1]β(x), DNβ(x)) ∈ E ∪K. Therefore let

Ω0 =
{

x ∈ Ω :
(

x,D[N−1]β(x), DNβ(x)
)

∈ E
}

,

Ω1 = Ω \ Ω0 .

It is clear that Ω0 is closed, since E is compact, hence Ω1 is open.
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• We can now use the relaxation property on Ω1 to find v1 ∈ Aff N
piec(Ω1; R

m)

such that 

































v1 ∈ β +WN,∞
0 (Ω1; R

m)

‖v1 − β‖N−1,∞ ≤
ǫ

3
;

(

x,D[N−1]v1(x), D
Nv1(x)

)

∈ E ∪K a.e. x ∈ Ω1
∫

Ω1

dist
(

(

x,D[N−1]v1(x), D
Nv1(x)

)

;E
)

dx ≤
1

3k
.

We can now define

v(x) =

{

β(x) if x ∈ Ω0

v1(x) if x ∈ Ω1 .

Observe that v is Aff N
piec(Ω; Rm) and



































v ∈ ϕ+WN,∞
0 (Ω; Rm)

‖v − β‖N−1,∞ ≤
ǫ

3
;

(

x,D[N−1]v(x), DNv(x)
)

∈ E ∪K a.e. x ∈ Ω
∫

Ω
dist

(

(

x,D[N−1]v(x), DNv(x)
)

;E
)

dx ≤
1

3k
.

Moreover by taking a smaller ε if needed we can ensure also that

ωDN (v) <
1

3k
,

then we can find h = h(k, v) so that

‖v − ψ‖N−1,∞ ≤ h =⇒ ‖DNψ −DNv‖L1 ≤
1

3k
.

Hence choosing h < 1/3k|Ω|, where |Ω| = meas Ω, and writing for simplicity of

notations

ηv(x) =
(

x,D[N−1]v(x), DNv(x)
)

, ηψ(x) =
(

x,D[N−1]ψ(x), DNψ(x)
)

we have
∫

Ω
dist(ηψ(x);E) dx ≤

∫

Ω
dist(ηv(x);E) dx

+ |Ω|
∥

∥D[N−1]ψ(x) −D[N−1]v(x)
∥

∥

N−1,∞

+
∥

∥DNψ(x) −DNv(x)
∥

∥

L1

<
1

3k
+ h|Ω| +

1

3k
≤

1

k
,

for every ψ ∈ BN−1,∞(v, h); which implies that v ∈ V k.
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Combining these three facts we have indeed obtained the desired density

result.

5 – Appendix

In this appendix we recall some well known facts about the so called functions

of first class in the sense of Baire, with particular interest in their application to

the gradient operator.

We start recalling some definitions.

Definition 14. Let X, Y be metric spaces and f : X → Y . We define the

oscillation of f at x0 ∈ X as

ωf (x0) = lim
δ→0

sup
x,y ∈B(x0,δ)

dY
(

f(y), f(x)
)

where B(x0, δ) := {x ∈ X : dX(x, x0) < δ} is the open ball centered at x0 and

dX , dY are the metric on the spaces X and Y respectively.

Definition 15. A function f is said to be of first class (in the sense of Baire)

if it can be represented as the pointwise limit of an everywhere convergent se-

quence of continuous functions.

In the next proposition we recall some elementary properties of the oscillation

function ωf .

Proposition 16. Let X, Y be metric spaces, and f : X → Y .

(i) f is continuous at x0 ∈ X if and only if ωf (x0) = 0.

(ii) The set Ωǫ
f := {x ∈ X : ωf (x) < ǫ} is an open set in X.

Using the notion of oscillation and Proposition 16 we can write the set Df of

all points at which a given function f is discontinuous as an Fσ set as follows

(1) Df =
∞
⋃

n=1

{

x ∈ X : ωf (x) ≥
1

n

}

.

We therefore have the following Baire theorem for functions of first class.

For the convenience of the reader we will give a proof of this theorem (see also

Theorem 7.3 in Oxtoby [18] or Yosida [21] page 12).
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Theorem 17. Let X, Y be metric spaces let X be complete and f : X → Y .

If f is a function of first class, then Df is a set of first category.

Proof: Using the representation (1) of Df it suffices to show that, for each

ǫ > 0 the set F = {x ∈ X : ωf (x) ≥ 5ǫ} is nowhere dense.

Let f(x) = limn→∞ fn(x), with fn continuous and define the sets

En =
⋂

i,j≥n

{

x ∈ X : dY
(

fi(x), fj(x)
)

≤ ǫ
}

, ∀n ∈ N .

Then En is closed inX, by continuity of fn, and En⊂En+1. Moreover
⋃

n∈N
En=X,

since for every x ∈ X the sequence {fn(x)} is convergent and thus a Cauchy

sequence in Y .

Consider any closed set with non-empty interior I ⊂ X. Since I =
⋃

(En∩I),

the sets En ∩ I cannot all be nowhere dense, since (cf. Yosida [21] page 12) in

this case the complement of I in X, Ic, should be a dense set as a complement of

a set of first category by Baire theorem and this is a contradiction with the fact

that I has non empty interior. Hence for some positive integer n, En∩ I contains

an open subset J , by definition (cf. Yosida [21] page 11) of a nowhere dense set.

We have dY (fj(x), fi(x)) ≤ ǫ for all x ∈ J and for all i, j ≥ n. Putting j = n

and letting i tend to ∞, we find that dY (fn(x), f(x)) ≤ ǫ for all x ∈ J . By

continuity of fn for any x0 ∈ J there exists a neighborhood I(x0) ⊂ J such that

dY (fn(x), fn(x0)) ≤ ǫ for all x ∈ I(x0) and hence

dY
(

f(x), fn(x0)
)

≤ 2ǫ , ∀x ∈ I(x0) .

Therefore

dY
(

f(x), f(y)
)

≤ dY
(

f(x), fn(x0)
)

+ dY
(

f(y), fn(x0)
)

≤ 4ǫ , ∀x, y ∈ I(x0) ,

then ωf (x0)≤ 4ǫ, and so no point of J belongs to F . Thus for every closed set I

with non-empty interior there is an open set J ⊂ I ∩ F c. This shows that F is

nowhere dense and therefore Df is of first category.

Remark 18. From Theorem 17 and the Baire category theorem follows in

particular that the set of points of continuity of a function of first class from

a complete metric space X to any metric space Y , i.e. the set Dc
f complement

of Df , is a dense Gδ set. Indeed for any ǫ > 0, the set

Ωǫ
f :=

{

x ∈ X : ωf (x) < ǫ
}

is open and dense in X.
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In the proof of our main theorem we have used Theorem 17 applied to the

following, quite surprising, special case of function of first class. This result

was observed by Kirchheim in [14] (see also [15]) for complete sets of Lipschitz

functions and the same argument gives in fact the result for general complete

subsets W 1,∞(Ω) functions.

Corollary 19. Let Ω ⊂ R
n be a bounded open set and let V ⊂W 1,∞(Ω) be

a non empty complete space with respect to the L∞ metric. Then the gradient

operator D : V → Lp(Ω; Rn) is a function of first class for any 1 ≤ p <∞.

Proof: For h 6= 0, we let

Dh = (Dh
1 , ..., D

h
n) : V → Lp(Ω; Rn)

be defined, for every u ∈ V and x ∈ Ω, by

Dh
i u(x) =











u(x+ hei) − u(x)

h
if dist(x,Ωc) > |h|

0 elsewhere

for i = 1, ..., n, where e1, ..., en stand for the vectors from the Euclidean basis.

The claim will follow once we will have proved that for any fixed h the operator

Dh is continuous and that, for any sequence h→ 0,

lim
h→0

‖Dh
i u−Diu‖Lp(Ω) = 0

for any i = 1, ..., n, u ∈ V.

The continuity of Dh follows easily by observing that for every i = 1, ..., n,

ǫ > 0 and u, v ∈ V we have that

‖Dh
i u−Dh

i v‖Lp(Ω) ≤
1

|h|

(
∫

Ωh

∣

∣

∣
u(x) − v(x) + u(x+ hei) − v(x+ hei)

∣

∣

∣

p

dx

)
1
p

≤
2(meas Ω)

1
p

|h|
‖u− v‖L∞(Ω) ,

where Ωh = {x ∈ Ω: dist(x,Ωc) > |h|}.

For the second claim we start observing that for any h and for any u ∈ V we

have

‖Dh
i u‖L∞(Ω) ≤

∥

∥

∥

∥

u(x+ hei) − u(x)

h

∥

∥

∥

∥

L∞(Ωh)

≤ ‖Diu‖L∞(Ω) < +∞ .
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Moreover by Rademacher theorem, for any sequence h→ 0,

lim
h→0

Dh
i u(x) = Diu(x) a.e. x ∈ Ω .

The result follows by Lebesgue dominated convergence theorem.
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