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UNIQUENESS PROPERTIES OF FUNCTIONALS
WITH LIPSCHITZIAN DERIVATIVE

BIAGIO RICCERI

Abstract: In this paper, we prove that if X is a real Hilbert space and if J: X —R
is a C! functional whose derivative is Lipschitzian, with Lipschitz constant L, then,
for every xg € X, with J'(zg) # 0, the following alternative holds: either the functional
z — % ||z — zo||* = + J(x) has a global minimum in X, or, for every r > J(zo), there
exists a unique y,. € J~!(r) such that ||zg — y,| = dist(zo, J~1(r)) and, for every r > 0,
the restriction of the functional J to the sphere {z € X : || — x| = r} has a unique

global maximum.

1 — Introduction

Let X be a real Hilbert space and J a C' functional on X. For 2y € X, r > 0,
set S(zo,7) ={z € X: ||z — x| =1}

Also on the basis of the beautiful theory developed and applied by Schechter
and Tintarev in [2], [3], [4] and [5], it is of particular interest to know when the
restriction of J to S(0,r) has a unique maximum.

The aim of the present paper is to offer a contribution along this direction.

We show that such a uniqueness property holds (for suitable r) provided that
J'is Lipschitzian and J/(0) #0. At the same time, we also show that (for suitable s)
the set J~!(s) has a unique element of minimal norm.

After proving the general result (Theorem 1), we present an application to
a semilinear Dirichlet problem involving a Lipschitzian nonlinearity (Theorem 2).
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2 — The main result
With the usual convention inf () = +00, our main result reads as follows:

Theorem 1. Let X be a real Hilbert space and let J: X —R be a C! func-
tional, with Lipschitzian derivative. Let L be the Lipschitz constant of J'.
Then, for each xo € X with J'(x¢) # 0, if we set

0 = i3 I
and v
ﬁo = diSt($0, M%) s

where My is the set of all global minima of the functional x — %|lz—x||*—1J(z),
we have ag>J(xo), Bo>0, and the following properties hold:

(i) for every r € ]J(z0), ag| there exists a unique y, € J~'(r) such that
lzo — yrll = dist(zo, J () ;

(ii) for every r € 10, By| the restriction of the functional J to the set S(xg,r)
has a unique global maximum.

The main tool used to get Theorem 1 is the following particular case of
Theorem 3 of [1].

Theorem A. Let X be a reflexive real Banach space, I C R an interval
and ¥: X xI — R a function such that ¥(x,-) is concave and continuous for all
x € X, while ¥(-, \) is sequentially weakly lower semicontinuous and coercive,
with a unique local minimum for all A € int([).

Then, one has

sup inf ¥(x,A\) = inf sup¥(z,\) . n
Ael z€X (@A) X el (@3)

We will also use the two propositions below.

Proposition 1. Let Y be a nonempty set, f,g: Y — R two functions, and
a,b two real numbers, with a <b. Let y, be a global minimum of the function
f—ag and vy, a global minimum of the function f—bg.

Then, one has g(y,) < g(yp). If either y, or y, is strict and y, # yp, then

9(Ya) < 9(ys)-
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Proof: We have

f(Wa) —agya) < f(yp) — ag(ys)

as well as
fw) —bg(y) < f(ya) —bg(ya) -

Summing, we get

—ag(ya) —bgly) < —ag(ys) —bg(ya)

and so
(b—a)g(ya) < (b—a)g(yp)

from which the first conclusion follows. If either y, or yp is strict and y, # ys,
then one of the first two inequalities is strict and hence so is the third one. n

Proposition 2. Let Y be a real Hilbert space and let ¢: Y — R be a
C' functional whose derivative is a contraction.

Then, for every yo € Y, the functional y — %Hy — ol — @(y) is coercive
and strictly convex, and so has a unique local minimum.

Proof: Let v be the Lipschitz constant of ¢’'. So, v < 1, by assumption.
For each y € Y, we have

1
o(y) = ©(0) +/0 (¢'(ty),y) dt

and so

IN
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From this, we then get

1-v
2

1 1
3 Iy =woll* = (y) = Iyl = (1" )1 + llyoll) 1wl + 5 lwoll* = | (0)]
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and hence

: 1 9
lim |y — ol — ¢(y) = +oo,
llyll—-+o0 2
which yields the coercivity of the functional y — %Hy —yol|> = ¢(y). To show
that it is also strictly convex, we note that its derivative is strictly monotone.

In fact, for each x,y € X, we have

(=@ (@) —y+& ), z—y) = |z —yl> = () — (), z—y)
>z —yl* = 1€ () — ' W) Iz — vl
> (1= vl —ylP .

Proof of Theorem 1: First, note that, for each v > L, the operator %J’
is a contraction, and so, by Proposition 2, the functional x — ||z —z||? — %J(a:)
has a unique global minimum, say x1. Fix v > L. By Proposition 1, we have
J(xg) < J(SL‘%) We claim that J(z) ; J(ZE%) Arguing by contradiction, assume

that J(zo) =J(x1). Then, by Proposition 1 again, we would have z1 = x.
Y Y

Consequently, the derivative of the functional z — |z — zo* — %J () would
vanish at zg, that is —% J'(zg) = 0, against one of the hypotheses. Then, we
have

J(xo) < J(x%) < J(.’E)

for all x € M 1, and so J(zg) < ag. Clearly, x1 is the global minimum of the
Y
functional @ — }||z — zo||* — J(x), while any z € M% is a global minimum of

the functional z — %Hx — xg||? — J(x). Consequently, if we apply Proposition 1

again (with f(z)=—J(z), g(z)=—|z—x0|? a= %, b=73), for any z € M%,
we get

—[lz = zol* < —!\96%—?160|!27
and so
Bo > ||x%—xg|| > 0.

Now, to prove (i), fix r € ].J(xo), ao[ and consider the function ¥: Xx [0, 1] — R

defined by
1
U(z,\) = 3 |lz—z0)® + A(r—J(z))

for all (z,\) € Xx[0,1]. Taken Proposition 2 into account, it is clear that the

function ¥ satisfies all the assumptions of Theorem A. Consequently, we have

sup inf ¥(xz,\) = inf sup ¥(z,A) .
Aefo, 1] X *€X\el0,1]
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The functional SUP )0, 1] U(-,A) is weakly lower semicontinuous and coercive,
and so there exists z* € X such that

sup ¥(z*,\) = inf sup ¥(x,\).
A€[0, 1] X xel0,1]
Also, the function inf,cx W(x,-) is upper semicontinuous, and so there exists
A* € [0, 7] such that

inf ¥(xz,\*) = sup inf ¥(z,A) .
zeX )\6[0,%} reX

Hence, from this it follows that

1 * 2 * * : 1 2 *
S la™— ol + X (r=T (@) = it o — ol + A (r = J(z))
1

5 ||la* — xo||2 + /\(r — J(x*)) .

= sup

X€[0, 7]
We claim that J(z*) =r. Indeed, if it were J(x*) < r, then we would have
A= %, and so =¥ € M%, against the fact that r < ag. If it were J(z*) > r,

then we would have \*=0, and so z*= x¢, against the fact that J(xg) <.
We then have

1 1

Sl = ol = it <l —wol + X (@)
This implies, on one hand, that \* < % (since 7 < ap) and, on the other
hand, that each global minimum (and z* is so) of the restriction to J~(r)
of the functional z — %||z — z¢||® is a global minimum in X of the functional
x — 3|z —20|> — A*J(x). But this functional (just because A\*< 1) has a
unique global minimum, and so (i) follows. Let us now prove (ii). To this end,
fix r €10, 5p[ and consider the function ®: X x [L,4+oco] — R defined by

A
2 (a0l =)~ J(2)
for all (x,\) € X x [L,+oo[. Applying Theorem A, we get

Oz, ) =

sup inf ®(z,\) = inf sup P(x,N).

)\E[L;H)O[mex reX /\E[L,+OO[
Arguing as before (note, in particular, that lim inf ®(z,\) = —00), we get
A—+4oo zeX

i€ X and \ € [L,+o0[ such that

sup ®(z,A\) = inf sup P(x,N)
AE[L,+o00] €X \e[L,400[
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and

inf ®(z,\) = sup inf Dz, N) .
zeX ( ) )\E[L;I»OO[IEX

So that

~

A . A
(I = woll® = 72) = J(@) = in 5 (llo = aoll* = 1%) = J (@)

Do | >

A .
= s D (-l ~r) - I@)
A€[L,+oo|
From this it follows at once that ||& — x¢]|?> < r2. But, if it were || — xo||* < r?
we would have A = L. This, in turn, would imply that & € M 1, against the fact

that r < 3. Hence, we have ||& — 2¢/|> = r2. Consequently

1 1 1
_ij(i) = xig)gg(ﬂx—:co]P—ﬁ) —XJ(QZ) .

This implies, on one hand, that A>L (since r < (3p) and, on the other hand, that
each global maximum (and & is so) of the restriction of the functional J to the
set S(zo,r) is a global minimum in X of the functional z — || — zo||? — iJ(aj)

Since A > L, this functional has a unique global minimum, and so (i) follows.

Remark 1. It is clear from the proof that the assumption J'(zg) # 0 has
been used to prove ag > J(xg) and [y > 0, while it has no role in showing (i)
and (ii). However, when J'(zg) =0, it can happen that ag = J(x¢), Bo =0,
with (i) (resp. (ii)) holding for no r > «ag (resp. for no r > 0). To see this, take,
for instance, X =R, J(z) = $2?, 29 =0. 0

3 — An application

From now on, {2 is an open, bounded and connected subset of R™ with suf-
ficiently smooth boundary, and X denotes the space T/VO1 ’2(9), with the usual

loll=( [ |Vu<x>|2dz); .

Moreover, f: R — R is a Lipschitzian function, with Lipschitz constant u.

norm

Let A € R. As usual, a classical solution of the problem

—Au=Af(u) in Q
(Px)
u‘ag =0



... FUNCTIONALS WITH LIPSCHITZIAN DERIVATIVE 399

is any u€ C%(Q)NCY(Q), zero on AN, which satisfies the equation pointwise in .

For each v € X, put
Iw = [ ( / f(f)d£> s .

By a classical result, the functional J is continuously Géateaux differentiable
and one has

J(u)(v) = /Q f(u(@)) v(x) dz

for all u,v € X. Moreover, by a standard regularity result, the critical points
in X of the functional u — %lul|* — A J(u) are exactly the classical solutions of
problem (Py).

Denote by Aq the first eigenvalue of the problem

—Au=Xu in Q

U|BQ =0.

1
Recall that [lu|z2@q) < Ay *|luf| for all v € X.
We are now in a position to state the following

Theorem 2. Assume that f(0) # 0. For each r > 0, put

v(r) = sup J(u) .
[[ul[2=r
Further, put
6o = inf [jul?
o = inf lu]

where M is the set of all global minima in X of the functional u— 5 |ul|*— %J(u)

Then, &g > 0, the function v is C! and ' is positive in |0, dg[ and there exists
a continuous function ¢: 10,50 — X such that, for each r €]0,0[, ¢(r) is a
classical solution of the problem

—Au =
ujgn =0

satisfying ||o(r)||2 =r and J(p(r)) = ~(r).
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Proof: Fix u,v,w € X, with ||w| =1. We have

|7 (u) (w) = J'(v) (w)]

IN

/ |F(u()) — Fo(@))] ()] do
Q

< pllu = vl p2q) lwll 2 o)
< gl

and hence

/ / W
|7 = S @I < -l =l

That is, J’ is Lipschitzian in X, with Lipschitz constant )% Moreover, since
f(0) # 0, we have J'(u) # 0 for all w € X. Then, thanks to Theorem 1, for
each r € ]0,d¢[, the restriction of the functional J to the sphere S(0,+/r) has a
unique maximum. At this point, taken into account that ~(r) > 0 for all » > 0,
the conclusion follows directly from Lemma 2.1 and Corollary 2.13 of [2]. u

REFERENCES
[1] Riccirl, B. — Minimax theorems for limits of parametrized functions having
at most one local minimum lying in a certain set, Topology Appl., 153 (2006),

3308-3312.

[2] SCHECHTER, M. and TINTAREV, K. — Spherical maxima in Hilbert space and
semilinear elliptic eigenvalue problems, Differential Integral Equations, 3 (1990),
889-899.

[3] SCHECHTER, M. and TINTAREV, K. — Points of spherical maxima and solvability
of semilinear elliptic equations, Canad. J. Math., 43 (1991), 825-831.

[4] ScHECHTER, M. and TINTAREV, K. — Eigenvalues for semilinear boundary value
problems, Arch. Rational Mech. Anal., 113 (1991), 197-208.

[5] SCHECHTER, M. and TINTAREV, K. — Families of ‘first eigenfunctions’ for semi-
linear elliptic eigenvalue problems, Duke Math. J., 62 (1991), 453-465.

Biagio Ricceri,
Department of Mathematics, University of Catania,
Viale A. Doria 6, 95125 Catania — ITALY

E-mail: ricceri@dmi.unict.it



