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1. Complete and joint mixability

1.1. Motivation of the paper

In this paper we summarize the current state-of-the-art of research in com-
plete and joint mixability, and list about a dozen of open questions which the
author considers challenging and with potential impact. Many of the open ques-
tions emerged via private communications with other researchers1. Most of the
questions are formulated in terms of complete mixability due to its nicer math-
ematical properties, and this is already reflected in the title of this paper. The
paper carries dual purposes: to stimulate research activities leading to develop-
ments in the listed challenges, and to introduce the topic of complete and joint
mixability to a broader range of scholars, especially from different fields of study
other than applied probability. Both purposes serve to advance the study of this
topic as well as of the expanding field of dependence modeling.

One nice feature of complete and joint mixability is that the topic requires
very little background knowledge, and the mathematical questions are still con-
crete and challenging. The definitions, existing results and open questions can be
easily understood by any graduate students in analysis, combinatorics, proba-
bility or statistics. This paper hopefully enhances the accessibility of the subject
to a broad range of researchers at all levels and from all fields of mathematics
and statistics.

Although the main purpose of this paper is to discuss open questions, some
useful results listed in Section 2 (in particular, Theorems 1–5) are original in
this paper.

It is the author’s sincere hope that, after one or a few decades, most of the
questions listed in this paper would have been answered and connected to other
fields of mathematics and its applications, inspiring new research directions that
are unseen from today. Some of the questions listed here may be easily answered
by some experts, especially those from other fields, due to the obvious limitation
of the author’s knowledge. The opinions expressed in this paper as well as any
errors are solely the responsibility of the author.

1.2. An optimization problem

We start the story of mixability by a simple optimization problem. Suppose
that there are n steps in the production of an equipment of a certain type.
A company employsm workers specialized in each of its n production steps, that
is, mn workers in total; as such the company is able to produce m equipments
simultaneously. We use (i, j) for the i-th worker employed in the j-th production
step. Suppose that the time for worker (i, j) to finish her job is a positive number
ai,j . Each time, the company produces m equipments and then send them out
to a buyer. Naturally, the company is interested in minimizing the time T of
production of the m equipments, namely, T = max{t1, . . . , tm} where ti stands

1Some names are listed in the Acknowledgement.
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for the time taken in the production of the i-th equipment, i = 1, . . . ,m. What
is the optimal arrangement of workers for each equipment?

Each equipment is assigned with n workers with one from each step. That
is, for some m-permutations σ1, . . . , σn, workers (σ1(i), 1), . . . , (σn(i), n) are as-
signed to the i-th equipment, and hence ti =

∑n
j=1 aσj(i),j . The problem is

to minimize T = max

⎧⎨
⎩

n∑
j=1

aσj(i),j : i = 1, . . . ,m

⎫⎬
⎭ over all σ1, . . . , σn ∈ Sm,

(1)
where Sm is the set of m-permutations. This optimization target is a minimax,
and is very often consistent with variance reduction problems: to minimize quan-
tities such as the sample variance of t1, . . . , tn.

Intuitively, the optimal arrangement should be such that t1, . . . , tm are close
enough, and ideally equal. Since

t1 + · · ·+ tm =

m∑
i=1

n∑
j=1

ai,j ,

we have that

T ∗ = min
σ1,...,σn∈Sm

T � 1

m

m∑
i=1

n∑
j=1

ai,j ,

and ideally, T ∗ would be almost equal to 1
m

∑m
i=1

∑n
j=1 ai,j . Here we have two

general questions:

(i) What is an optimal arrangement (σ1, . . . , σn) for (1)? How could we cal-
culate an optimal arrangement (σ1, . . . , σn)?

(ii) Under what conditions, T ∗ = 1
m

∑m
i=1

∑n
j=1 ai,j? How could we calcu-

late T ∗?

Both questions are related to the concept of joint mixability, the main focus of
this paper.

1.3. Definitions and terminologies

Throughout, n and d are positive integers, and we assume a atomless space
(Ω,A,P) of random variables taking values in a semigroup G which can be cho-
sen as Rd in most cases. In the literature, complete mixability and joint mixabil-
ity are defined for distributions on R. Theoretically, the concepts of mixability
do not require any extra mathematical (topological, algebraic, analytical) struc-
ture on the underlying set G of study, other than an addition (+); in view of
applications, only the case G = Rd is particularly relevant. In the following we
use the term “distributions” for probability measures.

Definition 1 (Joint mixability). An n-tuple (F1, . . . , Fn) of distributions on
G is jointly mixable (JM) if there exists a distribution H on G

n with margins
F1, . . . , Fn such that H is supported in {(x1, . . . , xn) ∈ G

n : x1 + · · ·+xn = K}
for some K ∈ G.
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In the literature, mixability is often defined using the language of random
variables. The two definitions are equivalent.

Definition 2 (Definition given in [46]). A random vector (X1, . . . , Xn) satisfy-
ing

X1 + · · ·+Xn = K for some K ∈ G, (2)

is called a joint mix. An n-tuple (F1, . . . , Fn) of distributions on G is jointly
mixable (JM) if there exists a joint mix with marginal distributions F1, . . . , Fn.
When G = R

d, K in (2) is called a joint center of (F1, . . . , Fn).

Joint mixability is supported by many applications, including the optimiza-
tion problem in Section 1.2; see also Section 1.5 below. Suppose that for j =
1, . . . , n, Fj is a discrete distribution on R supported on distinct points a1,j , . . . ,
am,j with point-mass 1/m each. Let us recall question (ii) in Section 1.2. If
T ∗ = 1

m

∑m
i=1

∑n
j=1 ai,j , then for some σ∗

1 , . . . , σ
∗
n ∈ Sm,

T ∗ =

n∑
j=1

aσ∗
j (i),j

, i = 1, . . . ,m.

Now let U be a discrete uniform random variable in {1, . . . ,m}, and define
Xj = aσ∗

j (U),j , j = 1, . . . , n. It follows that Xj ∼ Fj , j = 1, . . . , n, and X1+ · · ·+
Xn = T ∗. That is, (F1, . . . , Fn) is jointly mixable, and the optimal arrangement
(σ∗

1 , . . . , σ
∗
n) in question (i) corresponds to a joint mix (X1, . . . , Xn). Question (ii)

in Section 1.2 is a special question of joint mixability.
Below we give the definition of complete mixability, which is the homogeneous

case of joint mixability when all marginal distributions are identical.

Definition 3 (Complete mixability). A distribution F on G is called n-com-
pletely mixable (n-CM) if the n-tuple (F, . . . , F ) is jointly mixable. When G =
R

d, μ = K/n is called a center of F , where K is the joint center of the n-tuple
(F, . . . , F ). A joint mix with identical margins F is called a complete mix.

The reason why distributions in Definitions 1–3 are called mixable is that
we are curious about whether one is able to find a joint mix with the given
constraints on margins.

Although complete mixability is a special case of joint mixability, the two
concepts are studied separately in the literature as they require mathematical
techniques at significantly different levels; see for example the results on mono-
tone densities in [43] and [44]. In addition, n-complete mixability is a property
of a single distribution, allowing us to study the property by letting n vary.

We denote by Mn(μ) the set of all n-CM distributions on R with center μ,
and by Jn(K) the set of all n-tuples of JM distributions with joint center K,
that is,

Jn(K) = {(F1, . . . , Fn) : (F1, . . . , Fn) is JM with joint center K}.

Apparently, F ∈ Mn(μ) if and only if (F, . . . , F ) ∈ Jn(nμ). For n = 1 or
n = 2, the sets Jn(K) and Mn(μ) are fully characterized. For n � 3, a full
characterization of either set is still an open question.
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Remark 1. In Definitions 1–3, both the summation x1 + · · · + xn and the
constant constraint K in the support of H are for mathematical tractability
and practical relevance. Other constraints may be chosen for different purposes
of applications or theoretical studies.

1.4. Related literature

In this section we provide a non-exhaustive brief list of related literature on
complete and joint mixability, especially for the reader who is new to this topic.
Except for a few early milestone studies, most papers listed here are within the
recent few years.

Probability measures with given margins have been studied since the early
work by Fréchet [17] and Hoeffding [20]; see also the milestone papers [41, 42].
The first study of questions specifically related to complete mixability was given
in [18] where uniform distributions were shown to be n-CM for n � 2. Relevant
contributions from the perspectives of mass transportation, variance reduction
and stochastic orders can be found in [37, 40, 27, 23]. The terms complete mix-
ability and joint mixability were introduced in [43] and [46] respectively, along
with properties and results on the complete mixability of monotone densities.
Recent advances on complete and joint mixability can be found in [32, 33, 44].

As opposed to the strongest positive dependence (see for instance comono-
tonicity in [9]), a universal notion of the strongest negative dependence does not
exist for a collection of more than two random variables, and the corresponding
optimization problems are generally much more complicated than those involv-
ing the strongest positive dependence. Complete and joint mixes are sometimes
argued to have the strongest negative dependence structure as they naturally
solve a large class of optimization problems. Recent studies searching for a no-
tion of extremal negative dependence can be found in [8, 43, 5, 6, 24]. A recent
review on extremal dependence concepts is given in [35].

Algorithms related to mixability have been designed for questions (i) and
(ii) in Section 1.2. An early study on rearrangement methods is found in [38];
some recent research includes [28, 12, 34, 19]. In particular, [19] showed that
question (i) in Section 1.2 is NP-complete even in the case when all ai,j ∈ Z.
As such, an analytical characterization of joint mixability is of considerable
importance.

1.5. Applications

The concepts of complete and joint mixability are closely related to many opti-
mization problems with marginal constraints. We discuss a few of them in this
section. For the reader who is only interested in mathematical challenges, this
section may be skipped.

Let X be a convex cone of random variables (taking values in R) of interest;
X can be chosen as L1 (the set of integrable random variables) or L∞ (the
set of bounded random variables) in most applications. For some univariate
distributions F1, . . . , Fn, define the aggregation set
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Dn = {X1 + · · ·+Xn : Xi ∈ X , Xi ∼ Fi, i = 1, . . . , n} ⊂ X .

Many optimization problems, including variance reduction problems, convex
functionals minimization, and maximin and minimax problems such as (1) de-
scribed in Section 1.2, boil down to the search for the smallest element in Dn

with respect to convex order.

Definition 4 (Convex order). Let X and Y two random variables with finite
mean. X is smaller than Y in convex order, denoted by X ≺cx Y , if for all
convex functions f ,

E[f(X)] � E[f(Y )], (3)

whenever both sides of (3) are well-defined.

It is well-known that the convex ordering largest element in Dn is always
obtained by F−1

1 (U)+ · · ·+F−1
n (U) for a random variable U ∼ U[0, 1]. However,

it remains open in general to find the smallest element in Dn with respect to
convex order for n � 3. [2] gave an example where Dn does not contain a smallest
element in this sense.

When (F1, . . . , Fn) is JM with joint center K, it is easy to see that K ∈ Dn

and K ≺cx S for all S ∈ Dn. In [43] and [21], the smallest element with respect
to convex order in Dn is characterized based on joint mixability when F1, . . . , Fn

have monotone densities even if (F1, . . . , Fn) is not jointly mixable.
The concepts of complete and joint mixability have also raised a considerable

interest in quantitative risk management, as it plays an important role in the
context of risk aggregation with dependence uncertainty. A typical question in
this field concerns the calculation of

sup{ρ(S) : S ∈ Dn} and inf{ρ(S) : S ∈ Dn} (4)

for a law-determined risk measure ρ : X → R; see the book [26, Section 6.2]
and the early work on the risk measure Value-at-Risk (VaR) in [10]. Here the
set Dn represents the set of possible aggregate risks under model uncertainty at
the level of dependence, a common setup in risk management practice.

In the case when ρ is a convex risk measure, ρ typically respects convex order;
see for instance Föllmer and Schied [16, Section 4]. Thus (4) boils down to ques-
tions of convex order in Dn as discussed above. Convex risk measures include the
Expected Shortfall, a popular risk measure used in banking regulation; see [13].

Among non-convex risk measures, the Value-at-Risk (VaR) is of particular
interest in portfolio management. The Value-at-Risk of a random variable X at
level p ∈ (0, 1) is defined as the (left-continuous) inverse distribution function

VaRp(X) = inf{x ∈ R : P(X � x) � p}.

Quantities of interest are

VaRp = sup{VaRp(S) : S ∈ Dn}, and
(5)

VaRp = inf{VaRp(S) : S ∈ Dn}, p ∈ (0, 1).

For more discussions and applications of this topic, see [12, 13]. The following
result on VaRp is given in [46]; the case of VaRp is symmetric.
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(1) For each p ∈ (0, 1), let Φ(p) = 1
1−p

∑n
i=1

∫ 1

p
VaRq(X)dq. It holds that

VaRp � Φ(p).
(2) For each p ∈ (0, 1), the equality VaRp = Φ(p) holds if and only if the n-

tuple of the distributions of F−1
1 (W ), . . . , F−1

n (W ) is jointly mixable, where
W ∼ U[p, 1].

The above result can also be applied to find minimal or maximal probability
function of random variables in Dn.

Although in many cases (F1, . . . , Fn) is not jointly mixable, solutions of (4)
and (5) can still be obtained based on conditional complete or joint mixability
in many cases; see [46, 30, 12, 2, 21] for work in this direction. Some other
recent research on (4) and (5) involving mixability can be found in [29, 7, 31,
33, 3, 1, 14]. We refer to [13] for a recent review of this subject in the context
of banking regulation, and the book [39] contains a comprehensive treatment of
many related problems.

2. Current open questions

In this section, we discuss some open questions in complete and joint mixability.
Unless otherwise specified, we consider G = R, and F is a distribution on R.
We use L0 for the set of all random variables in (Ω,A,P) taking values in R,
and we use IA to denote the indicator function of a set A. It is not necessary to
read the following questions in a particular order.

2.1. Uniqueness of the center

Suppose that F is n-CM. It is obvious that if F has finite mean μ, then its
center is unique and equal to μ. It is shown that if xP(|X| � x) → 0 as x → ∞
for X ∼ F , then the center of F is also unique; see [43, Proposition 2.1]. This
uniqueness can be easily extended to the case of G = R

d. For a generic Abelian
group G, the uniqueness is not guaranteed; an example can be easily built for
finite cyclic groups. For instance, consider a Bernoulli distribution Bern(1/2) on
Z2 with P(X = 0) = P(X = 1) = 1/2 for X ∼ Bern(1/2). It is obvious that
X +X = 0 and X + (1−X) = 1 on Z2, hence the center is not unique in this
setting.

We are interested in whether the center μ is always unique for the case G = R

or R
d. Non-uniqueness may only happen in the case that the support of F is

unbounded from both sides, and F does not have finite mean. Note that the
index n in complete mixability is irrelevant; indeed if a distribution F is n-CM
with center μ1 and k-CM with center μ2, μ1 �= μ2, then F is also nk-CM with
centers μ1 and μ2. Therefore, it suffices to determine whether a distribution can
be n-CM with different centers for any n ∈ N.

Open Problem 1. Is the center of mixability always unique for a distribution
on R (or Rd)? In other words, for μ, ν ∈ R, μ �= ν, is it true that Mn(μ) ∩
Mn(ν) = ∅?
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2.2. Generic proofs of some theorems

Below we list some main results on complete and joint mixability in the recent
literature.

(a) [40] Any continuous distribution function F having a symmetric and uni-
modal density is n-CM for n � 2.

(b) [43] Suppose that F admits a monotone density on its essential support
[a, b] with mean μ. Then F is n-CM if and only if

a+
b− a

n
� μ � b− b− a

n
. (6)

(c) [32] Suppose that F admits a concave density on its essential support. Then
F is n-CM for n � 3.

(d) [33] Suppose that F admits a density f on a finite interval [a, b], and f(x) �
3

n(b−a) on [a, b]. Then F is n-CM.

(e) [44] Suppose that F1, . . . , Fn all admit increasing (or decreasing) densities on
their essential supports [ai, bi] and have mean μi, i = 1, . . . , n, respectively.
Then (F1, . . . , Fn) is JM if and only if

n∑
i=1

ai + max
i=1,...,n

(bi − ai) �
n∑

i=1

μi �
n∑

i=1

bi − max
i=1,...,n

(bi − ai). (7)

(f) [44] Suppose that Fi ∼ E1(μi, σ
2
i , φ), where E1 is the 1-elliptical distribution

(for definition, see [15]) with parameters μi ∈ R, σi � 0, i = 1, . . . , n,
and φ is a characteristic generator for an n-elliptical distribution. Then
(F1, . . . , Fn) is JM if and only if

n∑
i=1

σi � 2 max
i=1,...,n

σi. (8)

Note that all results (a)–(e) include uniform distributions as a special case.
The proofs of (a) and (f) are analytical and reasonably straightforward due to
the symmetric nature of the underlying distributions. The dependence structure
of a corresponding joint mix in (a) and (f) is clear.

However, the proofs of the recent results on complete mixability, namely
(b)–(d), are all based on combinatorics and discretization of distributions. We
outline the common logic of the proofs as follows. To show that a distribution
F is n-CM, first we find a sequence of discretizations of this distribution, say
FN , with FN → F (sufficiently in the weak sense) as N → ∞. Then, for a
fixed N , we try to show that FN can be decomposed to a convex combination of
n-discrete uniform distributions with the same mean, or a convex combination
of known-to-be-n-CM discrete distributions with the same mean. This often in-
volves mathematical induction on the number of points in the support of FN .
The proof of result (e) in [44] is even more complicated; it involves decomposi-
tion of F1, . . . , Fn into combination of distributions with step density functions
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(which are not jointly mixable, but in some sense close to being jointly mix-
able), and a mathematical induction on the number of effective steps is used.
The proofs for the above-mentioned results are typically very long and technical,
and more importantly the details of the dependence structure for a joint mix
are always unclear. These rather unfortunate features significantly reduce the
accessibility of the theory of mixability for the general reader.

Through private communications with many scholars interested in this topic,
the author believes that generic (probabilistic, analytic) proofs without involving
combinatorics or mathematical induction is in demand for the future develop-
ment of the theory.

Open Problem 2. Is there a generic (probabilistic, analytic) proof of the main
results in complete and joint mixability?

Some duality theorems on probability measures with given margins in the
literature can be applied to complete and joint mixability. Recent studies on
complete mixability using duality methods are found in [29, 30, 45]. The follow-
ing theorem was essentially established in [41, 37]. How they could be used to
generate new results on mixability is still unclear.

Theorem 1 ([41, 37]). For distributions F1, . . . , Fn on R, the following state-
ments are equivalent:

(i) (F1, . . . , Fn) is jointly mixable with joint center K.
(ii) For all measurable functions fi : R → R, i = 1, . . . , n,

n∑
i=1

∫
fidFi � inf

{
n∑

i=1

E[fi(Yi)] : Y1, . . . , Yn ∈ L0,

n∑
i=1

Yi = K

}
,

whenever both sides of the above equation are finite.
(iii) For all measurable functions fi : R → R, i = 1, . . . , n such that∑n

i=1 fi(xi) � I{x1+···+xn=K} for all (x1, . . . , xn) ∈ R
n,

n∑
i=1

∫
fidFi � 1,

whenever the left-hand side of the above equation is finite.

Proof.

(a) (i)⇒(iii): Let (X1, . . . , Xn) be a joint mix with joint center K, and Xi ∼ Fi,
i = 1, . . . , n. Then for measurable functions f1, . . . , fn in (iii),

n∑
i=1

∫
fidFi =

n∑
i=1

E[fi(Xi)] � E[I{X1+···+Xn=K}] = 1.

(b) (iii)⇒(ii): For measurable functions fi : R → R+, i = 1, . . . , n, let

ξ = inf

{
n∑

i=1

E[fi(Yi)] : Y1, . . . , Yn ∈ L0,
n∑

i=1

Yi = K

}
.
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It follows that

ξ � inf

{
n∑

i=1

fi(yi) : y1, . . . , yn ∈ R,

n∑
i=1

yi = K

}
.

That is,
∑n

i=1 fi(xi)/ξ � I{x1+···+xn=K} for all (x1, . . . , xn) ∈ Rn. It follows
from (iii) that

n∑
i=1

∫
fidFi � ξ = inf

{
n∑

i=1

E[fi(Yi)] : Yi ∈ L0, i = 1, . . . , n,

n∑
i=1

Yi = K

}
.

(9)
Now we have shown that (9) holds for non-negative functions f1, . . . , fn.
Note that (9) is invariant under a shift in any of f1, . . . , fn, and hence it
holds also for all functions f1, . . . , fn bounded from below. For functions
that are unbounded from below, a standard approximation argument using
monotone convergence theorem would show that (9) still holds.

(c) (ii)⇒(i): this directly follows from Theorem 7 of [41].

Remark 2. Indeed, in Theorem 1, (i)⇔(ii) can be obtained from a particular
case of [41, Theorem 7], and (i)⇔(iii) can be obtained from a particular case of
[37, Equation (4)]; see also [36, Theorem 1]. None of the results in [41] and [37]
are stated specifically for the case of mixability.

2.3. Representation and decomposition

There are two types of decomposition of complete and joint mixability into
simple objects, as shown in Theorems 2 and 3 below. Although similar ideas
may be found in the literature, the theorems themselves are new in this paper.

In the following, we say a distribution F is an n-discrete uniform distribution
on (a1, . . . , an) ∈ R

n if P(X = x) = #{i = 1, . . . , n : ai = x}/n for X ∼ F .
Theorem 3.2 of [32] says that a discrete distribution F is n-CM with center μ if
and only if it has a decomposition:

F =

∞∑
i=1

biFi,

where
∑∞

i=1 bi = 1, bi � 0, i ∈ N and Fi, i ∈ N are n-discrete uniform distribu-
tions with mean μ. A stronger result can be obtained for any CM distributions.

Theorem 2. A distribution F on R is n-CM with center μ if and only if it has
the following representation

F =

∫
Rn

Fadh(a), (10)

where Fa, a ∈ R
n are n-discrete uniform distributions with mean μ, h is a

probability measure on R
n, and for a fixed x ∈ R, Fa(x) is measurable in a ∈ R

n.
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Proof. Let Xa be a μ-centered complete mix with identical marginal distribu-
tions Fa, a ∈ R

n. Take a random vector A ∼ h be independent of Xa, a ∈ R
n

and define
XA(ω) = XA(ω)(ω), ω ∈ Ω.

It is easy to see that XA is also a μ-centered complete mix. The marginal
distribution of XA can be easily calculated as

P (XA � (x,∞, . . . ,∞)) =

∫
Rn

P (Xa � (x,∞, . . . ,∞)) dh(a)

=

∫
Rn

Fadh(a) = F (x), x ∈ R.

Hence, F is n-CM with center μ.
Now suppose that F is n-CM with center μ. Let X = (X1, . . . , Xn) be a

μ-centered complete mix with identical marginal distributions F . Let Fa for
a ∈ R

n, a·1n = nμ be the n-discrete uniform distribution on a with mean μ. It is
obvious that for fixed x ∈ R, Fa(x) is measurable in a ∈ R

n. Let U be a discrete
uniform distribution on (1, . . . , n), independent of X, and Z =

∑n
i=1 XiI{U=i}.

It is straightforward to verify that that Z ∼ F , and for x ∈ R,

P(Z � x|X) =
1

n

n∑
i=1

P(Xi � x|X) =
1

n

n∑
i=1

E[I{Xi�x}|X] =
1

n

n∑
i=1

I{Xi�x}

= Fa(x)
∣∣
a=X

.

It follows that

F (x) = E[P(Z � x|X)] =

∫
Rn

Fa(x)dP(X � a), x ∈ R,

and h(a) in (10) can be chosen as P(X � a).

Since complete (and joint) mixability is preserved by taking weak limit (see
[43]), it is often sufficient to investigate complete mixability for bounded discrete
distributions on Z and then take a limit for general distributions; this technique
was used repeatedly in [43, 32, 33]. We say a vector X is a binary multinomial
random vector if X has a multinomial distribution with the “number of trials”
parameter n = 1, that is, X takes values in {0, 1}n and exactly one of the
components of X is 1. The following decomposition, which could be seen as
“perpendicular” to Theorem 2, may be of help to characterize complete and
joint mixability.

Theorem 3. Suppose that X takes values in Z+. X is a joint mix with joint
center N ∈ Z+ if and only if it has the following representation

X =

N∑
k=1

Xk, (11)

where Xk, k = 1, . . . , N are binary multinomial random vectors.
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Proof. Suppose that (11) holds. Since Xk · 1n = 1, it is easy to see that X is
a joint mix with center N . Now suppose that X = (X1, . . . , Xn) is a joint mix.
For k = 1, . . . , N and i = 1, . . . , n let

Yk,i = I{
∑ i

j=1 Xj�k} − I{
∑ i−1

j=1 Xj�k}

with the convention that
∑0

j=1 Xj = 0, and let Xk = (Yk,1, . . . , Yk,n). Since
X1 + · · ·+Xn = N , each Xk is binary multinomial. Then

N∑
k=1

Xk =

(
N∑

k=1

Yk,1, . . . ,

N∑
k=1

Yk,n

)

=

(
N∑

k=1

I{X1�k},
N∑

k=1

I{X1+X2�k} −
N∑

k=1

I{X1�k}, . . . ,
N∑

k=1

I{
∑n

j=1 Xj�k}

−
N∑

k=1

I{
∑n−1

j=1 Xj�k}

)

=

⎛
⎝X1, X1 +X2 −X1, . . . ,

n∑
j=1

Xj −
n−1∑
j=1

Xj

⎞
⎠ = (X1, X2 . . . , Xn).

Thus, X admits a decomposition of (11).

As a trivial consequence of Theorem 3, any binomial distribution with pa-
rameters (n, 1/n) for n ∈ N is n-CM, since it is the marginal distribution of
multinomial distribution with parameters (n; 1/n, . . . , 1/n), and any multino-
mial random vector has a natural representation (11).

Arguments of the type of Theorem 2 has been applied extensively in the recent
literature to show the complete/joint mixability of some classes of distributions.
It remains a question whether Theorem 3 can be useful in a non-trivial way.

Open Problem 3. Is Theorem 3 helpful (and how) in characterizing more
classes of CM and JM distributions?

2.4. Norm condition

Below we discuss the relationship between mixability and law-determined norms.
First we give the definition of a law-determined norm.

Definition 5 (Law-determined norm). A law-determined norm ||·|| on L0 maps
L0 to [0,∞], such that

(i) ||aX|| = |a| · ||X|| for a ∈ R and X ∈ L0;
(ii) ||X + Y || � ||X||+ ||Y || for X,Y ∈ L0;
(iii) ||X|| = 0 implies X = 0 a.s.;

(iv) ||X|| = ||Y || if X d
= Y , X,Y ∈ L0;

(v) ||X|| � ||Y || if 0 � X � Y a.s.
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The Lp-norms p ∈ [1,∞), || · ||p : L0 → [0,∞], X �→ (E[|X|p])1/p and
the L∞-norm || · ||∞ : L0 → [0,∞], X �→ ess-sup(|X|) are law-determined
norms. Here, we allow || · || to take a value of ∞, which means that the non-
negative functional || · || is not necessarily a norm in the common sense; we
slightly abuse the terminology here since all natural examples are norms in
respective proper spaces. We obtain a necessary condition for complete and joint
mixability based on law-determined norms. In what follows, (·)+ = max{·, 0}
and (·)− = −min{·, 0}.
Theorem 4. Suppose that (F1, . . . , Fn) is JM with joint center K, Xi ∼ Fi,
i = 1, . . . , n, || · || is any law-determined norm. Then we have that

||(Xi−μi)+|| �
n∑

j=1,j �=i

||(Xj−μj)−|| and ||(Xi−μi)−|| �
n∑

j=1,j �=i

||(Xj−μj)+||,

(12)
for all i = 1, . . . , n, and all μ1, . . . , μn ∈ R such that μ1 + · · ·+ μn = K.

Proof. Since (F1, . . . , Fn) is JM, there exist random variablesX1 ∼ F1, . . . , Xn ∼
Fn such that X1+ · · ·+Xn = K. It follows that X1−μ1 = −((X2+ · · ·+Xn)−
(μ2 + · · ·+ μn)) and hence

(X1 − μ1)+ =

(
n∑

i=2

(Xi − μi)

)
−

�
n∑

i=2

(Xi − μi)−. (13)

Applying || · || on both sides of (13), we obtain

||(X1−μ1)+|| =
∣∣∣∣∣
∣∣∣∣∣
(

n∑
i=2

(Xi − μi)

)
−

∣∣∣∣∣
∣∣∣∣∣ �

∣∣∣∣∣
∣∣∣∣∣

n∑
i=2

(Xi − μi)−

∣∣∣∣∣
∣∣∣∣∣ �

n∑
i=2

||(Xi − μi)−|| .

The rest parts are obtained by symmetry.

A similar version of Theorem 4 for complete mixability is listed below.

Theorem 5. Suppose that F is n-CM with center μ, X ∼ F and || · || is any
law-determined norm. Then we have that

||(X− t)+|| � (n−1)||(X−s)−|| and ||(X− t)−|| � (n−1)||(X−s)+||, (14)

for all t ∈ R and s = (nμ− t)/(n− 1).

It is worth noting that if we take || · || = || · ||∞ and s = t = μ in Theorem 5,
then we obtain that

||(X − μ)+||∞ � (n− 1)||(X − μ)−||∞,

which is b − μ � (n − 1)(μ − a), where a = sup{t ∈ R : F (t) = 0} and
b = inf{t ∈ R : F (t) = 1}. Combining with the other inequality in (14), we
obtain

a+
b− a

n
� μ � b− b− a

n
. (15)
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(15) is the mean condition obtained in [43], one of the key necessary conditions
for complete mixability, and is also a sufficient condition if F has monotone
density, shown in [43]; see also (b) in Section 2.2. If we take || · || = || · ||2 and
μi = E[Xi] in Theorem 4, and assume that each Fi is N(μi, σ

2
i ), i = 1, . . . , n,

then we obtain that

2 max
i=1,...,n

σi �
n∑

i=1

σi.

which is a sufficient condition for F1, . . . , Fn to be JM, shown in [46]; see also
(f) in Section 2.2. Both examples indicate that special cases of (12) and (14)
may be sufficient for particular classes of distributions.

Open Problem 4. Suppose that F has mean μ, and (14) holds for all law-
determined norms || · || and all t ∈ R. (With what extra conditions, possibly
some smoothness conditions) is it sufficient for F to be n-CM?

This problem induces another interesting question which is not directly re-
lated to mixability: how can we characterize all possible law-determined norms
in Definition 5?

2.5. Mixability in vector spaces

Most of the literature has a focus on complete and joint mixability on R for
its relevance in applications. Clearly, concepts of mixability can be naturally
generalized to distributions on R

d. However, existing non-trivial results in the
multi-dimensional setting are very limited; an early study in this direction can
be found in [40].

A simple observation is listed below. Its proof is straightforward and omitted.

Proposition 6. Suppose that F on R
d is n-CM. Then the projection of F to

any subspace of Rd is n-CM.

We have the following conjecture, with its rationale explained below.

Open Problem 5. Is a uniform distribution on a convex set C ⊂ R
d necessarily

n-CM for all n � d+ 1?

Obviously, the above conjecture is equivalent to say that a uniform distribu-
tion on a convex set C ⊂ R

d is (d + 1)-CM. The trivial cases d = 0 and d = 1
are explained below. When d = 0, C degenerates to a singleton, on which a
distribution is always n-CM for n � 1. When d = 1, C is an interval, and a
uniform distribution on an interval is n-CM for n � 2; this was already shown
in [18]. When d = 2, any projection of a uniform distribution on C to a line
has a concave density. [32] showed that a distribution with a concave density is
n-CM for n � 3. Of course, this is not sufficient for such a distribution to be
n-CM on R

d. However, we wonder how this type of dimension reduction would
help to characterize complete mixability.
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Open Problem 6. Suppose that F is a distribution on R
d, d > 1, and the

projection of F to any essential subspace of R
d is n-CM. (With what extra

conditions) is it sufficient for F to be n-CM on Rd?

2.6. Asymptotic mixability

Let F be an arbitrary distribution with bounded support. It has been observed
that [e.g. 3, 45] when n is large, it is more likely that F becomes n-CM. [33]
showed that a distribution on a bounded interval [a, b] with a positive density
function f(x) � 3/(n(b− a)) is n-CM. As a consequence, any continuous distri-
bution with a density bounded away from zero is n-CM for n sufficiently large.
It is left open to answer whether this condition of a density bounded away from
zero can be removed.

Open Problem 7. Are all absolutely continuous distributions on a bounded
interval n-CM for large enough n?

2.7. Copula of a complete mix

The major results in [43, 32, 33, 44] are based on combinatorics and mathemati-
cal induction. The dependence structure hidden in the proofs are unclear. It was
noted in [43] that an explicit form of a copula (which is generally not unique) of
a complete or joint mix is very difficult to write down. Since complete and joint
mixability naturally give bounds to many optimization problems, it would be
nice to have a copula of a complete mix, or a sampling method for simulation.
The two questions are of course very much related.

Open Problem 8. Suppose that F satisfies one of the sufficient conditions (for
instance, (b) in Section 2.2) and hence is n-CM. What is a possible copula of a
n-complete mix with margins F (or a joint mix with given margins)?

Open Problem 9. Suppose that F satisfies one of the sufficient conditions
(for instance, (b) in Section 2.2) and hence is n-CM. Could we simulate sample
from a n-complete mix with margins F?

2.8. Characterizing more classes of CM/JM distributions

It is a general task to characterize more classes of CM/JM distributions with
their corresponding necessary and sufficient conditions. One particular question
often discussed concerns the unimodal densities, as it is relevant to many opti-
mization problems outlined in [2]. [34] gave counter-examples where the mean
condition (15) is not sufficient for the complete mixability of a distribution with
a unimodal density on a bounded interval.

Open Problem 10. Under what extra conditions a unimodal distribution on
a bounded interval is n-CM?
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This question is particularly relevant to optimization problems when one of
the inequalities in the mean condition (15) is attained by an equality, as noted
in [2]. That is, the mean of the distribution exactly divides the support [a, b]
of the distribution into two parts with lengths (b− a)/n and (b− a)(n− 1)/n,
respectively.

2.9. Convex order problems

When (F1, . . . , Fn) is not JM, it is generally not clear whether there exists an
element S0 ∈ Dn such that S0 ≺cx S for all S ∈ Dn, where ≺cx stands for convex
order in Definition 4. A counter-example is given in [2] showing an aggregation
set Dn does not necessarily contain a smallest element with respect to convex
order. However, for all commonly used distributions F1, . . . , Fn, Dn seems to
contain such a smallest element, as shown either theoretically or numerically.
For instance, if each Fi has a decreasing density, i = 1, . . . , n, then a smallest
element with respect to convex order in Dn can be obtained; this was shown
in [21]. It remains unclear under what conditions such a smallest element exists.

Open Problem 11. What are necessary and sufficient conditions for Dn to
contain a smallest element with respect to convex order?

2.10. Characterizing the aggregation set

The last question is a general question concerning Fréchet classes. We use the
aggregation set Dn as in the previous problem, and define D∗

n = {S/n : S ∈ Dn}.
It is obvious that the joint mixability of F1, . . . , Fn is equivalent to the inclusion
of a degenerate random variable in Dn. In the case when F = F1 = F2 = · · ·
and F has finite mean, [25] showed that D∗

n has an upper limit of CF = {S :
S ≺cx X, X ∼ F} as n → ∞. However, it is also noted that for a finite n,
D∗

n ⊂ CF but is generally not equal to CF . The only fully-characterized classes
of Dn are when n = 2 and the marginal distributions are Bernoulli; see [25].

Open Problem 12. How can one characterize Dn (maybe for some simple
marginal distributions)? That is, for a given distribution G, determine whether
S ∈ Dn for some S ∼ G.

This question summarizes all challenges in complete and joint mixability. It
is generally open for all n � 2.

2.11. Some other open questions

We conclude this paper by some other questions that are beyond the expertise
of the author. To avoid misleading the reader with the author’s naivety and
ignorance, we simply list some possible directions.

1. Algorithms to determine whether some distributions are jointly mixable,
or solving question (1) in Section 1: see for instance [28, 12, 34, 19]. The
conditions under which the swapping algorithms in [28] converges are still
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unclear. Interestingly, [19] showed that the determination of the joint mix-
ability of different discrete uniform distributions on Z is NP-complete.

2. Mixability under higher-dimensional constraints: for fixed bivariate or
higher-dimensional marginal distributions, determine whether a joint mix
exists and develop algorithms for numerical determination. Note that even
to justify the existence of a joint distribution with given multivariate mar-
gins is not easy; see for instance [41, 22, 11].

3. Other multivariate functions replacing the summation of random variables
in the definition of mixability; see [4].

4. The influence of the algebraic structure of a semigroup G on complete and
joint mixability defined on G.
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