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Abstract: We announce the proof of the Zorich–Kontsevich conjecture: the non-

trivial Lyapunov exponents of the Teichmüller flow on (any connected component of a

stratum of) the moduli space of Abelian differentials on compact Riemann surfaces are

all distinct. By previous work of those authors, this implies the existence of the complete

asymptotic Lagrangian flag describing the behavior in homology of the vertical foliation

in a typical translation surface.

1 – Abelian differentials

1.1. An Abelian differential on a compact Riemann surface M is a holomor-

phic complex 1-form ω on the surface. In local coordinates z, it may be written

ωz = ϕ(z) dz

where the coefficient ϕ is a holomorphic function. Given another local coordinate

w, the corresponding local expression ωw = ψ(w)dw is determined by

ψ(w) = ϕ(z)
dz

dw

on the intersection of the coordinate domains.

1.2. We assume that the Abelian differential is not identically zero. Then its

zeros are isolated and, hence, finitely many. Let them be z1, ..., zκ, with κ ≥ 0.
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Near any point p such that ωp is non-zero, we may always find adapted local

coordinates

(1) ζ =

∫ z

p

ϕ(w) dw

for which the local expression of the Abelian differential is particularly simple:

ωζ = dζ. Moreover, near a zero zi, of order mi ≥ 1, we may choose adapted local

coordinates

(2) ζ = (mi + 1)

(
∫ z

zi

ϕ(w) dw

)
1

mi+1

relative to which ωζ = ζmidζ.

2 – Translation surfaces

2.1. Abelian differentials carry a very rich geometric structure. To begin with,

adapted local coordinates as in (1) form a translation atlas on the complement

of the zeros: changes between two such local coordinates ζ and ζ ′ are given by

translations
ζ ′ = ζ + const .

Such an atlas permits to transport from the complex plane to the complement

M\{z1, ..., zκ} of the zeros

• a flat Riemann metric and

• a parallel unit upward vector field.

Conversely, the flat metric and the upward vector field characterize the trans-

lation structure completely.

2.2. Using the local coordinates (2), one can also describe the flat metric

near each of the zeros zi: in polar coordinates, it takes the form

ds2 = dρ2 + (ciρ dθ)
2, with ci = mi + 1 .

In other words, zi is a conical singularity for the metric, with conical angle

equal to 2π(mi + 1). The upward vector field extends to the singularities, in a

multivalued fashion: there are exactly mi + 1 values at each zi.

The presence of these singularities implies that the geodesic flow is not com-

plete: countably many geodesics leaving from any point hit some singularity in

finite time.
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2.3. Let us describe a geometric construction of translation surfaces

(Figure 1). Consider any planar polygon with even number of sides, organized

in pairs of parallel sides with the same length. Identifying the two sides in the

same pair, by translation, one obtains a translation surface. The correspond-

ing Abelian differential comes, simply, from the canonical differential dz on the

complex plane.

WE

N

S

Figure 1

Every translation surface may be represented in this way. Yet, it is important

to keep in mind that such representations are far from being unique.

3 – Geodesic flows

A major problem we are interested in is to describe the behavior of the tra-

jectories of the Abelian differential or, in other words, the geodesics of the corre-

sponding flat metric. Locally, in adapted coordinates, they are given by straight

lines. We want to describe their global behavior (see Zorich [34]):

• When are geodesics closed? When are they dense?

• Quantitatively, how do they wrap around the surface?

These questions admit notably precise answers, as we are going to see. We

take a Dynamics approach, based on analyzing the behavior of certain dynamical

systems acting on the space of all translation surfaces (or Abelian differentials),

especially the Teichmüller flow and certain renormalization operators.

4 – Measured foliations

4.1. One important motivation for raising these questions comes from

Thurston’s theory [27] of measured foliations. The (oriented) measured foliation

defined by a real closed 1-form β on a smooth surface M is the foliation of the

complement of the zeros whose leaves are tangent to the kernel of β at every point.
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It is assumed that β has finitely many zeros and near each one of the zeros it is

given by

βz = ℑ(zmidz)

for some appropriate choice of smooth coordinates. One calls saddle-connection

any leaf that connects two zeros; if the two zeros coincide, the saddle-connection

is called a homoclinic loop.

θ

Figure 2

Maier [21] described the global structure of any measured foliation: there

exists a finite decomposition of the surface into periodic regions, where all leaves

are closed (homeomorphic to the circle), and minimal regions, where all leaves are

dense; these regions are separated by saddle-connections and homoclinic loops.

4.2. Geodesics in a given fixed direction on a translation surface (Figure 2)

are a special case of a measured foliation: consider the real closed 1-form

β = ℜ(eiθω)

where ω is the Abelian differential and θ is the angle between the chosen direc-

tion and the upward vector field. Results of Calabi [7], Katok [16], Hubbard,

Masur [15], and Kontsevich, Zorich [19] show that this case is actually not so

special: every measured foliation with no saddle-connections can be realized as

the vertical geodesic foliation of some translation surface.

5 – Moduli spaces

5.1. The numbers and orders of the singularities of an Abelian differential are

linked to the topology of the ambient surface through the Gauss–Bonnet relation

(3)

κ
∑

i=1

mi = 2 g(M) − 2 = −X (M) ,
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where g(M) is the genus and X (M) is the Euler characteristic ofM . In particular,

the set of zeros is non-empty if and only if the genus is larger than 1. We focus

on that case in what follows.

Let the genus g ≥ 2 be fixed. We denote by Mg the moduli space of compact

Riemann surfaces of genus g, that is, the space of all complex structures on the

compact surface of genus g, modulo conformal equivalence. Similarly, let Ag be

the moduli space of Abelian differentials on compact Riemann surfaces of genus

g. Both moduli spaces are complex orbifolds, with complex dimensions

dimC Mg = 3g − 3 and dimC Ag = 4g − 3 .

In addition, Ag is a fiber bundle over Mg (see [19]): the fiber bundle projection

assigns to each (non-identically zero) Abelian differential the unique Riemann

surface structure that is compatible with it.

5.2. Consider any m1, ...,mκ ≥ 1 satisfying the relation (3). We denote by

Ag(m1, ...,mκ) the subset of Abelian differentials having κ zeros, with multiplic-

ities m1, ...,mσ. Each of these strata of the moduli space Ag is also a complex

orbifold, with complex dimension

dimC Ag(m1, ...,mκ) = 2g + κ− 1 .

This is largest, and coincides with the dimension of the whole moduli space Ag,

when κ = 2g − 2 and mi = 1 for all i: we call Ag(1, ..., 1) the principal stratum.

On the other hand, the dimension is smallest when κ = 1 and m1 = 2g − 2: the

dimension of this stratum Ag(2g − 2) is equal to 4g. In general, strata are not

fiber bundles over Mg.

5.3. Local coordinates on each stratum may be constructed as follows. Let

S = {z1, ..., zκ} be the singular set and {γj , j = 1, ..., d} be a basis of the relative

homology H1(M,S,Z): each γj is a relative homology class of paths joining two

elements of S. Then the relative period mapping

ω 7→

(
∫

γj

ω

)

j=1,...,d

defines a local chart on the stratum. Thus, the stratum is locally identified with

the relative cohomology C
d =H1(M,S,C), where

d = dimCH1(M,S,C) = dimCH
1(M,S,C) = 2g + κ− 1 .
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This falls short of a manifold structure because ramifications may arise at points

(Abelian differentials) with non-trivial symmetries. On the other hand, coordi-

nate changes are complex affine maps, and so this atlas endows the stratum with

a complex affine structure.

The isomorphism H1(M,S,C) = C
d induces a natural Lebesgue measure

on the cohomology space, relative to which the lattice H1(M,S,Z ⊕ iZ) has

co-volume 1. This measure does not depend on the choice of the basis {γj},

although the isomorphism does. In this way we get that each stratum carries a

canonical volume measure. Masur [23] and Veech [28] proved that the volume of

every stratum is finite. The volumes of all strata have been computed recently

by Eskin, Okounkov, Pandharipande [8, 9].

5.4. Let us also mention that strata need not be connected, in fact some have

up to 3 connected components (Arnoux [1], Veech [29]). Kontsevich, Zorich [19]

gave the complete classification of the connected components of all strata.

6 – Teichmüller flow

6.1. The Teichmüller flow T t is the natural action of the diagonal subgroup

of SL(2,R) on the fiber bundle Ag, by postcomposition with local adapted charts.

In terms of Abelian differentials:

T t(ω)z =

(

et 0
0 e−t

)

· ωz ≡
[

etℜωz

]

+ i
[

e−tℑωz

]

.

It leaves invariant every connected component of strata, as well as the corre-

sponding canonical volume measure. In addition, it preserves the area of the

translation surface M .

6.2. Figure 3 gives a geometric illustration of the Teichmüller flow in terms of

the action on planar polygons. Recall however that different polygons may define

the same translation surface. Indeed, while the action on polygons is rather

uninteresting, because there is no recurrence, the Teichmüller flow in the space

of Abelian differentials has very rich dynamical behavior, as we shall comment

upon in a while.

Most of what follows is guided by the general principle that properties of

the Teichmüller flow reflect upon dynamical properties of almost all Abelian

differentials.
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T t

Figure 3

7 – Ergodicity

7.1. An important manifestation of this principle is the proof, by Masur [23],

Veech [28], that the geodesic flow gt of almost every translation surface in almost

every direction is uniquely ergodic: given any continuous function ϕ : M → R,

1

T

∫ T

0
ϕ(gt(z)) dt converges uniformly to

∫

M

ϕ d(area)

when T → ∞. Closely related, is their proof of the Keane conjecture [17]: almost

all interval exchange maps are uniquely ergodic.

Indeed, the crucial ingredient in the proofs is the following statement about

the Teichmüller flow:

Theorem 1 (Masur [23], Veech [28]). The Teichmüller flow is ergodic on

every connected component of every stratum, restricted to any constant area

hypersurface.

The previous conclusion was much improved by

Theorem 2 (Kerckhoff, Masur, Smillie [18]). For every translation surface,

the geodesic flow gt in almost every direction is uniquely ergodic.

7.2. The asymptotic cycle (Schwartzman [26]) of the geodesic leaving a point

z in a given direction is defined as follows: Let γ be a (long) geodesic segment

starting from z. Denote by [γ] ∈ H1(M,Z) the cycle represented by the closed

curve obtained by connecting the endpoint of γ to the starting point z by some

segment with bounded length. Then let

c1 = lim
1

|γ|
[γ]

where |γ| denotes the length. Unique ergodicity implies that the limit exists,

uniformly, and does not depend on the point z: it depends only on the translation

surface and the choice of the direction.
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8 – Asymptotic flag conjecture

8.1. If the genus g(M) = 1 then c1 provides a good approximation to the di-

rection of the geodesic: the deviation of [γ] from the line L1 ⊂ H1(M,R) spanned

by the asymptotic cycle is bounded.

For g(M) = 2, one gets a richer picture (Figure 4 represents the component of

[γ] orthogonal to c1, for various values of |γ|): the cycle [γ] oscillates around L1

with amplitude roughly |γ|ν2 , where 0 < ν2 < 1 and |γ| denotes the length of the

geodesic segment. Moreover, there is an asymptotic isotropic 2-plane L2 ⊃ L1

such that deviations from L2 are bounded.

c2

|γ|ν2

Figure 4

8.2. More generally (see Figure 5), in genus g > 1 we have

Conjecture 1 (Zorich, Kontsevich). There are 1 > ν2 > · · · > νg > 0 and

isotropic subspaces L1⊂L2⊂· · ·⊂Lg of the homology H1(M,R) with dimLi = i

for every 1 ≤ i ≤ g such that

• [γ] oscillates around Li with amplitude |γ|νi+1 :

lim sup
|γ|→∞

log dist([γ], Li)

log |γ|
= νi+1 for every 1 ≤ i ≤ g − 1 ;

• the deviation of [γ] from Lg is bounded: sup dist([γ], Lg) <∞.

L1 = Rc1

L2 = Rc1 ⊕ Rc2

|γ|ν2

|γ|ν3

Figure 5
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Moreover, the deviation spectrum ν2 > · · · > νg is universal: it depends only

on the connected component of the stratum to which the translation surface

belongs.

8.3. The picture we just described was discovered empirically by Zorich [31].

Together with Kontsevich [19, 31, 32], he showed that this picture would follow

from a statement about the Lyapunov exponents of the Teichmüller flow. Indeed,

the Lyapunov spectrum of the Teichmüller flow (restricted to a hypersurface of

constant area) has the form

(4)
2 ≥ 1 + ν2 ≥ · · · ≥ 1 + νg ≥ 1 = · · · = 1 ≥ 1 − νg ≥ · · · ≥ 1 − ν2 ≥ 0 ≥

− 1 + ν2 ≥ · · · ≥ −1 + νg ≥ −1 = · · · = −1 ≥ −1 − νg ≥ · · · ≥ −1 − ν2 ≥ −2 .

Zero is a simple exponent, corresponding to the flow direction. There are κ − 1

exponents equal to 1 and to −1 arising from the action on relative cycles joining

the σ singularities. Zorich and Kontsevich proved that the previous conjecture

would follow from showing that all the inequalities in (4) are strict or, in other

words, that apart from ±1 all Lyapunov exponents of the Teichmüller flow are

distinct; in that case the exponents νi in the description of the Zorich phenomenon

are just the same numbers that appear in (4).

8.4. Veech [29] proved that the Teichmüller flow is non-uniformly hyperbolic.

This means that the two middle inequalities in (4) are strict or, equivalently,

that ν2 < 1. Then the fundamental work of Forni [10] proved that νg > 0. This

established the conjecture for g = 2, as well as the existence of the subspace Lg in

the general case. Moreover, his conclusions have been used by Avila, Forni [2] to

obtain other dynamical properties of translation flows. Finally, here we announce

Main Result. The Zorich–Kontsevich conjecture is true, on every connected

component of any stratum.

The connection between the Zorich phenomenon and the Teichmüller flow

can be understood by means of another dynamical system, the Zorich cocycle,

which is a linear cocycle over the Zorich renormalization operator. We are going

to outline this connection, following Zorich [32] mostly, and then provide some

motivation to the proof of the main result.
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9 – Interval exchange maps

9.1. The geodesic flow in a given fixed direction may be analyzed through

the return map of geodesics to convenient cross-sections. For typical directions

this map is well-defined and an interval exchange transformation: there is a finite

partition of the domain into subintervals restricted to which the return map

is a translation; the transformation just reshuffles those subintervals. Interval

exchange transformations are described by pairs (π, λ) where π determines the

combinatorics of the subintervals before and after the transformation, and λ

describes the lengths of the subintervals. See Marmi, Moussa, Yoccoz [22] and

Figure 6.

The geodesic flow on the translation surface, in the chosen direction, may

then be recovered as a suspension of the interval exchange transformation. This

is illustrated in Figure 7: the surface is represented as a finite union of rectangles

with appropriate identification of boundary segments (a zippered rectangle [28]),

the interval exchange acts on the horizontal cross-section, and the geodesic flow

is vertical on each of the rectangles. This construction involves additional pa-

rameters, especially a vector h that describes the heights of the rectangles (the

suspension roof function).

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

π =

�
1 2 3 4
3 2 4 1

�
λ = (λ1, λ2, λ3, λ4)

π′ =

�
1 4 2 3
3 2 4 1

�
λ′ = (λ1 − λ4, λ2, λ3, λ4)

Figure 6

9.2. Then, to analyze the behavior of longer and longer geodesics, one con-

siders return maps to shorter and shorter cross-sections. An efficient way to

implement this idea is the Rauzy–Veech induction operator [25, 28]. At the level

of interval exchange maps this corresponds to removing a convenient subinterval

on the right of the domain and replacing the original transformation by its return

map to the reduced domain. This is expressed by a map

R̂(π, λ) = (π′, λ′) , λ′ = A(λ)

where A = Aπ,λ is a linear map. An example is presented in Figure 6.
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We also consider the Rauzy–Veech renormalization operator R(π, λ)=(π′, λ′′),

which is just the induction operator followed by rescaling of the reduced domain

back to length 1. This is a Markov map and admits an invariant measure ν abso-

lutely continuous with respect to Lebesgue measure in the λ-space and ergodic.

9.3. These operators also define a directed graph structure (Rauzy diagram)

on the set of all admissible combinatorial data π: there is an arrow from π to π′

if and only if R(π, λ) = (π′, λ′′) for some λ and λ′′. The Rauzy classes are the

connected components of this graph. It is clear that the set of all pairs (π, λ)

where π varies in a given Rauzy class and π varies on the whole simplex of length

1 positive vectors is invariant under the renormalization operator. In what follows

we always consider our operators restricted to such an invariant set. Then the

statements are meant for every choice of the corresponding Rauzy class.

10 – Lyapunov exponents

10.1. The induction and renormalization operators also act at the level of

zippered rectangles: the action on the height vector h is described by h′ = B(h)

where B = Bπ,λ is the linear map defined by

A∗ ·B = id .

An example is presented in Figure 7. These linear maps are particularly im-

portant for our purposes. Indeed, the point with taking successively smaller

cross-sections is that this causes geodesic segments returning to the cross-section

to become successively longer, and the map h 7→ h′ describes exactly how this

happens. Thus, the behavior of long geodesic segments corresponds to the asymp-

totic behavior of the Rauzy–Veech cocycle

R
(

(π, λ), h
)

=
(

R(π, λ), Bπ,λ(h)
)

,

which is a linear cocycle over the Rauzy–Veech renormalization operator R.

This observation is crucial for understanding how the Zorich phenomenon

can be handled with methods of dynamical systems and ergodic theory. However,

there is still an important technical difficulty: the absolutely continuous invariant

measure ν of the operator R is usually infinite. This was solved by Zorich [32],

who constructed accelerated versions

Z(π, λ) = Rn(π,λ)(π, λ) and Z
(

(π, λ), h
)

= Rn(π,λ)(π, λ, h) ,
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of those objects, such that Z admits an invariant absolutely continuous proba-

bility µ and Z is an integrable linear cocycle over Z. In addition, µ is ergodic.

1 2 3 4

h′1 = h1 h′2 = h2 h′3 = h3 h′4 = h1 + h4

1 2 34

Figure 7

10.2. It follows, by Oseledets [24], that the Zorich cocycle Z has well-defined

Lyapunov exponents. In addition, one can show that Z preserves a certain alter-

nate 2-form α whose kernel {u : α(u, ·) ≡ 0} has dimension κ − 1 and such that

all the Lyapunov exponents along the invariant subbundle defined by the cone

vanish identically. This implies that the Lyapunov spectrum has the form

λ1 ≥ λ2 ≥ · · · ≥ λg ≥ 0 = · · · = 0 ≥ −λg ≥ · · · ≥ −λ1 .

It is not difficult to show that λ1 > 0. The interpretation of this cocycle outlined

above gives that the λi are related to the exponents νi in the Zorich–Kontsevich

conjecture through

νi =
λi

λ1
for i = 1, ..., g .

Moreover, if the λi are all distinct then the asymptotic flag is given by the

Oseledets decomposition for the Zorich cocycle. Thus, the conjecture may be

reformulated (see Conjecture 1 in [33] and Conditional Theorem 4 in [34]):

Conjecture 2. The Lyapunov exponents of the Zorich cocycle satisfy

λ1 > λ2 > · · · > λg > 0

on every Rauzy class.

This is the statement we actually prove in our forthcoming papers [3] and [4].
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10.3. Typical translation surfaces in the same connected component of strata

are special suspensions over interval exchange transformations whose combina-

torics belong to the same Rauzy class. Moreover, the Zorich renormalization

operator Z is closely related to the Poincaré map of the Teichmüller flow to a

convenient cross-section. In fact, the Zorich cocycle Z is closely related to a

Poincaré map of a continuous time linear cocycle over the Teichmüller flow itself,

the Kontsevich–Zorich cocycle [19].

From these relations one deduces that the Lyapunov spectrum of Z determines

the one of T t: the Lyapunov exponents of the Teichmüller flow are the numbers

±

(

1 +
λ

λ1

)

, where λ is a Lyapunov exponent of Z .

Compare (4). This explains how the Lyapunov spectrum of the Teichmüller flow

comes to be related with the exponents in the Zorich phenomenon.

10.4. Besides the Zorich phenomenon, the Lyapunov exponents of the Zorich

cocycle are also linked to the behavior of ergodic averages of interval exchange

transformations (a first result in this direction is given in [32]) and translation

flows or area-preserving flows on surfaces [10]. Let us point out that it is now

possible to treat the case of interval exchange transformations in a very elegant

way, using the results of Marmi–Moussa–Yoccoz [22]. A result for translation

flows can then be recovered by suspension, which also implies the result for area-

preserving flows.

11 – Motivation of the proof

11.1. Our proof of the Zorich–Kontsevich conjecture has two distinct parts:

• A general criterion for the simplicity of the Lyapunov spectrum of locally

constant cocycles.

• A combinatorial analysis of Rauzy diagrams to show that the criterion can

be applied to the Zorich cocycle on any Rauzy class.

They correspond, roughly, to our two manuscripts [3] and [4].

11.2. The basic idea of the criterion is that it suffices to find orbits of the base

dynamics over which the cocycle exhibits certain forms of behavior, that we call

twisting and pinching. Roughly speaking, twisting means that certain families



544 ARTUR AVILA and MARCELO VIANA

of subspaces are put in general position, and pinching means that a large part of

the Grassmannian (consisting of subspaces in general position) is concentrated

in a small region, by the action of the cocycle. We will be a bit more precise in

a while. We call the cocycle simple if it meets both requirements (notice that

“simple” really means that the cocycle’s behavior is quite rich). Then, according

to our criterion, the Lyapunov spectrum is simple.

It should be noted that the orbits on which these types of behavior are ob-

served are very particular and, a priori, correspond to zero measure subsets.

Nevertheless, they are able to “persuade” almost every orbit to have a simple

Lyapunov spectrum. For this, one assumes that the base dynamics is rather

chaotic (which is the case for the Teichmüller flow). In a purely random sit-

uation, this persuasion mechanism has been understood for quite some time,

through the works of Furstenberg, Kesten [11, 12], Guivarc’h, Raugi [14], and

Gol’dsheid, Margulis [13]. That this happens also in chaotic, but not random,

situations was unveiled by the works of Ledrappier [20] and Bonatti, Gomez-

Mont, Viana [5, 6, 30]. Our own papers [3, 4] extend those conclusions to the

specific situation needed in the present context.

11.3. The strategy to prove that the Zorich cocycle is “rich”, in the sense

described above, is to use induction on the complexity. The geometric motivation

is more transparent when one thinks in terms of the Kontsevich–Zorich cocycle.

As explained, we want to find orbits of the Teichmüller flow inside any connected

component of a stratum S = Ag(m1, ...,mκ) with some given behavior. To this

end, we look at orbits that spend a long time near the boundary of S. While there,

these orbits pick up the behavior of the boundary dynamics of the Teichmüller

flow, which contains the dynamics of the Teichmüller flow restricted to connected

components of strata S ′ with simpler combinatorics (corresponding to certain

ways to degenerate S).

This is easy to make sense of when the stratum S is not closed in the moduli

space, since the whole Teichmüller flow provides a broader ambient dynamics

where everything takes place. It is less clear how to formalize the idea when S

is closed (this is the case when S = Ag(2g − 2)). In this case, the boundary dy-

namics corresponds to the Teichmüller flow acting on surfaces of smaller genuses

and a geometric interpretation of the degeneration is more subtle. Kontsevich,

Zorich [19] considered the inverse of such a degeneration process, that they called

“bubbling a handle”.

On the other hand, our degeneration process is very simple when viewed

in terms of interval exchange transformations: we just make one interval very
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small. This small interval remains untouched by the renormalization process

for a very long time, while the other intervals are acted upon by a degenerate

renormalization process. This is what allows us to put in place an inductive

argument. To really control the effect, we must choose our small interval very

carefully. It is also sometimes useful to choose particular permutations in the

Rauzy class we are analyzing. A particularly sophisticated choice is needed when

we must change the genus of the underlying translation surface.

11.4. Let us say a few more words on how the Zorich cocycle is shown to be

simple. The fact that the cocycle is symplectic is important for the arguments.

By induction, we show that it acts minimally on the space of Lagrangian flags.

This is used to derive that the cocycle is twisting. In the induction, there must

be some gain of information at each step, when we must change genus: in this

case, this gain regards the action of the cocycle on lines, and it comes from the

rather easy fact that this action is minimal.

Also by induction, we show that certain orbits of the cocycle are pinching.

Here the gain of information when we must change genus has to come from the

action on Lagrangian spaces, and it is far from obvious. One can use Forni’s the-

orem [10] and, indeed, we did so in a previous version of the arguments. However,

the proof is now independent of his result, so that our work gives a new proof

of Forni’s main theorem. Indeed, in our (combinatorial) argument the pinching

of Lagrangian subspaces comes from orbits that have a pair of zero Lyapunov

exponents, but present some parabolic behavior in the central subspace.
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