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Abstract: The aim of this paper is to study asymptotic geometric prop-
erties almost surely or/and in probability of extreme order statistics of an
i.i.d. random field (potential) indexed by sites of multidimensional lattice
cube, the volume of which unboundedly increases. We discuss the following
topics: (I) high level exceedances, in particular, clustering of exceedances;
(II) decay rate of spacings in comparison with increasing rate of extreme or-
der statistics; (III) minimum of spacings of successive order statistics; (IV)
asymptotic behavior of values neighboring to extremes and so on. The con-
ditions of the results are formulated in terms of regular variation (RV) of
the cumulative hazard function and its inverse. A relationship between RV
classes of the present paper as well as their links to the well-known RV
classes (including domains of attraction of max-stable distributions) are
discussed.

The asymptotic behavior of functionals (I)–(IV) determines the asymp-
totic structure of the top eigenvalues and the corresponding eigenfunctions
of the large-volume discrete Schrödinger operators with an i.i.d. poten-
tial (Anderson Hamiltonian). Thus, another aim of the present paper is
to review and comment a recent progress on the extreme value theory for
eigenvalues of random Schrödinger operators as well as to provide a clear
and rigorous understanding of the relationship between the top eigenvalues
and extreme values of i.i.d. random potentials. We also discuss their links
to the long-time intermittent behavior of the parabolic problems associated
with the Anderson Hamiltonian via spectral representation of solutions.

MSC 2010 subject classifications: Primary 60G70, 60H25, 82B44, 35P05;
secondary 60F05, 60F15, 60G60, 82C44, 35P15, 15B52, 26A12.
Keywords and phrases: Extreme value theory, Poisson limit theorems,
extreme order statistics, high-level exceedances, spacings, regular variation,
Weibull distribution, discrete Schrödinger operator, Anderson Hamiltonian,
random potential, largest eigenvalues, principal eigenvalues, localisation,
parabolic Anderson model, intermittency.

Received January 2015.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
1.1 Extremes of i.i.d. random fields . . . . . . . . . . . . . . . . . . . 157
1.2 Extreme value theory for eigenvalues of large-volume Anderson

Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

156

http://www.i-journals.org/ps
http://dx.doi.org/10.1214/15-PS252
mailto:arvydas.astrauskas@mii.vu.lt


From extreme values of i.i.d. random fields 157

1.3 Relations to infinite-volume Anderson Hamiltonians . . . . . . . 164
1.4 Relations to random matrices . . . . . . . . . . . . . . . . . . . . 170
1.5 The earlier literature on extremes of i.i.d. random fields . . . . . 173
1.6 Notation. Representation of i.i.d. random fields . . . . . . . . . . 175
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

2 Asymptotic expansion formulas for the largest eigenvalues of deter-
ministic Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
2.1 Preliminaries: Rough bounds . . . . . . . . . . . . . . . . . . . . 177
2.2 Potentials with extremely sharp single peaks . . . . . . . . . . . 179
2.3 Potentials with dominating single peaks: The general case . . . . 180
2.4 Potentials with dominating flat increasing islands of high values . 183
2.5 Potentials with dominating bounded islands of high values . . . . 184

3 Clustering of high-level exceedances of i.i.d. random fields . . . . . . . 187
4 Spacings of order statistics of i.i.d. random fields . . . . . . . . . . . . 190

4.1 Spacings of consecutive order statistics . . . . . . . . . . . . . . . 190
4.2 Spacings of intermediate order statistics . . . . . . . . . . . . . . 193
4.3 Minimum of spacings . . . . . . . . . . . . . . . . . . . . . . . . . 194

5 Neighboring effects for extremes of i.i.d. random fields . . . . . . . . . 195
6 Poisson limit theorems for the largest eigenvalues . . . . . . . . . . . . 199

6.1 Distribution tails heavier than the double exponential function . 200
6.2 Distribution tails lighter than the double exponential function . . 210
6.3 The double exponential tails . . . . . . . . . . . . . . . . . . . . . 214
6.4 Some comments on the proofs . . . . . . . . . . . . . . . . . . . . 216

7 Applications to the parabolic Anderson model . . . . . . . . . . . . . . 217
7.1 The parabolic Anderson model . . . . . . . . . . . . . . . . . . . 217
7.2 Asymptotic expansion formulas for the total mass . . . . . . . . 219
7.3 Asymptotic concentration formulas . . . . . . . . . . . . . . . . . 222

A Regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
A.1 The domain of attraction of Gumbel max-stable distribution and

regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
A.2 Classes AΠp

∞, AΠp
0 and OAΠp . . . . . . . . . . . . . . . . . . . 231

A.3 Class PI<2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
A.4 Comparison of the classes AΠp

∞, AΠ and PI<2. Examples . . . . 237
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

1. Introduction

1.1. Extremes of i.i.d. random fields

In this paper, we assume that ξ(x), x ∈ Z
ν , are independent identically dis-

tributed (i.i.d.) random variables on a probability space (Ω,F ,P), indexed by
sites of the ν-dimensional integer lattice Z

ν , with a distribution function
P(ξ(0) � t) =: 1 − e−Q(t), t ∈ R; here Q denotes the cumulative hazard func-
tion of distribution. Define V = [−n;n]ν ∩ Z

ν , the cubes in Z
ν . Let |V | denote
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the number of sites in V . We write |x| =
∑ν

i=1 |xi| for the lattice l1-distance
between x = (x1, . . . , xν) ∈ Z

ν and 0 ∈ Z
ν .

We consider the variational series (order statistics)

ξ
1,V

:= ξ(z
1,V

) � ξ
2,V

:= ξ(z
2,V

) � . . . � ξ|V |,V := ξ(z|V |,V ) (1.1)

based on the sample ξV := {ξ(x) : x ∈ V }; here V =
{
zk,V : 1 � k � |V |

}
.

The first |V |ε (0 < ε < 1) terms of the variational series (1.1) are referred to as
ξV -extremes or ξV -peaks. The coordinate zk,V ∈ V stands for a location of the
kth extreme value of ξV ; 1 � k � |V |.

In this paper, letting |V | → ∞, we study the asymptotic geometric properties
of ξV -extremes almost surely and/or in probability. We are interested in the
following functionals of order statistics (1.1):

(EX) Exceedances of the sample ξV over high levels LV , in particular, clustering
of exceedances (Theorem 3.1).

(SP) The decay rate of the spacings ξK,V − ξK+1,V and ξ
[|V |ε],V

− ξ
[|V |θ ],V

in

comparison with increasing rate of ξK,V for fixed natural K ∈ N and
0 � ε < θ < 1 (Theorems 4.3–4.7).

(MIN) Minimum of the spacings ξ
l,V

− ξ
l+1,V

, 1 � l � |V |ε, for each 0 < ε < 1
(Theorems 4.8 and 4.9).

(NEI) ξV -values neighboring to ξV -extremes, in particular, ξ(z
l,V

+ y) for 1 �
l � |V |ε and for fixed y �= 0 (Lemma 5.1 and Theorems 5.3, 5.4).

The conditions of the asymptotic results for (EX), (SP), (MIN) and (NEI)
are given in terms of regular variation (RV) of the inverse function of Q. In
Appendix A and Section 6, we discuss a relationship between RV classes of
the present paper as well as their links to the well-known RV classes including
domains of attraction of max-stable distributions.

The asymptotic results for (EX), (SP), (MIN) and (NEI) and related RV
classes were announced without the proof in (Astrauskas, 2007; 2008; 2012;
2013). In this survey, these results are given in the most general setting with
the detailed proof; therefore, they present self-contained topics of probability
theory and may be considered of independent interest.

1.2. Extreme value theory for eigenvalues of large-volume Anderson
Hamiltonians

Let us consider the finite-volume Schrödinger operators HV = κΔV + ξV on
l2(V ) with periodic boundary conditions (Anderson Hamiltonian); here κ > 0
is a diffusion constant; Δψ(x) :=

∑
|y−x|=1 ψ(y) is the lattice Laplacian, and

the i.i.d. random field ξV := {ξ(x) : x ∈ V } is the multiplication operator
(potential). Denote by λ

K,V
the Kth largest eigenvalue of the operators HV ,

and let ψ(x;λK,V ) (x ∈ V ) be the corresponding eigenfunction normalized to
have unit l2-norm,

∑
x∈V ψ(x;λ

K,V
)2 = 1. Another aim of this paper is to show

in what manner the asymptotic behavior of functionals (EX), (SP), (MIN) and
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(NEI) determines the asymptotic structure of the top eigenvalues λ
K,V

and the
corresponding eigenfunctions, as V ↑ Z

ν and K � 1 fixed. In Section 2, we
give an overview of rigorous statements on this relationship which are proved
in the papers by Gärtner and Molchanov (1998) and Astrauskas (2007; 2008;
2012). In Section 6, we review and comment results on the asymptotic expansion
formulas and Poisson limit theorems for the largest eigenvalues λ

K,V
as well as

localization properties of the corresponding eigenfunctions. These results are
proved by Astrauskas and Molchanov (1992), Gärtner and Molchanov (1998),
Astrauskas (2007; 2008; 2012; 2013), Germinet and Klopp (2013), Biskup and
König (2016) and other mathematicians. These papers are complemented by
the present survey on the asymptotic geometric properties of ξV -extremes and
related RV classes of distributions. We here give proof sketches of the results on
the extreme value theory for eigenvalues λK,V (Sections 2 and 6) demonstrating
their connections to asymptotic properties of ξV -extremes.

Thus, in this survey, we discuss in detail the following important branches
of probability theory: (i) extreme value theory for eigenvalues of the Anderson
Hamiltonian HV = κΔV + ξV which is a particular model of random matri-
ces (Sections 1.4, 2 and 6); (ii) asymptotic geometric properties of random
i.i.d. fields (Sections 3–5) and (iii) regular variation of distribution functions
(Appendix A). On the other hand, we briefly comment the links of the ex-
treme value theory for eigenvalues to the following important topics of statis-
tical physics: (iv) Anderson localization for the random Schrödinger operators
H = κΔ + ξ(·) in the whole lattice Z

ν (Section 1.3), and (v) long-time inter-
mittent behavior of solutions u of the parabolic problems associated with the
Anderson Hamiltonian (PAM) via spectral representation of u (Section 7).

Of course, asymptotic results for the Anderson models (time-dependent or
-independent) are heavily necessitated by the asymptotic structure of high ξ(·)-
values, which in turn is determined by conditions on the regularity and tail decay
of the distribution P(ξ(0) > t) = e−Q(t) at its right endpoint tQ := esssup ξ(0).
In the present survey, we focus on the case of unbounded from above i.i.d. po-
tentials, i.e. tQ := ∞, with distributional tails heavier than double exponential,
i.e., P(ξ(0) > t) = exp{− eo(t)} as t → ∞; cf. Sections 1.2, 2.2–2.3 and 6.1.
For such distributions satisfying additional RV and continuity conditions, we
will show that with probability one the ξV -peaks are spatially separated and
differ in height as V ↑ Z

ν ; therefore, the top eigenvalue λ
K,V

of the operator
HV = κΔV + ξV is approximated by an isolated ξV -peak, say ξ(z

τ(K),V
), plus

some corrections of order o(1) involving neighboring ξV -values. Moreover, the
Kth eigenfunction ψ(· ;λK,V ) is asymptotically delta like function at the site
z
τ(K),V

∈ V , the localization center. (In this case, we will say that the Kth
eigenvalue is associated with the site z

τ(K),V
, viz. λK,V ↔ z

τ(K),V
). Therefore,

we are able to apply the standard extreme value theory to prove Poisson limit
theorems for the normalized extreme eigenvalues and their localization centers.
From these Poisson limit theorems one obtains the limiting joint (max-stable)
distribution for the normalized largest eigenvalues and their spacings, limiting
uniform distribution for the normalized localization centers and other important
limiting distributions for eigenvalue statistics (Section 6.1). Eigenvalue statistics
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in turn play a crucial role in studying the intermittent behavior of the parabolic
Anderson model, PAM (Section 7).

For the lighter upper tails including the double exponential P(ξ(0) > t) =
exp{− et} and bounded tails i.e. tQ < ∞, we will prove the rough asymptotic
expansion formulas for the largest eigenvalues. For such distributional tails, it
will turn out that all ξV -extremes are of comparable amplitude; therefore, the
Kth largest eigenvalue is associated with a large island of higher ξV -values of a
particular preferred shape, rather than an isolated ξV -peak.

To illustrate the relationship between ξV -extremes and the largest eigenvalues
λK,V (V ↑ Z

ν) more precisely, we now formulate Propositions 1.1–1.3 which are
“typical” examples of the statements given in Sections 2–6. The first proposition
tells us that, if the peaks of deterministic (nonrandom) functions ξV =: ξV (· )
are extremely sharp and widely spaced, then the Kth largest eigenvalue λ

K,V
is

approximated by the Kth largest value of ξV with sufficiently small error.

Proposition 1.1 (see Theorem 2.2(ii) in Section 2.2). Fix constants K ∈ N

and 0 < θ < 1/2, and assume that the deterministic functions ξV satisfy the
following conditions as V ↑ Z

ν :

min
1�l�K

ξl+1,V (ξl,V − ξ
l+1,V

) → ∞ (distinct height of peaks), (1.2)

1

log |V | min
1�k<n�|V |θ

∣∣z
k,V

− z
n,V

∣∣ → ∞ (sparseness of peaks) (1.3)

and, finally,

ξ
[|V |θ ],V

/ξ
K,V

< const (θ) (1.4)

for some 0 < const (θ) < 1 (negligibility of the lower peaks). Then

λ
l,V

= ξ
l,V

+O(1/ξ
l,V

) for all 1 � l � K.

We now give an example of i.i.d. random field ξ(·) with sufficiently “heavy
tails” possessing extremes like those in Proposition 1.1.

Proposition 1.2 (see Theorem 4.3(i) with p = 1, Theorem 3.1 with R = 0 and
Theorem 4.5). If ξ(0) has the Weibull distribution

P(ξ(0) > t) = e−Q(t) = e−tα (t � 0) (1.5)

with α < 2, then the i.i.d. sample ξV (V ↑ Z
ν) satisfies (1.2)–(1.4) with proba-

bility 1 + o(1).

Since, by Propositions 1.1 and 1.2, the eigenvalues λ
K,V

are very close to
ξK,V as V ↑ Z

ν , it turns out that Poisson limit theorems (and the corresponding
renormalization constants) for the largest eigenvalues are the same as that for
ξV -extremes according to the following proposition.
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Proposition 1.3 (see Theorem 6.9 and Astrauskas (2012))). Assume that
Q(t) = tα with α < 2, and write bV := (log |V |)1/α. Define the point process N λ

V

on [−1/2; 1/2]ν × R by

N λ
V :=

|V |∑
k=1

δΛ
V
(k) with ΛV (k) :=

(
z
k,V

|V |1/ν ,
λ

k,V
− bV

α−1b1−α
V

)
,

where δX denotes the Dirac measure at X ∈ [−1/2; 1/2]ν × R. Then N λ
V con-

verges weakly to the Poisson process on [−1/2; 1/2]ν ×R with the intensity mea-
sure dx× e−td t.

Moreover, for fixed K � 1, the eigenfunction ψ(·;λ
K,V

) is exponentially lo-
calised at the site zK,V :

limsup
V

max
x �=zK,V

log
∣∣ψ(x;λ

K,V
)
∣∣

|x− z
K,V

| log bV
� −1 (1.6)

in probability

According to Proposition 1.3 the Kth largest eigenvalue λK,V is associated
with the Kth largest value of ξV , viz., λK,V ↔ zK,V . For the lighter tails, say,
Weibull distributions (1.5) with α � 2, the landscape of ξV gets “smoother”, in
particular, (1.2) fails. Therefore, λK,V is associated with a lower and “slightly
supported” ξV -peak, viz., λK,V ↔ zτ(K),V , where for α > 3, the index τ(K) =
τV (K) tends to infinity as |V | → ∞. This in turn implies that further terms in
expansion for λ

K,V
become essential; see (2.22) and Examples 6.12–6.13. Let us

distinguish three classes (J)–(JJJ) of light tailed distributions (i.e., universality
classes), which ensure a different asymptotic behavior of the eigenvalues λK,V .

(J) Distribution tails heavier than the double exponential function. Assume
that

logQ(t) = o(t) (1.7)

and Q satisfies additional regularity and continuity conditions as t → ∞. This
class is presented by Weibull distributions (1.5) for arbitrary α > 0 and those
with fractional-double-exponential tails

P(ξ(0) > t) = e−Q(t) = exp{− et
γ} (t � t0) (1.8)

for γ < 1. For such distributions, ξV -extremes possess a strongly pronounced
geometric structure which can be described as follows:

For arbitrary sufficiently small constants 0 < ε < θ, there exist constants
c1 > c2 > 0 and (large) C > 0 such that almost surely

min
1�l<n�|V |θ

(
ξ
l,V

− ξ
n,V

)
� e−|V |c2 (distinct height of peaks), (1.9)

min
1�l<n�|V |θ

∣∣z
l,V

− z
n,V

∣∣ � |V |c1 (sparseness of peaks) (1.10)
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and, finally,

ξ
[|V |ε],V

− ξ
[|V |θ ],V

� C (negligibility of the lower peaks) (1.11)

for each large V ; see Theorem 4.8 with κ = 0, Theorem 3.1 with R = 0 and
Theorem 4.6 with ρ = ∞. By the standard finite-rank perturbation arguments
in (Astrauskas and Molchanov, 1992) and (Astrauskas, 2008), these proper-
ties of ξV yield that there is no resonance between ξV -peaks in the Anderson
model for large V ; therefore, the eigenvalues associated with a block of peaks
can be determined by the local eigenvalues associated with separate peaks (i.e.,
“relevant single peak” approximation). More precisely, for fixed natural K and
V ↑ Z

ν , almost surely the eigenvalue λK,V of HV = κΔV + ξV is approximated
by the principal (i.e., the first largest) eigenvalue of the “single peak” Hamilto-

nian κΔ
V
+ ξ̃(· ) + ξ(zτ(K),V )δzτ(K),V

where log τ(K) = o(log |V |). Here ξ̃(· ) is
the “noise” potential; the site zτ(K),V ∈ V is a localization center of the Kth
eigenfunction ψ(·;λ

K,V
) of HV . Thus, Poisson limit theorems for the eigenval-

ues λK,V of H
V
are reduced to those for the principal eigenvalues of the “single

peak” Hamiltonians, which in turn are expanded into certain (nonlinear) series
in ξ(x) (x ∈ V ); cf. formulas (2.20)–(2.22), Theorems 2.3, 6.2 and discussions in
Section 6.4. We finally notice that the Kth eigenfunction ψ(·;λ

K,V
) is exponen-

tially well localized, i.e., there exist non-random constants (decay rates) C > 0
and 0 < MV → ∞ such that with probability one

|ψ(x;λ
K,V

)| � C exp{−MV |x− z
τ(K),V

|} (x ∈ V ) (1.12)

for all V large enough. Consequently, ψ(·;λ
K,V

) is asymptotically delta-like
function at zτ(K),V (Astrauskas, 2008; 2013). This refers to the correspondence
λK,V ↔ zτ(K),V . Under assumption (1.7), asymptotic expansion formulas, Pois-
son limit theorems and localization theorems for the largest eigenvalues are
derived by Astrauskas and Molchanov (1992), Astrauskas (2007; 2008; 2012;
2013). See also Grenkova et al. (1983) and Grenkova et al. (1990) for the case
of Weibull distribution (1.5) with α < 2.

(JJ) Distribution tails lighter than the double exponential function. Assume
that

t−1 logQ(t) → ∞ (1.13)

and Q satisfies additional regularity conditions as t tends to tQ (= the right
endpoint of Q). This class of potentials contains the important case of ξ(·) which
is bounded from above (tQ < ∞) and those with fractional-double-exponential
tails (1.8) for γ > 1. For such ξ(·), it turns out that ξV -peaks possess a weakly
pronounced geometric structure. In particular, almost surely ξ

[|V |ε],V
−ξ

[|V |θ ],V
→

0 as |V | → ∞, for all 0 � ε < θ < 1, so that the height of all ξV -extremes is of
the same order ξ1,V +o(1) (see Theorem 4.6 with ρ = 0 and Theorem 3.1(i) with
arbitrary R � 1 and θ(·) ≡ θ = const ). In this case, the eigenvalue λ

K,V
(K � 1

fixed) does not longer correspond to an isolated potential peak, but to a flat
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extremely large “relevant island” of high ξV -values. More precisely, almost surely
the top eigenvalue λ

K,V
of the Hamiltonian HV approaches the local principal

eigenvalue of the Hamiltonian restricted to a random connected region AK
V ;opt ⊂

V with the following features: The diameter of AK
V ;opt unboundedly increases,

and ξ(·) possesses in A
K
V ;opt values of the order ξ1,V +o(1) as V ↑ Z

ν , i.e., relevant
island of potential values. Moreover, the Kth eigenfunction is expected to be
highly concentrated in the neighborhood of the region A

K
V ;opt. In this case, we

will say that the Kth eigenvalue is associated with A
K
V ;opt, viz. λK,V ↔ A

K
V ;opt.

For more explanations, see Theorem 6.14 and the proof of Theorem 2.6, where
the second order expansion formula for λ

K,V
is obtained.

For the Bernoulli i.i.d. random variables ξ(x) with tQ = 1 (which is the partic-
ular case of (1.13)), Bishop and Wehr (2012) derived a more accurate expansion
formula for the principal eigenvalue λ

1,V
of the one-dimensional HamiltonianHV

(ν = 1). They have showed that λ
1,V

is associated with the longest consecutive
sequence of sites x ∈ V with ξ(x) = 1, i.e., the “relevant island” of ξV -extremes,
the length of which unboundedly increases as V ↑ Z. See also (Sznitman, 1998)
for similar asymptotic results in the case of spatially continuous Schrödinger
operators with a bounded Poisson potential of obstacles. Cf. Section 6.2 below.

To the best of our knowledge, Poisson limit theorems for the (unfolded)
largest eigenvalues were proved only in the case ν = 1 and bounded ξ(0), pro-
vided the distribution 1 − e−Q satisfies additional continuity and tail decay
conditions (Germinet and Klopp, 2013); see also Section 6.2 below. For ν � 2
or general RV conditions on Q satisfying (1.13), the Poissonian convergence of
the top eigenvalues still remains an open problem.

(JJJ) Double exponential type tails. Finally, assume that t−1 logQ(t) tends to
a positive finite constant ρ−1 as t → ∞, i.e., the double exponential tails

P(ξ(0) > t) = e−Q(t) = exp{− et(ρ
−1+o(1))} (1.14)

satisfying additional RV and continuity conditions. This class of distributions
presents the intermediate case between (J) and (JJ). For such e−Q, it turns out
that all ξV -extremes are of comparable amplitude; i.e., almost surely ξ

[|V |ε],V
−

ξ
[|V |θ ],V

= O(1) as |V | → ∞, for any 0 � ε < θ < 1. Therefore, with prob-

ability one the top eigenvalue λ
K,V

(K � 1 fixed) of the Hamiltonian HV is
approximated by the local principal eigenvalue of the Hamiltonian restricted
to a random connected region A

K
V ;opt ⊂ V of bounded diameter, where ξV

possesses high values of the optimal shape (so that λK,V ↔ A
K
V ;opt). The opti-

mal shape of ξV -values in A
K
V ;opt ⊂ V is specified by deterministic variational

principles. These considerations are referred to as the “relevant island” approx-
imation; see Theorems 2.7 and 6.19 for the second order expansion formulas for
the first largest eigenvalue λ

1,V
, which have been originally derived by Gärtner

and Molchanov (1998). Moreover, the Kth eigenfunction ψ(· ;λK,V ) is highly
concentrated in the neighborhood of the region A

K
V ;opt, as proved by Astrauskas

(2008; 2013) for ρ large enough, and by Biskup and König (2016) for arbitrary
ρ; see also Section 6.3 of the present survey.
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Rigorous results on Poisson limit theorems and further localization properties
for the largest eigenvalues (in the case of double exponential tails) have been
proved by Astrauskas (2007; 2008; 2013) for ρ large enough, and by Biskup and
König (2016) for arbitrary ρ; see also the review paper by König (2016) and
Sections 6.3–6.4 of the present survey for the discussions on their results and
the proofs.

Let us finally summarize the above observations: As the upper tails of poten-
tial distribution get lighter, the ξV -extremes (V ↑ Z

ν) get less expressed; there-
fore, the number of higher ξV -values contributing to the asymptotic amount of
the top eigenvalues gets larger and concentration properties of the correspond-
ing eigenfunctions become weaker. On the other hand, the general theory of
Anderson localization (cf. Section 1.3 below) suggests that almost surely the
eigenfunctions associated with the upper spectral edge of the Hamiltonian HV

decay exponentially like in (1.17), for arbitrary potential distribution satisfying
certain continuity conditions.

1.3. Relations to infinite-volume Anderson Hamiltonians

(I) Anderson localization. The Anderson model on the whole lattice Z
ν is

given by the Hamiltonian
H = κΔ+ ξ(· )

acting on l2(Zν). Here, as above, Δ is the lattice Laplacian, κ > 0 is a diffusion
constant, and ξ(x) (x ∈ Z

ν) are i.i.d. random variables with a common distri-
bution function 1− e−Q. This is a basic model of disordered quantum systems
introduced to describe the regions of energy levels (spectrum) of the electron in
the random potential modelling electrical conductance regimes of alloys, crystals
with impurities and so on (Anderson, 1958). The energy spectrum Spect (H) of
the Hamiltonian H = κΔ+ ξ(· ) is almost surely nonrandom:

Spect (H) = Spect (κΔ) + Spect (ξ(· )) = [−2νκ; 2νκ] + supp (1− e−Q),

where supp (F ) is the support of a probability measure generated by the distri-
bution function F , and “+” denotes the algebraic sum of subsets of real line.
Therefore, with probability one, the spectrum consists of spectral bands situated
in the interval [Lmin;Lmax], where Lmin and Lmax are respectively the infimum
(i.e. bottom) and the supremum (i.e. upper edge) of the spectrum. The most
important property of the Hamiltonian H on l2(Zν) is the presence of pure point
spectrum in the neighborhood of edges of spectral bands for any κ > 0 and any
ν � 1. In particular, there exist (nonrandom) real constants Li = Li(κ, ν,Q),
L1 < L2, such that with probability one

the spectrum in (Lmin;L1) ∪ (L2;Lmax) is dense purely point,

say {λk}, and the corresponding eigenfunctions ψ(·;λ
k
) decay exponentially:

|ψ(x;λ
k
)| � Ck exp{−M |x− z

k
|} (x ∈ Z

ν)
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for some random Ck > 0, M > 0 and z
k
∈ Z

ν (the localization center), pro-
vided e−Q is Hölder continuous and ξ(0) has some finite statistical moments.
Moreover, for small κ or the one-dimensional case ν = 1, the whole spectrum
Spect (H) is dense purely point with a complete set of eigenfunctions in l2(Zν)
that decay exponentially with probability 1. This phenomenon is known as An-
derson localization for disordered systems; see, e.g., (Fröhlich and Spencer, 1983;
Fröhlich et al., 1985; Simon and Wolff, 1986; Carmona et al., 1987; Aizenman
and Molchanov, 1993; Aizenman et al., 2001) for the proof of the above asser-
tions under various conditions on potential distributions. Recall that, for the
periodic ξ(·), all the spectrum Spect (H) is absolutely continuous in arbitrary
dimension ν � 1; and this is quite a contrast to the Anderson localization in
the case of random potential. See the monographs (Pastur and Figotin, 1992;
Stolz, 2011; Kirsch, 2008) and references therein for more discussions on the
subject. In the present survey as well as in (Astrauskas, 2007; 2008; 2012; 2013)
and (Biskup and König, 2016), the phenomenon of Anderson localization is il-
lustrated for the top eigenvalues and eigenfunctions of finite-volume models.
We here emphasize the relationship between asymptotic geometric properties
of ξV -extremes and localization properties of the leading eigenfunctions of the
operator HV regarding their localization strength, localization centers, etc., as
V ↑ Zν .

Let us discuss briefly the basic ideas and methods explored in the study
of the Anderson localization phenomenon in the multidimensional case ν � 1.
Fix an open bounded interval I ⊂ R which is covered almost surely by the
spectrum Spect (H). The proof of Anderson localization in the spectral intervals
I relies heavily on the study of the resolvents G(λ+iε) := (λ+iε−H)−1 and the
corresponding Green functions G(λ+iε;x, y) := G(λ+iε)δy(x) (x, y ∈ Zν) in the
complex domain ε > 0, λ ∈ I, where i =

√
−1. Alternatively, their finite-volume

versions G
V
(λ+ iε) := (λ+ iε−H

V
)−1 and G

V
(λ+ iε;x, y) := G

V
(λ+ iε)δy(x)

(x, y ∈ V ) are also explored. The main task here is to prove that, for λ ∈ I,
the Green functions G(λ + iε;x, y) or G

V
(λ + iε;x, y) decay exponentially in

|x − y| uniformly in ε > 0, provided I is chosen close to the spectral edge or
the diffusion constant κ is small. For simplicity, assume throughout that the
potential distribution has a bounded density p(·) with bounded support.

Fröhlich and Spencer (1983) developed the multiscale method. They con-
structed inductively a sequence of relevant cubes V ′, V ′ ↑ Z

ν with the following
properties: For any fixed λ ∈ I and V ′ ↑ Z

ν , with high probability the Green
function G

V ′ (λ + iε;x, y) decays exponentially in |x − y| for all y ∈ ∂V ′, the
“boundary” of V ′, and all x ∈ V ′ far away from ∂V ′, and this estimate holds
uniformly in ε � 0. By finite-rank perturbation formulas, this estimate implies
an absence of absolutely continuous spectrum in I with probability one. Even
the stronger form of the construction of the relevant cubes V ′ (“uniformity” in
λ ∈ I) is applied to prove the exponential decay of the eigenfunctions ψ(·;λ)
associated with (generalized) spectral values in I and, consequently, the pres-
ence of the pure point spectrum in I with probability one (Fröhlich et al., 1985).
See also the survey by Kirsch (2008) for a detailed discussion on the multiscale
analysis.
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In the above considerations, one should apply the Wegner estimate. Loosely
speaking, this estimate states that the mean number of eigenvalues of HV in
the interval I does not exceed |I||V |C, provided the density p(·) of potential
distribution satisfies p(·) � C. In particular, the latter guarantees the bound of
probability to find at least one eigenvalue λ

l,V
in a small spectral interval. The

Wegner estimate and its modifications are the basic probabilistic tools in the
proof of Anderson localization; see, e.g., (Kirsch, 2008).

Simon and Wolff (1986) applied the so-called spectral averaging methods in
multiscale analysis to obtain the effective condition for the Anderson localization
in the interval I, for the distributional density as above. Recall the Simon-
Wolff criterion: If for each x ∈ Z

ν and for Lebesgue-almost every λ ∈ I with
probability one

lim
ε↓0

∑
y∈Zν

|G(λ+ iε;x, y)|2 < ∞, (1.15)

then the operator H has only pure point spectrum in I with probability one. If
in (1.15) one claims a square-summability of the Green function with weights
em|x−y| for some nonrandom m > 0, then the corresponding eigenfunctions
decay exponentially with probability one.

Aizenman and Molchanov (1993) and Aizenman et al. (2001) developed the
fractional moment method to prove the Anderson localization in the spectral
intervals I. The task here is to obtain (and explore) the exponential decay of
the averaged Green functions, where the average is taken over the random po-
tential. This method enables to avoid a complicated dependency of the previous
constructions on individual potential configurations in the almost sure setting.
Under certain continuity conditions on potential distribution, the key statement
in (Aizenman and Molchanov, 1993) is the following fractional-moment crite-
rion: If for fixed 0 < σ < 1, there are constants C1 > 0, M1 > 0 such that

E (|G(λ+ iε;x, y)|σ) � C1 e
−M1|x−y| for all x, y ∈ Z

ν , (1.16)

for all λ ∈ I and uniformly in ε > 0, then one has, with probability one, the
Anderson localization in the interval I for the operator H.

This implication can be proved by using the Simon-Wolff criterion like in
(1.15). On the other hand, σ < 1 is chosen to depend only on continuity as-
sumptions for potential distribution. In particular, the Hölder continuity implies
that the left-hand side of (1.16) is finite.

Eq. (1.16) can be proved by using suitable finite rank perturbation arguments,
i.e., Krein formulas. These formulas imply that the kernel G(λ+ iε;x, y) is equal
to a simple rational function in the variable ξ(x) with coefficients depending on
potential values outside x. Now one can estimate the left-hand side of (1.16) as
an integral of rational function. These estimates are shown to form a certain
iteration procedure, from which one deduces (1.16). When applying the iteration
scheme, a crucial fact is the assumption that the diffusion constant κ is small
or the interval I is near the upper edge of the spectrum.
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Applying similar arguments, Aizenman et al. (2001) deduced a fractional-
moment finite-volume criteria for the Anderson localization in the interval I.
Roughly speaking, these criteria state that, if for some 0 < σ < 1 and some V ,
the expectation

E (|GV (λ+ iε; 0, y)|σ) is sufficiently small

for all y ∈ ∂V, uniformly in (λ; ε) ∈ I × R+,

then the exponential decay (1.16) holds true in I. The finite-volume criteria and
their implications are shown to hold under continuity assumptions on potential
distribution mentioned above.

The criteria of (Aizenman et al., 2001) also imply the exponential decay of
eigenfunctions of the operatorsHV , associated with the eigenvalues in (compact)
spectral intervals I of Anderson localization, in particular, for I at the upper
edge of the spectrum Spect (H). Under the continuity conditions on potential
distribution as above, we are able to formulate this result in a precise form:
There are nonrandom constants c > 0 and M > 0 such that with probability
one

|ψ(x;λ
k,V

)| � |V |c exp{−M |x− z
τ(k),V

|} (x ∈ V ) (1.17)

for some z
τ(k),V

∈ V (localization center), for all λ
k,V

∈ I and all V large enough;
cf. (Klopp, 2011). See also the surveys (Hundertmark, 2008; Stolz, 2011) for
detailed discussions on the fractional-moment methods and their applications.

(II) Local fluctuations of eigenvalues in the spectral regions of Anderson local-
ization. We denote by Ipp := (a; b) an open interval of real axis such that a
certain fractional-moment finite-volume criterion is fulfilled in Ipp. Therefore,
the spectrum in the whole of Ipp is purely point, so Spect (H)∩Ipp ⊂ Spect pp(H)
with probability one (i.e., Anderson localization in Ipp). The spectral intervals
Ipp are distinguished by the Poissonian asymptotic behavior of eigenvalues λ

l,V
,

close to a fixed λ0 ∈ Ipp, of the finite-volume model H
V

as V ↑ Zν . Here and
to the end of this section the potential distribution is again assumed to have a
bounded smooth density with bounded support. These limit theorems are for-
mulated in terms of the integrated density of states, viz. N(λ), and the density
of states, viz. n(λ) := N ′(λ) (λ ∈ R

ν). Recall that N(·) is the nonrandom distri-
bution function of eigenvalues defined as the almost sure limit of the empirical
distribution function NV (λ) := #{k : λ

k,V
� λ}/|V | as |V | → ∞. Moreover,

the Wegner estimate implies that N(·) is an absolutely continuous function with
bounded density n(·), provided the potential distribution has a bounded den-
sity. The support of n(·) coincides almost surely with the spectrum Spect (H);
therefore, N(λ) → 0 (resp., N(λ) → 1) as λ approaches the bottom (resp.,
the upper edge) of the spectrum. See, e.g., (Kirsch, 2008) for the definition of
functions N(·), n(·) and their properties.

Now pick a number λ0 from the interval Ipp such that n(λ0) > 0. We consider
the normalized eigenvalues

Λ0
k,V := |V |n(λ0)

(
λk,V − λ0

)
(1 � k � |V |), (1.18)
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and define the corresponding point process M0
V on R by

M0
V :=

|V |∑
k=1

δΛ0
k,V

.

With these assumptions and abbreviations, one needs to show that the point
process M0

V converges weakly, as V ↑ Z
ν , to the Poisson point process on R

with intensity measure dλ, i.e. the Lebesgue measure. The first result in this
direction was proved by Molchanov (1981), who considered the one-dimensional
spatially continuous random Schrödinger operators. In the case of the Ander-
son Hamiltonians in Z

ν with arbitrary ν � 1, this Poisson limit theorem was
established by Minami (1996). Killip and Nakano (2007) proved the Poisson con-
vergence of both the normalized spectral values (1.18) and localization centers
of the corresponding eigenfunctions, extending Minami’s result. The proof in
the multidimensional case ν � 1 relies on applications of the fractional-moment
criteria for the Anderson localization, combined with the Wegner and Minami
estimates that control the probability of finding, respectively, at least one and
two eigenvalues of HV in a small interval. In particular, these estimates imply
the upper and lower bounds of order |V |−1 for the gap between successive eigen-
values close to a fixed λ0 as above. From Poisson limit theorems for (1.18), one
can extract some information on the statistical properties of eigenvalues in the
spectral regions of Anderson localization. For example, one can obtain the lim-
iting distribution for the normalized spacings of eigenvalues, the limiting joint
distribution for the normalized eigenvalue and its localization center, and other
important limiting distributions for eigenvalue statistics.

Recently, Germinet and Klopp (2013; 2014) presented a comprehensive study
on limit theorems for eigenvalues of large-volume Hamiltonians in the spectral
regions Ipp of Anderson localization. For fixed λ0 ∈ Ipp as above, the authors
considered the unfolded eigenvalues

Υ0
k,V := |V |(N(λk,V )−N(λ0)) (1 � k � |V |), (1.19)

i.e., the eigenvalues under nonlinear renormalization. They proved the following
limit theorems for eigenvalue statistics:

1) Poisson limit theorem for the point process based on the unfolded eigen-
values (1.19), where the limiting Poisson process coincides with that for
(1.18);

2) Poisson limit theorem for the point process based on both the unfolded
eigenvalues (1.19) and the normalized localization centers of the corre-
sponding eigenfunctions;

3) Limit theorems for the empirical distribution function of the normalized
spacings of eigenvalues close to λ0;

4) Limit theorems for the normalized distance between localization centers
of the corresponding eigenfunctions;

and other important limit theorems for various statistics related to the eigen-
values and eigenfunctions in the intervals Ipp. Moreover, Germinet and Klopp
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(2013) considered more general random Hamiltonians H with convolution-type
long-range kinetic operators instead of the Laplacian: For such Hamiltonians,
the Poissonian asymptotic results were shown to hold also for the eigenvalues
at the spectral edges (in particular, for the Kth largest eigenvalues with fixed
K � 1). At the spectral edges of the Schrödinger operators, this result was
shown to hold for the one-dimensional case ν = 1; cf. Section 6.2 below.

The proof of the limit theorems in (Germinet and Klopp, 2013; 2014) relies
heavily on the techniques of the general theory of Anderson localization, includ-
ing applications of the fractional-moment criteria in the large-volume setting,
as well as various versions of the Wegner and Minami estimates.

In the proof of the above results, the following crucial observation is related to
localization properties of the corresponding eigenfunctions of the operator HV

(and is also quite close to the context of our paper treating the top eigenvalues
and eigenfunctions of HV ): Namely, the eigenvalues λ

k,V
near λ0 of the operator

HV can be approximated, with a “good” error, by independent local eigenvalues
of the operators restricted to much smaller disjoint cubes Ṽ (z) ⊂ V centered at
z. This approximation is feasible due to the facts that the localization centers
of the corresponding eigenfunctions of HV are located far away from each other
(so the probability of having at least two centers in cubes Ṽ (z) is asymptoti-
cally negligible), and the eigenvalues of HV “live” on potential values in small
spatial neighborhoods of the corresponding localization centers because of the
exponential decay of eigenfunctions. One needs to consider the small spectral
interval IV ⊂ Ipp, centered at λ0, such that the number of eigenvalues λ

k,V
in

IV unboundedly increases as V ↑ Zν . The latter is fulfilled if, say, |IV | 
 |V |−c

for some 0 < c < 1. The study of the structure of eigenvalues λ
k,V

inside IV is
based on the Wegner and Minami estimates. In particular, using the eigenvalue
approximation described above, one has with high probability that the num-
ber of eigenvalues in IV is roughly approximated by N(IV )|V | (large deviation
principle); here N(I) is the probability measure associated with the integrated
density of states. Also, note that the above continuity conditions on potential
distribution imply another important bound:

N(IV ) � const |IV |1+ϑ (1.20)

for some ϑ � 0 and for all V large enough. These bounds are crucial in estimating
the probabilities of the occurrence of a single or several eigenvalues in small
spectral intervals for operators over cubes V and Ṽ (z) ⊂ V introduced above.

In (Germinet and Klopp, 2013), the results on local fluctuations for eigenval-
ues λ

k,V
are extended up to spectral edges. Here the proofs rely on the improved

versions of Wegner and Minami estimates which ensure the more explicit con-
trol of eigenvalues λ

k,V
in small spectral intervals IV , since the amount N(IV ) is

now allowed to be exponentially small in |IV |−1 instead of (1.20). Thus, this case
includes situations, where the measure N(·) is extremely small, for example, at
the edges of spectral bands where the phenomenon of “Lifshits tails” occurs.

We finally notice that the Poisson limit theorems for the lower eigenvalues
(1.18) or (1.19) (in the spectral regions Ipp of Anderson localization) agree with
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the results of the present paper and our earlier papers on the extreme value
theory for the largest eigenvalues λ

K,V
of H

V
, with K � 1 fixed. However, in

limit theorems for the largest eigenvalues, the choice of normalizing constants
depends strongly on the regularity and tail decay conditions of the potential
distribution, in contrast to limit theorems for eigenvalues near λ0 ∈ Ipp, where
the normalizing constants are simply expressed in terms of the (integrated)
density of states. In particular, the spacings of the top eigenvalues have an
asymptotic order, which is much larger than |V |−1 = the order of the gaps
between successive eigenvalues close to λ0 ∈ Ipp. It is worth mentioning that
the proof of Poisson limit theorems for eigenvalues in Ipp relies heavily on the
methods and ideas of the general theory of Anderson localization; and neither
the extreme value theory nor links to the asymptotic geometric properties of
random potential are explored.

We finally mention the following open problems regarding the Anderson tran-
sition phenomenon for the infinite-volume Hamiltonians H = κΔ + ξ(· ): The
first conjecture is that for ν � 3, the spectral bands outside some neighborhood
of the spectral edges consist of purely absolutely continuous spectrum and the
corresponding eigenfunctions are delocalized. The second conjecture is that the
eigenvalues of H

V
in the spectral intervals of delocalization obey non-Poissonian

asymptotic behavior as V ↑ Zν , rather the limit theorems like in the theory of
Wigner random matrices with light-tailed entries; cf. Section 1.4 below. The first
problem is partially solved for the very special models on the Bethe lattice as
well as for the Schrödinger operators with sparse potential (e.g., Kirsch, 2008;
Molchanov and Vainberg, 1998, 2000).

1.4. Relations to random matrices

(I) Wigner random matrices. Another important model of disordered quan-
tum systems (in particular, heavy nuclei atoms) is presented by real symmetric
random matrices

HN =
(
hi,j

)
1�i,j�N

with i.i.d. centered entries h
i,j

(i � j) and N → ∞; i.e., large Wigner matrices
(Mehta, 2004; Anderson et al., 2010). The extreme eigenvalues (i.e., high energy
levels) λK,N and the corresponding l2-normalized eigenvectors of HN are here
interpreted as the basic states of quantum systems.

Recently, there has been much progress toward the extreme value theory for
the eigenvalues λ

K,N
of Wigner matrices HN as N → ∞ and K � 1 fixed. It

has been turned out that there are two different regimes of asymptotic behavior
of the largest eigenvalues, depending on the tail decay rate of the entries in
absolute value:

(I1) For polynomially decaying distributions

P
(∣∣h

i,j

∣∣ > t
)
= t−β(1 + o(1)) as t → ∞ (1.21)

with β < 4 (very heavy tails), Auffinger et al. (2009) proved that with high prob-
ability, theKth largest eigenvalue λ

K,N
of Wigner matricesHN is approximately
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equal to the Kth largest value among |hi,j | (1 � i � j � N), K � 1 fixed. This
in turn implies Poisson limit theorems for the normalized eigenvalues λ

K,N
AN ,

where the normalizing constants AN > 0 are chosen the same as in the corre-
sponding limit theorems for extremes of |hi,j | (1 � i � j � N). Recall that dis-
tributional tails (1.21) are in the domain of attraction of the max-stable Fréchet
law Gβ , therefore, the eigenvalue λK,N

is of the order A−1
N = N2/β(const +o(1));

cf. Example 6.11 below. Moreover, with high probability, the Kth eigenvector
is asymptotically concentrated on two coordinates, i.e., it behaves like a su-
perposition of two delta functions in limit as N → ∞. See also (Soshnikov,
2004) for the case β < 2. To prove these assertions, one first observes that,
under condition (1.21) with β < 4, the largest entries (in absolute value) are
extremely sparse and strongly pronounced in comparison to other entries in
HN . Thus, the standard perturbation theory for symmetric matrices is applied
to conclude that the top eigenvalues and eigenvectors of the former matrix HN

are approximated by the corresponding eigenvalues and eigenvectors of a very
sparse (symmetric N × N) matrix whose entries are the extremes of hi,j ’s in
absolute value. This fact in turn enables us to apply the extreme value theory
for the random variables |hi,j | and, as a consequence, to prove Poisson limit
theorems for the eigenvalues of Wigner matrices HN .

(I2) Assume that the |hi,j |’s have lighter tails (including (1.21) with β > 4
and Bernoulli entries), or the hi,j ’s have some finite statistical moments of
higher order and satisfy additional conditions on a distributional symmetry.
Then the largest eigenvalues λ

K,N
of Wigner matrices HN are distinguished by

non-Poissonian asymptotic behavior, rather the Tracy-Widom limit law; see,
e.g., (Soshnikov, 1999; Lee and Yin, 2014; Bourgade et al., 2014). In particular,
the normalized top eigenvalues λ

K,N
/
√
N tend almost surely to the nonrandom

constant 2(Eh2
1,2)

1/2, i.e., the right endpoint of the support of their limiting spec-
tral distribution density; cf. (Bai and Yin, 1988). Moreover, the corresponding
l2-normalized eigenvectors are completely delocalized; i.e., with high probabil-
ity their sup-norm does not exceed N−1/2(logN)const . See, e.g., (Tao and Vu,
2010; Erdős et al., 2013a; Vu and Wang, 2015; Götze et al., 2015), where this
delocalization property is extended to all the eigenvectors of HN provided the
tails of |hi,j | are lighter than the exponential, or the hi,j ’s have a large enough
number of moments. It is worth mentioning that limiting distributions for eigen-
values or eigenvectors (in particular, the Tracy-Widom limit law for the largest
eigenvalues) can be explicitly computed for Wigner matrices with Gaussian en-
tries; see, e.g., (Anderson et al., 2010). Thus, the usual comparison methods
(four moments theorem, Green function comparison method, etc.) can be used
to extend the asymptotic results for the Gaussian case to general Wigner ma-
trices; e.g., (Tao and Vu, 2014).

The transition from Poisson limit theorems to Tracy-Widom asymptotics for
the top eigenvalues of Wigner random matrices was discussed in detail by Biroli
et al. (2007). The value β = 4 in (1.21) or, roughly speaking, the fourth statisti-
cal moment indicates here the threshold separating these two different regimes
of asymptotic behavior. Note that the Wigner matrix model with light-tailed en-



172 A. Astrauskas

tries reflects the global or mean-field interaction; thus, the asymptotic geometric
properties of entries do not play any role in limit behavior of eigenvalues and
eigenvectors. The latter is in a sharp contrast to the one-dimensional Anderson
Hamiltonian in V ⊂ Z, which is a random band (tridiagonal) matrix reflect-
ing local interaction: the diagonal elements are i.i.d. random variables and the
deterministic off-diagonal elements are given by the Laplacian. In view of discus-
sions on the Anderson model (Section 1.2 above), it turns out that the diagonal
operator necessitates concentration properties of eigenvectors; meanwhile, the
Laplacian forces these properties to be less expressed (thus, the geometric fea-
tures of the model play here a crucial role).

(II) Random band matrices. Recently, there has been a considerable attention

drawn to symmetric random band matrices H
(W )
N of size N → ∞, where the

matrix entries h
i,j

vanish if |i− j| exceeds W , and other entries (above the di-
agonal) are i.i.d. centered random variables; here 0 � W � N is a band width.
Random band matrices are natural interpolations between Anderson Hamilto-
nians (ν = 1) and Wigner matrices. For band models, the asymptotic behavior
of the top eigenvalues and eigenvectors depends strongly on the growth rate of
the band width W = WN → ∞ as well. Benaych-Georges and Péché (2014)

considered the random band matrices H
(W )
N , whose entries have polynomially

decaying distributions (1.21) with arbitrary β > 0 and band width W = Nμ

with 0 < μ � 1. They established that the band model exhibits a phase tran-
sition depending on μ and β, with β = 2(1 + μ−1) as the threshold separating
two different regimes of asymptotic behavior of the largest eigenvalues λK,N and
the corresponding eigenvectors (K � 1 fixed):

(II1) Assume (1.21) and W = Nμ such that β < 2(1 + μ−1), i.e., either the
distributional tails are sufficiently heavy or the band of matrix is sufficiently
narrow. This case includes heavy-tailed Wigner matrices, i.e., μ = 1 and β < 4,
considered in (I1) above. For 0 < μ < 1 and β < 2(1 + μ−1), the asymptotic
results are similar to that in (I1). I.e., with probability 1+o(1), the Kth largest

eigenvalue ofH
(W )
N is approximately equal to theKth largest value of the sample

|hi,j | (1 � i � N , 0 � j− i � W ). Therefore, Poisson limit theorems for the nor-

malized eigenvalues λ
K,N

AN hold true, where AN = N−(1+μ)/β(const ′ + o(1))
(cf. Example 6.11 below), and the Kth eigenvector is asymptotically localized
on two coordinates. The proof of these assertions is again heavily based on
techniques of the extreme value theory, in particular, describing asymptotic ge-
ometric properties of entries of band matrices. The latter is combined with the
perturbation theory for matrices to derive simple asymptotic formulas for the

largest eigenvalues and eigenfunctions of H
(W )
N .

(II2) Assume the h
i,j
’s are symmetrically distributed with tails (1.21) and let

W = Nμ with β > 2(1+μ−1), i.e., either the distributional tails are sufficiently
light or the band of matrix is sufficiently wide. In this case, the band mod-

els H
(W )
N posses the mean-field features, like in the light-tailed Wigner models

considered in (I2) above. Thus, each eigenvector associated with the upper spec-
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tral edge is asymptotically delocalized in the sense that its l2 mass is more or
less uniformly spread over N coordinates. Moreover, the extreme eigenvalues do
not longer obey Poissonian asymptotic behavior; in particular, they tend to a
nonrandom positive constant when divided by Nμ/2.

Earlier, Sodin (2010) considered the band matrices H
(W )
N whose entries are

symmetrically distributed with tails lighter than the Gaussian tails, including
Bernoulli entries. He studied the transition from localization to delocalization
for eigenvectors at the upper spectral edge (as well as the corresponding limit
theorems for eigenvalues) with varying degrees of strength and generality. In
particular, the results of this paper suggest that the eigenvectors associated with
the largest eigenvalues are delocalized, provided W = Nμ with μ > μcr = 5/6.
See also (Erdős et al., 2013b) for similar delocalization results for eigenvectors

associated with the inner part of the spectrum Spect (H
(W )
N ).

In view of these observations on the localization properties at the upper
spectral edge, we distinguish two paradigmatic models in the theory of random
matrices. First, the general theory of Anderson localization suggests that, with
probability 1, the one-dimensional Schrödinger operators H = κΔ + ξ (i.e.,
the particular model of the band matrices with W = 1) have exponentially
localized eigenvectors at the spectral edges, provided the potential distribution
is arbitrary satisfying very mild continuity conditions (Carmona et al., 1987).
On the other hand, the large Wigner matrices HN (i.e., the band matrices with
W = N) have localized eigenvectors associated with the largest eigenvalues if
only entries are very heavy-tailed like in (1.21) with β < 4; meanwhile, for
the light tails, eigenvectors of HN are typically delocalized. See also (Spencer,
2011) for a discussion on Anderson-type models (M = O(1)), band matrices
(M = o(N)) and Wigner matrices (M = N).

Finally, it is worth emphasizing that the above asymptotic results for eigen-
values remain valid for the corresponding complex Hermitian random matrices
with i.i.d. entries, instead of the real symmetric matrices.

1.5. The earlier literature on extremes of i.i.d. random fields

As already mentioned, most statements of the present paper on the ξV -extremes
and the corresponding RV classes were announced in (Astrauskas, 2007; 2008;
2012; 2013). We now provide a brief overview of the earlier literature on the
related asymptotic results for extreme order statistics of i.i.d. random sequences
and fields.

High-level exceedances consisting of single rare ξV -peaks were studied in (As-
trauskas, 2001). Related asymptotic results (in particular, the so-called longest
head runs in coin tossing) for Bernoulli distributed i.i.d. random variables ξ(x),
x ∈ Z, were discussed, e.g., in (Binswanger and Embrechts, 1994).

In the case of exponentially distributed η(0), strong limit theorems for the
spacings ηK,V − ηK+1,V (K fixed) were proved by Astrauskas (2006). Devroye
(1982) derived strong and weak limit theorems for min1�k�|V |(ζk,V

− ζ
k+1,V

)
where ζ(0) is uniformly distributed.
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In the case of ξ(0) with arbitrary distribution, strong asymptotic bounds for
ξ
K,V

are given in (Shorack and Wellner, 1986) where K is fixed, and in (De-
heuvels, 1986) where K = KV → ∞. Wellner (1978) derived strong asymptotic
bounds for the uniform kth order statistics ζ

k,V
(thus, for ηk,V ) uniformly in

k � 1.
For the Gaussian random fields {ξ(x) : x ∈ Z

ν} with correlated values, As-
trauskas (2003) studied some asymptotic geometric properties of ξV -extremes
almost surely, in particular, high level exceedances and minimum of spacings.
The geometry of high level excursion sets of smooth Gaussian random fields
in R

ν was investigated in the monograph by Adler and Taylor (2007). See also
(Gärtner et al., 2000) for some geometric aspects of high peaks of smooth Gaus-
sian random potentials related to the long-time asymptotics for the spatially
continuous parabolic Anderson models.

For the extreme value theory for random variables, in particular, charac-
terization of the domains of attraction of max-stable distributions, we refer to
the monographs by Resnick (1987), de Haan and Ferreira (2006), Leadbetter
et al. (1983), Embrechts et al. (1997). See also the monograph by Shorack and
Wellner (1986) for a detailed account of strong and weak limit theorems for or-
der statistics and their functions related to mathematical statistics. Finally, the
monograph by Bingham et al. (1987) provides a detailed account of the theory
of regularly varying functions.

In the proof of a number of our statements on ξV -extremes, we explore the
representation ξ

k,V
= f(η

k,V
), where f := Q← is the generalized inverse function

of Q and, as above, η
k,V

stands for the kth extreme value among independent
exponentially distributed random variables η(x) (x ∈ V ) with mean 1. Due to
the nice properties of η

k,V
(for instance, η

k,V
is a sum of independent expo-

nentially distributed random variables), we first obtain the asymptotic results
for η

k,V
, which are then transferred to ξ

k,V
under appropriate conditions on f .

These conditions are formulated in terms of regular variation (RV) of f(s) as
s → ∞. We further give a characterization of RV classes, in particular, their
links to continuity and tail decay of the distribution 1− e−Q at the right end-
point; see Appendix A. They are also compared with the well-known RV classes
including the domains of attraction of max-stable laws, O-regular variation,
asymptotically balanced, etc; see Appendix A.

An interesting further problem is an extension of the present asymptotic re-
sults for functionals (EX), (SP), (MIN), (NEI) to other classes of random fields
ξ(· ) including: 1) independent non-identically distributed random variables; 2)
random fields with correlated values, in particular, Gaussian fields (Astrauskas,
2003) and moving average fields defined as a linear combination of i.i.d. ran-
dom variables with nonrandom real coefficients. See, e.g., the review papers by
Elgart et al. (2012), Tautenhahn and Veselić (2015) for a detailed background
of the random alloy type models κΔ + ξ(·) with the moving average poten-
tial ξ(·).
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1.6. Notation. Representation of i.i.d. random fields

Let us introduce the further notation and remarks we use throughout the paper.
We denote by R+ the positive half-axis and by N positive integers. Let logj
stand for the jtimes iterated natural logarithm. For real a, b, we write a ∨ b :=
max(a, b) and a ∧ b := min(a, b), and [a] for the integer part of a. Given a
subset U ⊂ Z

ν , we write |U | for the number of its elements. Let dist (U,U ′)
stand for the lattice l1-distance between subsets U,U ′ ⊂ Z

ν . The summation
over x ∈ V : a � |x| � b is abbreviated to

∑
a�|x|�b. By t0, |V0|, etc. we denote

various large numbers, values of which may change from one appearance to the
next. Similarly, const , const ′ etc. stand for various positive constants. We write
1/0+ = ∞, log(0+) = −∞ and 1/∞ = 0. Let g ◦ h = g(h(·)) stand for a
composition of real functions g and h. Also, for g > 0 and h > 0, we write
g(t) 
 h(t) as t → ∞, if the ratio g(t)/h(t) is bounded away from zero and from
above for all large t.

By G
V
(λ; ζ

V
;x, y) (x ∈ V , y ∈ V ) we denote the Green function of the

Hamiltonian κΔ
V
+ ζ

V
in l2(V ), viz.

G
V
(λ; ζ

V
;x, y) := G

V
(λ; ζ

V
)δy(x) := (λ− κΔ

V
− ζ

V
)−1δy(x).

Here δy(· ) is the Kronecker delta function, i.e., δy(x) := 1 if x = y, and δy(x) :=
0 if x �= y.

Throughout the paper we suppose that all random variables are defined on
a common probability space (Ω,F ,P). Let E stand for the expectation with
respect to P. Recall Q(t) := − logP(ξ(0) > t) is the cumulative hazard function
of an i.i.d. random field ξ(x) = ξ(ω)(x) (ω ∈ Ω; x ∈ Z

ν), and let tQ denote its
right endpoint tQ := sup {t : Q(t) < ∞}. Without loss of generality, we shall
assume throughout that 0 < tQ � ∞. Clearly Q : (−∞; tQ) → R+ ∪ {0} is a
right-continuous nondecreasing function such that Q(−∞) = 0 and Q(tQ) = ∞.
Most of the conditions of our results are formulated in terms of the inverse of
the cumulative hazard function defined by

f(s) := Q←(s) := inf {t : Q(t) � s} (s ∈ R+) (1.22)

(thus f : R+ → (−∞; tQ) is a left-continuous nondecreasing function such
that f(s) tends to tQ as s → ∞). The reason for this is the following useful
representation of order statistics ξ

k,V
:

ξ
1,V

:= f(η
1,V

) � ξ
2,V

:= f(η
2,V

) � . . . � ξ|V |,V := f(η|V |,V ), (1.23)

where

η1,V := η(z1,V ) > η2,V := η(z2,V ) > . . . > η|V |,V := η(z|V |,V ) (1.24)

is the variational series based on the sample ηV := {η(x) : x ∈ V } of exponential
i.i.d. random variables with mean 1.
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1.7. Outline

In Section 2, we collect conditions on deterministic functions ξV in terms of func-
tionals (EX), (SP), (MIN), and (NEI), which yield expansion formulas for the
largest eigenvalues λK,V of the discrete Schrödinger operator HV = κΔV + ξV
on l2(V ) as V ↑ Z

ν . Section 2.1 provides rough bounds for λ
K,V

. We then study
λ

K,V
in the cases of ξV with extremely sharp peaks (Section 2.2), dominating

single peaks (Section 2.3), dominating large islands of high ξV -values the di-
ameter of which unboundedly increases (Section 2.4) and, finally, dominating
islands of high ξV -values the diameter of which is bounded (Section 2.5). The
results of Sections 2.2–2.5 follow simply from the more general statements of
(Astrauskas, 2008; 2012) and Section 2.4 in (Gärtner and Molchanov, 1998).

Sections 3–5 contain the main results of the paper dealing with asymptotic
behavior of extremes of the i.i.d. random field ξ(· ) with the distribution function
satisfying certain RV and continuity conditions at the right endpoint. Function-
als (EX), (SP), (MIN) and (NEI) are studied in Sections 3, 4.1–4.3 and 5,
respectively.

Section 6 provides an overview of current results on extreme value theory
for the spectrum of the Anderson Hamiltonian HV = κΔV + ξV , V ↑ Z

ν , with
an i.i.d. potential ξ(·). The issues under discussion include the asymptotic ex-
pansion formulas and Poisson limit theorems for the largest eigenvalues and
their localization centers. We consider separately three cases of the distribution
tails e−Q of ξ(0): the tails are heavier than the double exponential function
(Section 6.1); the tails are lighter than the double exponential function (Sec-
tion 6.2), and the double exponential tails (Section 6.3). As already mentioned,
we give proof sketches of most theorems of this section demonstrating their
connections to the results of Sections 3–5 on ξV -extremes. In Section 6.4, we
comment and compare the proofs of Poisson limit theorems stated in Sections 6.1
and 6.3 and proved in the earlier papers by Astrauskas and Molchanov (1992),
Astrauskas (2007; 2008; 2012; 2013) and Biskup and König (2016).

In Section 7, we discuss the long-time intermittent behavior of the solutions to
the parabolic problems associated with the Anderson Hamiltonian H = κΔ +
ξ(·). We focus on the representation of the solutions in the spectral terms of
the operators HV = κΔV + ξV . In view of this representation, we discuss some
techniques of the extreme value theory for eigenvalues ofHV , that can be applied
to study the intermittency properties of time-dependent Anderson models.

Finally, in Appendix A, we characterize and compare the RV classes of dis-
tributions introduced in Sections 3–6.

2. Asymptotic expansion formulas for the largest eigenvalues of
deterministic Hamiltonians

Let V = [−n;n]ν ∩ Z
ν (n ∈ N) be a sequence of cubes. By introducing the

periodic norm |x| := |x|n := miny∈(2n+1)Zν |x − y|, V may be considered as a
sequence of tori tending to Zν . We are interested in the finite-volume Schrödinger
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operators HV = κΔV + ξV on l2(V ) with periodic boundary conditions. Recall
that κ > 0 is a diffusion constant, ΔV denotes the lattice Laplacian on l2(V )
(i.e., a restriction of the operator Δψ(x) :=

∑
|y−x|=1 ψ(y) to torus V ) and

ξV := {ξV (x) : x ∈ V } ∈ [−∞;∞)|V | are deterministic functions, i.e., potential.
The values −∞ of ξV (i.e., “hard obstacles”) are allowed to include the cases
which are interesting from a physical point of view; see, e.g., (Biskup and König,
2001; König, 2016). Write Vb := {x ∈ V : ξV (x) > −∞}. ThenHV is interpreted
as an operator on l2(V ) with zero boundary conditions outside Vb. The spectral
problem

HV ψ = λψ (λ ∈ R; ψ ∈ l2(V )) (2.1)

has |Vb| solutions λ1,V
� λ

2,V
� . . . � λ|Vb|,V

, i.e., the ordered eigenvalues of the
operator HV .

In this section, we provide asymptotic expansion formulas for the first K
largest eigenvalues λ

k,V
under conditions on the first terms of the variational

series ξ
1,V

� ξ
2,V

� . . . � ξ|V |,V of the sample ξV and their coordinates z
k,V

∈
V defined by ξ

k,V
= ξV (zk,V

) (1 � k � |V |); here V = {zk,V : 1 � k �
|V |}. The results of this section follow simply from more general results of
(Astrauskas, 2008; 2012) and Section 2.4 of (Gärtner and Molchanov, 1998),
where one finds more discussions on the relationship between ξV -extremes and
the top eigenvalues of HV .

In this section, the proof of the statements relies on deterministic spectral
arguments. It is worth mentioning that the (probabilistic) Feynman-Kac repre-
sentations of the Green function and the principal eigenfunction of Schrödinger
operators HV as well as the related path decomposition techniques present pow-
erful probabilistic tools for deriving the explicit upper bounds for the principal
eigenvalue and eigenfunction of HV (Gärtner and Molchanov, 1998; Gärtner et
al., 2007). However, this method is not explained in the present section; see
Section 7 below for some aspects of these techniques related to the parabolic
Anderson models.

2.1. Preliminaries: Rough bounds

We start with the following simple bounds for eigenvalues λ
k,V

, provided |Vb| � 2.

Theorem 2.1. (i) For any V and any ξV ,

ξ
1,V

� λ
1,V

� ξ
1,V

+ 2νκ and |λ
l,V

− ξ
l,V

| � 2νκ (2 � l � |Vb|).

(2.2)

(ii) For any V , any K � |Vb| and ξV such that min1�k<l�K |z
k,V

− z
l,V

| � 2,
we have that

ξ
l,V

� λ
l,V

� ξ
l,V

+ 2νκ for all 1 � l � K. (2.3)
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Proof. We repeatedly use the fact that the Kth eigenvalue λK,V = λK,V (ξV )
of the operator κΔV + ξV is a nondecreasing function in each variable ξV (x)
tending to infinity (K � 1, x ∈ V ); i.e., the monotonicity property of eigenvalues
(Lankaster, 1969, Theorem 3.6.3).

(i) To estimate λ
1,V

, we abbreviate ξ′(x) := ξ
1,V

if x = z
1,V

, and ξ′(x) := −∞,
otherwise. Note that ξ′(· ) � ξV (· ) � ξ1,V in V . Therefore, λ1,V is bounded
from below by ξ1,V , i.e., the principal eigenvalue of the operator κΔV + ξ′V .
Moreover, λ

1,V
is bounded from above by the principal eigenvalue of the operator

κΔV + ξ
1,V

on l2(V ), which in turn does not exceed 2νκ+ ξ
1,V

, since the norm
of the Laplacian κΔV is less than 2νκ. Similarly, since each eigenvalue λ

l,V
is

bounded from above (resp., from below) by the lth eigenvalue of the diagonal
operator ξV + 2νκ on l2(V ) (resp., ξV − 2νκ), we obtain (2.2) for l � 2.

(ii) We need to show the lower bound in (2.3). Without loss of generality,
we assume that ξK,V > 0 (this may be achieved by shift transform of ξV and λ
in the spectral problem (2.1)). Write EK

V := {z1,V , . . . , zK,V }. We introduce the
following functions: ζ(x) := ξV (x) if x ∈ EK

V , and is zero, otherwise; and further

on, ζ̃(x) := 0 if x ∈ EK
V , and ζ̃(x) := −∞, otherwise. Then ξV (· ) � ζ(· )+ ζ̃(· ) in

V , therefore, each eigenvalue λ
l,V

is bounded from below by the corresponding

eigenvalue λl,V of the operator κΔV + ζV + ζ̃V ; here 1 � l � K. To estimate
λl,V , we rewrite the corresponding spectral problem in the form:

(λ− κΔV − ζ̃V )ψ = ζV ψ (λ > 0, ψ ∈ l2(V )) (2.4)

and apply the resolvent operator GV (λ; ζ̃V ) := (λ− κΔ
V
− ζ̃V )

−1 to both sides

of (2.4). Since GV (λ; ζ̃V )δz = λ−1δz for z ∈ EK
V , equation (2.4) is transferred to

ψ =
∑
z∈EK

V

ξV (z)ψ(z)λ
−1δz (λ > 0);

here δy(· ) is the Kronecker delta function. Clearly, for each 1 � l � K, the pair
λl,V = ξl,V and ψ(· ;λl,V ) = δz

l,V
(· ) solves this equation. Summarizing, we have

that λl,V � λl,V = ξl,V (1 � l � K), as claimed. Theorem 2.1 is proved.

In Sections 2.2–2.5 below, we consider three classes of functions ξV :

(J) Sparse distinct ξV -peaks dominate in the landscape of ξV as V ↑ Z
ν , i.e., ξV

possess properties like (1.9)–(1.11). Then the Kth largest eigenvalue λ
K,V

is associated with an isolated peak ξτ(K),V , so that λK,V ↔ zτ(K),V for
some τ(K) = τV (K) � 1 (Section 2.3). In particular, if the functions ξV
possess extremely sharp peaks like (1.2)–(1.4), then the eigenvalue λ

K,V
is

associated with the Kth largest value of ξV , viz., λK,V ↔ zK,V (Section
2.2). In both cases, the lower bounds in (2.3) are achieved as V ↑ Z

ν .
(JJ) The landscape of ξV is dominated by flat islands of large values with an

unboundedly increasing diameter. Then the largest eigenvalues are asso-
ciated with such relevant islands. In this case, the upper bounds in (2.2)
are achieved as V ↑ Z

ν (Section 2.4).
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(JJJ) Similarly as in (JJ), bounded islands of large values prevail in the land-
scape of ξV . Then the asymptotic expansion terms of the principal eigen-
value λ

1,V
fill the gap between its lower and upper bounds in (2.2) (Section

2.5).

In the case of (J) we obtain the explicit expansion formulas for eigenvalues
in terms of ξV -values. Meanwhile, for (JJ) and (JJJ) we restrict ourselves to a
derivation of the second order expansion formulas for eigenvalues.

2.2. Potentials with extremely sharp single peaks

For N � 2, let us write

EN
V := {z

1,V
, z

2,V
, . . . , z

N,V
} ⊂ V (2.5)

for the subset of coordinates of the first N largest values of ξV , and

rN,V = min
1�l<k�N

|z
l,V

− z
k,V

| = min
x,y∈EN

V
x �=y

|x− y| (2.6)

for the minimum distance between sites in EN
V . For natural 1 � K = KV < N =

NV < |V | and p � 0, we introduce the following conditions on functions ξV :

lim
V

min
1�l�K

ξp(l+1)∧K,V (ξl,V − ξ
l+1,V

) = ∞ where lim
V

ξ
K,V

= ∞, (2.7)

C := limsup
V

ξN,V

ξK,V

< 1, (2.8)

lim
V

rN,V

logN
= ∞, (2.9)

M := limsup
V

max
1�l�K

max
|x−zl,V |=1

|ξV (x)| < ∞ (2.10)

and, finally,

lim
V

min
K+1�l�N

ξ2K,V

(
ξ
K,V

+
2νκ2

ξK,V

−ξ
l,V

−κ2
∑

|x−zl,V |=1

1

ξK,V −ξV (x)

)
=∞. (2.11)

We write ξ
0,V

:= ∞, and sV (l) := (ξ
l−1,V

− ξ
l,V

) ∧ (ξ
l,V

− ξ
l+1,V

) for 1 � l � K.

Theorem 2.2. (i) Under (2.7) with p = 0, we have that

limsup
V

max
1�l�K

∣∣λ
l,V

− ξ
l,V

∣∣s
V
(l) � const 1(κ, ν).

and

limsup
V

max
1�l�K

max
x �=zl,V

log
∣∣ψ(x;λ

l,V
)
∣∣

|x− z
l,V

| log s
V
(l)

� −1.
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(ii) Under (2.7)–(2.9) with p = 1, we have that

limsup
V

max
1�l�K

∣∣λ
l,V

− ξ
l,V

∣∣ξ
l,V

� const 2(κ, ν)

1− C
.

and

limsup
V

max
1�l�K

max
x �=zl,V

log
∣∣ψ(x;λ

l,V
)
∣∣

|x− z
l,V

| log ξ
l,V

� −1. (2.12)

(iii) If ξV satisfies (2.7)–(2.11) with p = 2, then

limsup
V

max
1�l�K

∣∣∣∣λl,V
− ξ

l,V
− 2νκ2

ξ
l,V

∣∣∣∣ξ2l,V � M · const 3(κ, ν)
(1− C)2

+ const 4(κ, ν).

and (2.12) holds true.

Proof. We first note that condition (2.10) implies ξ
N,V

> −∞ for any V ⊃ V0.
On the other hand, if ξN,V = −∞ and rN,V > 1, then λ

l,V
= ξ

l,V
for all

1 � l � N . The latter is shown by the same arguments as in the proof of the
lower bound in (2.3).

Now, assuming ξ
N,V

> −∞ and letting V ↑ Z
ν , the assertions of Theo-

rem 2.2(i), (ii) and (iii) are derived from Theorem A.1(i), (ii) and (iii), respec-
tively, in (Astrauskas, 2012, Appendix A) with the abbreviations Π := EN

V ,
L := ξN,V and r := rN,V .

In the case of conditions (2.7)–(2.9) with p = 2 (part (iii) of the theorem), we
have imposed additional restrictions (2.10) and (2.11) to control the influence
of the lower ξV -values on the correspondence λK,V ↔ zK,V . If ξ2K,V (ξK,V −
ξK+1,V ) = O(1), then the lower ξV -values may essentially contribute to the
expansion of the eigenvalues λK,V and, therefore, the correspondence λK,V ↔
zK,V fails. See Section 6.1 of the present paper where we consider the case of
i.i.d. samples ξ(· ) in V ↑ Z

ν with “weakly” pronounced asymptotic peaks.
Let ξ(· ) be an i.i.d. random field with the distribution function 1 − e−Q.

We will show that, if Q satisfies the condition Q(t) = o(tp+1) for p = 0, 1
and 2 (“heavy tails” e−Q) and additional RV conditions as t → ∞, then with
high probability ξV satisfies the assumptions of Theorem 2.2(i), (ii) and (iii),
respectively, where K ∈ N is fixed and N = [|V |θ] for some 0 < θ < 1/2; see
Theorems 4.3(i), 4.5, 3.1 (R = 0), 5.3 and 5.4 with 0 < ε < θ. Therefore, Poisson
limit theorems for the largest eigenvalues λ

K,V
are reduced to those for extreme

values of i.i.d. random fields ξ(· ) or ξ(· ) + 2νκ2/(ξ(· ) ∨ 1) (Theorem 6.9).

2.3. Potentials with dominating single peaks: The general case

To simplify the proceedings, we need some notation and remarks. For N � 2
and EN

V as in (2.5), we introduce the following function: ξ̃V (x) := 0 if x ∈ EN
V ,

and ξ̃V (x) := ξV (x) if x ∈ V \ EN
V . Then

ξV =
∑
z∈EN

V

ξV (z)δz + ξ̃V ,
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i.e., ξV is a superposition of ξV -peaks and the noise component ξ̃V . To exclude
the trivialities, we assume that ξ

N,V
> −∞ for each V (for the case when

ξ
N,V

= −∞ and r
N,V

> 1, see the proof of Theorem 2.2 above). For each

z ∈ V , let λ̃V (z) be the principal eigenvalue of the “single peak” Hamiltonian

κΔV + ξV (z)δz + ξ̃V (1 − δz) on l2(V ). We associate the sites z
τ(l),V

∈ V with
the variational series

λ̃
1,V

:= λ̃(z
τ(1),V

)� λ̃
2,V

:= λ̃(z
τ(2),V

)� . . .� λ̃|V |,V := λ̃(z
τ(|V |),V ) (2.13)

based on the sample λ̃V ; here V =
{
z
τ(l),V

: 1 � l � |V |
}
.

Theorem 2.3. Assume that there are natural numbers 1 � K = KV < N =
NV < |V | such that the functions ξV satisfy condition (2.9) and the following
conditions:

lim
V

(
ξK,V − ξN,V

)
= ∞ (2.14)

and

liminf
V

min
1�l�K

log
(
λ̃l,V − λ̃l+1,V

)
rN,V log

(
ξ(l+1)∧K,V − ξN,V

) � 0. (2.15)

Then

limsup
V

max
1�l�K

log
∣∣λl,V − λ̃l,V

∣∣
rN,V log

(
ξl,V − ξN,V

) � −2. (2.16)

and

limsup
V

max
1�l�K

max
x �=zτ(l),V

log
∣∣ψ(x;λ

l,V
)
∣∣

|x− z
τ(l),V

| log(ξ
l,V

− ξN,V )
� −1.

Proof. We write

Ẽ
h,V

:={z ∈ EN
V : λ̃V (z)�ξ

N,V
+2νκ+h} where h :=

ξ
K,V

−ξ
N,V

2
. (2.17)

By the first bound in Theorem 2.1(i), λ̃V (z) � ξV (z) for all z ∈ EN
V . This

combined with (2.14) gives ∣∣Ẽ
h,V

∣∣ � K (2.18)

for any V ⊃ V0. Finally, according to (Astrauskas, 2008, Section 2.2 and Ap-
pendix B.2),

ξV (z) � λ̃V (z) � ξV (z) + 2νκ2/h for any z ∈ Ẽ
h,V

. (2.19)

In view of (2.18) and (2.19), the assertion of Theorem 2.3 is derived similarly
as in the proof of Theorem B.3 in (Astrauskas, 2008, Appendix B) with the

abbreviations L := ξ
N,V

, Π := EN
V (2.5), Π̃ := Ẽ

h,V
(2.17) and r := r

N,V
(2.6).
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Note that conditions (2.14) and (2.15) of Theorem 2.3 are substantially
weaker than (2.8) and (2.7), respectively, in Theorem 2.2. According to (2.16)
and (2.19) with h → ∞ as in (2.17), we obtain that λl,V = ξl,V +o(1) uniformly
in 1 � l � K, so that the eigenvalues λl,V achieve their lower bounds in (2.3)
as V ↑ Z

ν .
On the other hand, from (Astrauskas, 2008, Appendices A and B) we know

that, for each z ∈ Ẽ
h,V

, the eigenvalue λ̃V (z) is the maximal solution to the
equation

GV (λ; ξ̃V ; z, z) =
1

ξV (z)
; (2.20)

here GV (λ; ξ̃V ; ·, ·) is the Green function of the Hamiltonian κΔV + ξ̃V on l2(V ),

so that GV (λ; ξ̃V ; z, z) is expanded over paths:

GV (λ; ξ̃V ; z, z) =
∑
Γ

κ|Γ|
∏
v∈V

(
λ− ξ̃(v)

)−nv(Γ)
, (2.21)

where the sum
∑

Γ is taken over all paths Γ : v0 := z → v1 → · · · → vm := z in
V such that |vi − vi−1| = 1 for each 1 � i � m and each m ∈ N, nv(Γ) denotes
the number of times the path Γ visits the site v ∈ V , |Γ| :=

∑
v∈V nv(Γ)−1 � 0.

Substituting (2.21) to the left-hand side of (2.20) and iterating this with respect

to the eigenvalue λ = λ̃V (z), we obtain the explicit expansion formulas for

λ̃V (z) (z ∈ Ẽ
h,V

) presented as a power series in the variables ξV (z) and ξ̃V (x)
(|x− z|�1), in particular,

λ̃V (z) = ξV (z) + κ2
∑

|x−z|=1

1

ξV (z)− ξ̃V (x)
+

+O

( ∑
|x−z|=1
|y−z|=1
|u−z|�2

1

(ξV (z)−ξ̃V (x))(ξV (z)−ξ̃V (y))(ξV (z)− ξ̃V (u))

)
(2.22)

as V ↑ Z
ν .

Remark 2.4. With notation at the beginning of Section 2.2, assume that there
are natural numbers 1 < N = NV < |V | such that the functions ξV satisfy the
conditions: limV r

N,V
= ∞ and limV (ξ1,V −ξ

N,V
) = ∞. Then there are constants

consti = consti(κ, ν) > 0 such that

|λ1,V − ξ1,V | � const1
ξ1,V − ξN,V

+
const2
rN,V

= o(1) (2.23)

as V ↑ Z
ν .

As shown above, limit (2.23) follows from the assumptions of Theorem 2.3
or Theorem 2.2(ii) with K = 1. To prove (2.23) under the (weaker) conditions
of Remark 2.4, we first observe from Theorem 2.1(i) that λ

1,V
� ξ

1,V
for all V .
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Second, we apply Lemma 2.8 below with R := 1
3rN,V

→ ∞ to see that the
eigenvalue λ

1,V
is bounded from above (with accuracy O(R−1)) by the maximum

of local principal eigenvalues of the single-peak Hamiltonians over all balls in V
of radius R. Using formulas (2.20)–(2.22) for such local principal eigenvalues,
we finally obtain the bound λ1,V � ξ1,V + const1/(ξ1,V − ξN,V ) + const /R, as
claimed.

Remark 2.5. Theorems 2.2, 2.3 and Remark 2.4 include the condition on
asymptotic sparseness of ξV -peaks: for instance, rN,V

→ ∞ as V ↑ Z
ν . Molchanov

and Vainberg (1998; 2000) studied the existence and location of spectral com-
ponents (pure point, absolutely continuous, etc) of the Schrödinger operators
κΔ + ξ(·) in l2(Zν) with sparse deterministic potential ξ(· ) =

∑
k�1 akδzk(· ),

where amplitudes ak are bounded and {zk} is a rare subset of Zν , for example,
r̃n := min

l �=n
|zl − zn| → ∞ as n → ∞.

Let ξ(· ) be an i.i.d. random field with the distribution function 1 − e−Q.
We will show that, if the tails e−Q are heavier than the double exponential
function (i.e., logQ(t) = o(t)) and satisfy additional regularity and continuity
conditions at infinity, then with probability one ξV satisfies the assumptions of
Theorem 2.3, where K ∈ N is fixed and N = [|V |θ] for some 0 < θ < 1/2; see
Theorems 3.1 (R = 0), 4.6 (ρ = ∞) and 4.8. Therefore, Poisson limit theorems
for the largest eigenvalues λ

K,V
are reduced to those for extremes of nonlinear

functions (2.22) on ξV (Theorem 6.2).

2.4. Potentials with dominating flat increasing islands of high
values

Let BR(z) := {y ∈ V : |y − z| � R} denote the ball in V with center z ∈ V
and radius R � 0. The following theorem gives a simple condition on ξV which
ensures that the largest eigenvalues λK,V achieve their upper bounds in (2.2) as
V ↑ Z

ν .

Theorem 2.6. If

lim
R→∞

limsup
V

min
z∈V

(
ξ
1,V

− min
x∈BR(z)

ξV (x)
)
= 0, (2.24)

then, for arbitrarily fixed K ∈ N,

lim
V

(
λ

K,V
− ξ

K,V

)
= 2νκ.

Proof. Because of Theorem 2.1(i), we only need to show the lower limit bound

liminf
V

(
λ

K,V
− ξ

1,V

)
� 2νκ. (2.25)

From (2.24) we see that there exist a sequence 0 < εR → 0 and sites zV ∈ V such
that ξV (·) � ξ

1,V
−εR in BR(zV ) for any R � R0 and any V ⊃ V0(R). Abbreviate

ξ
(R)
V (x) := ξV (x) if x ∈ BR(zV ), and ξ

(R)
V (x) := −∞, otherwise. Since ξV (·) �
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ξ
(R)
V (·) in V and ξ

(R)
V (·) � ξ1,V − εR in BR(zV ) for R and V as above, the

monotonicity property of eigenvalues implies that λK,V � λ
(R)
K,V + ξ1,V − εR,

where λ
(R)
K,V is the Kth eigenvalue of the operator κΔ on l2(BR(zV )) with zero

boundary conditions. Since λ
(R)
K,V tends to 2νκ letting first V ↑ Zν and then

R → ∞ (Kirsch, 2008, Section 3.1), this estimate implies (2.25), as claimed.

Clearly condition (2.24) is fulfilled if and only if there are a sequence RV → ∞
and sites zV ∈ V such that

lim
V

(
ξ
1,V

− min
|x−zV |�RV

ξV (x)
)
= 0.

From the proof of the theorem we know that the eigenvalues λ
K,V

of the operator
HV = κΔV + ξV in V are approximated by the corresponding local eigenvalues
in the regions BRV ;opt := BRV

(zV ) ⊂ V where ξV (·) is close to ξ
1,V

, i.e., relevant
regions.

Let ξ(· ) be an i.i.d. random field with the distribution function 1− e−Q. We
will show that, if the tails e−Q are lighter than the double exponential function
(i.e., t−1 logQ(t) → ∞) and satisfy additional RV conditions at infinity, then
with probability one ξV satisfies the assumption of Theorem 2.6; see Theorem 4.6
with ρ = 0 and Theorem 3.1(i) for any large R and θ(·) ≡ θ = const . In this
case, we obtain the second order expansion formulas for the largest eigenvalues
λ

K,V
(Theorem 6.14).

2.5. Potentials with dominating bounded islands of high values

In this section, we describe a class of deterministic functions (potential) ξV :
V → [−∞;∞) for which the asymptotic terms for the principal eigenvalue
λ

1,V
(V ↑ Z

ν) fill the gap between its lower and upper bounds in (2.2). We
use the variational arguments developed by Gärtner and Molchanov (1998). To
formulate the results, we need some abbreviations and remarks related to the
variational problems. To emphasize the dependence of λ1,V on the sample ξV , we
denote by λ(ξV ) := λ1,V the principal eigenvalue of the operatorHV = κΔV +ξV
on l2(V ). As in Section 2.4, let BR(z) ⊂ V be the closed ball of radius R � 0
centered at z ∈ V , and let BR := BR(0).

Given a ball B ⊂ V , let ξBV (x) := ξV (x) if x ∈ B, and ξBV (x) := −∞, otherwise.
As before, HB

V := κΔV + ξBV is interpreted as an operator with zero boundary
conditions outside B. We write

ξV (x) = ξ
1,V

+ hV (x) (x ∈ V ),

where the function hV � 0 admits the interpretation as the shape of ξV -values
close to the maximum ξ

1,V
. Note that

λ(ξV ) = ξ1,V + λ(hV ) and λ(ξBV ) = ξ1,V + λ(hB

V ). (2.26)
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For a fixed constant 0 < ρ < ∞, we are interested in the following supremum
of λ(hB) over h : B → [−∞; 0]:

sup
{
λ(hB) :

∑
x∈B

eh(x)/ρ < 1
}
.

This variational problem is equivalent to the corresponding variational problem
in terms of the functionals

SB(p) :=
∑
x∈B

√
p(x)Δ

√
p(x) where p(y)=0 for y ∈ Z

ν\B,

and
IB(p) := −

∑
x∈B

p(x) log p(x)

for p(·) ∈ P(B), the set of probability measures on B. More precisely, for a se-
quence of balls BR ⊂ Z

ν , the following formulas hold true according to Rayleigh–
Ritz theorem and (Gärtner and Molchanov, 1998, Lemmas 2.17 and 1.10):

sup
{
λ(hBR) :

∑
x∈BR

eh(x)/ρ < 1
}

= sup
{
λ(hBR) :

∑
x∈BR

eh(x)/ρ = 1
}

(2.27)

= sup
p∈P(BR)

(
κSBR(p)− ρIBR(p)

)
,

where the right-hand side of (2.27) converges (as R → ∞) to

sup
p∈P(Zν)

(
κS(p)− ρI(p)

)
=: 2νκq(ρ/κ). (2.28)

Here S(p) and I(p) are the corresponding functionals on P(Zν)= the set of
probability measures on lattice Z

ν . It is easy to check that q : R+ → (0; 1)
is convex, strictly decreasing and surjective function; q(0) = 1 and q(∞) =
limρ→∞ q(ρ) = 0. Moreover, q(ρ) = (2ρ log ρ)−1(1+o(1)) as ρ → ∞ (Astrauskas,
2008, Proposition 2.1 and Corollary 4.5). The supremum on both sides of (2.27)
and (2.28) is attained. Denote by hBR

opt the maximizer for the variational problem

on the left-hand side of (2.27). Then pBR
opt is the maximizer for the right-hand

side of (2.27) if and only if hBR
opt = ρ log pBR

opt. For this and further properties of
the maximizes in (2.27) and (2.28) in the limit case R = ∞, see (Gärtner and
den Hollander, 1999, Sections 0.3 and 0.4) and (Gärtner et al., 2007, Sections
1.3 and 3).

The following theorem tells us that, under reasonable conditions on ξV , the
principal eigenvalue λ1,V of the operator HV = κΔV +ξ1,V +hV in V is approx-
imated (letting first V ↑ Z

ν and then R → ∞) by the local principal eigenvalue
of the operator restricted to the regions BR;opt := BR(zV ) ⊂ V where hV is

close to hBR
opt, i.e., relevant regions with optimal potential shape.
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Theorem 2.7. Given a constant 0 < ρ < ∞ and a sequence R → ∞, assume
that functions ξV satisfy the following conditions:

lim
R→∞

limsup
V

max
z∈V

∑
y∈BR(z)

exp
{ξV (y)− ξ

1,V

ρ

}
� 1 (2.29)

and

liminf
R→∞

liminf
V

max
z∈V

min
y∈BR(z)

(
ξV (y)− ξ1,V − hBR

opt(y − z)
)

� 0. (2.30)

Then

lim
V

(
λ1,V − ξ1,V

)
= 2νκq(ρ/κ). (2.31)

Proof. Limit (2.31) follows from the results of (Gärtner and Molchanov, 1998,
Section 2.4) under the stronger conditions on ξV including sparseness of clusters
of ξV -extremes. To prove (2.31) under conditions (2.29) and (2.30), we apply
the same arguments as in (Gärtner and Molchanov, 1998, the proof of Theorem
2.16) combined with the following lemma by Biskup and König (2001), which
is slightly modified for the operator HV with periodic boundary conditions:

Lemma 2.8 (Biskup and König, 2001, Lemma 4.6). For each R ∈ N, V ⊃ V0(R)
and each ξV ,

λ(ξV ) � ξ
1,V

+max
z∈V

λ
(
h
BR(z)
V

)
+ constR−1

for some (universal) const > 0.

We first obtain the upper bound for λ(ξV ). Condition (2.29) implies that
there is a sequence 0 < εR → 0 such that

max
z∈V

∑
y∈BR(z)

exp
{
hV (y)/ρ

}
< exp

{
εR/ρ

}
for each V ⊃ V0(R).

In view of (2.26), this estimate and Lemma 2.8 yield that

λ(ξV )− ξ
1,V

� sup
{
λ(hBR) : h(·) � 0,

∑
y∈BR

eh(y)/ρ < eεR/ρ
}
+

const

R

� sup
{
λ(hBR) : h(·) � 0,

∑
y∈BR

eh(y)/ρ < 1
}
+ εR +

const

R

for V as above. Taking the limit as first V ↑ Z
ν and then R → ∞, and using

(2.27)–(2.28), we arrive at

limsup
V

(
λ1,V − ξ1,V

)
� 2νκq(ρ/κ). (2.32)
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By combining condition (2.30), the monotonicity property of eigenvalues and
assertions (2.27)–(2.28), similarly as in the proof of (2.25) we obtain the lower
bound

λ(ξV )− ξ1,V � λ(hBR
opt) + o(1) → 2νκq(ρ/κ)

letting first V ↑ Z
ν and then R → ∞. This and (2.32) conclude the proof of

Theorem 2.7.

If ρ = ρV → ∞ in Theorem 2.7, then the “relevant” regions BR;opt shrink to
single sites and, therefore, we are in the situation of Theorem 2.3. Meanwhile,
if ρ = ρV → 0, then we stick to the result of Theorem 2.6.

Let ξ(· ) be an i.i.d. random field with the distribution function 1− e−Q. It will
be shown that, if the tails e−Q are the double exponential (i.e., t−1 logQ(t) →
1/ρ) and satisfy additional RV conditions at ∞, then with probability one ξV
satisfies the assumptions of Theorem 2.7; see Theorem 4.7 and Theorem 3.1(i)
for arbitrarily large R and θR(y) ≈ 1−exp{hBR

opt(y)/ρ} (y ∈ BR). (For continuous
Q, see Corollaries 2.7, 2.12 and 2.15 in (Gärtner and Molchanov, 1998).) In this
case, the second order expansion formula for λ

1,V
holds true (Theorem 6.19).

3. Clustering of high-level exceedances of i.i.d. random fields

Let ξ(x), x ∈ Zν , be an i.i.d. random field with the cumulative hazard func-
tion Q. The main task of the present section is to investigate the almost sure
asymptotic structure of clusters (“islands”) of bounded size formed by ex-
ceedances of the sample ξV as V ↑ Z

ν . With the abbreviations in Section 1,
we also need additional notation. For θ < 1, put L

V,θ
:= f((1−θ) log |V |) where

f := Q←. (Without loss of generality, we write L
V,1

:= sup{t : Q(t−) = 0}, so
that almost surely ξ(x) � LV,1 for each x.) Let BR(z) := {x ∈ Z

ν : |x−z| � R},
and BR := BR(0). For fixed R ∈ N ∪ {0} and a function θR(·) : BR → (−∞; 1],
we denote by VR the set of balls BR(z) ⊂ V , and

ER
V,θ := {BR(z) ⊂ V : ξ(y) � LV,θR(y−z) for all y ∈ BR(z)},

the subset of clusters of ξV -exceedances in VR over the level function LV,θR(·).
We abbreviate

r(ER
V,θ) := min{dist (B,B′) : B∈ER

V,θ, B
′∈ER

V,θ, B �=B
′} if |ER

V,θ| � 2,

and r(ER
V,θ) := |V |1/ν if |ER

V,θ| � 1, by convention; here dist (B,B′) stands for

the lattice l1-distance between balls B,B′ ⊂ V . If R = 0 and θ := θ(0), then
EV,θ := E0

V,θ shrinks to the subset of single ξV -exceedances, so that

r(E
V,θ

) = min{|x− y| : x ∈ E
V,θ

, y ∈ E
V,θ

, x �= y}.

To formulate the main result of this section, we also need the following abbre-
viations

μR :=
∑
y∈BR

(1− θR(y)) > 0 and θmax,R := max
y∈BR

{
θR(y) : θR(y) < 1

}
.
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Theorem 3.1 (cf. Theorems 2.2–2.7). For arbitrarily fixed R ∈ N ∪ {0}, the
following almost sure limits hold true.

(i) If μR < 1, then

liminf
V

log
∣∣ER

V,θ

∣∣
log |V | � 1− μR.

(ii) If μR < 1 and, in addition, Q satisfies the condition

lim
t↑tQ

Q(t−)

Q(t)
= 1, (3.1)

then

lim
V

log
∣∣ER

V,θ

∣∣
log |V | = 1− μR.

(iii) If μR > 1 and Q satisfies (3.1), then

lim
V

∣∣ER
V,θ

∣∣ = 0.

(iv) If θmax,R < μR < 1 and Q satisfies (3.1), then

lim
V

log r
(
ER
V,θ

)
log |V | =

2μR − 1

ν
.

Remark 3.2. (a) Clearly, for arbitrary Q and μR < 1,

E
∣∣ER

V,θ

∣∣ (= the mean number of clusters of exceedances)

= |VR|
∏

y∈BR

P
(
ξ(y) � LV,θR(y)

)
� const |V | exp

{
−

∑
y∈BR

Q(LV,θR(y)−)
}

� const |V |1−μR → ∞,

according to Lemma A.11(iii) in Appendix.
(b) On the other hand, by Lemma A.11(iii), condition (3.1) implies the asymp-

totic formula

Q(f(s)) = s+ o(s) as s → ∞, (3.2)

which in turn yields, for μR � 0, the upper bound

logE|ER
V,θ| � (1− μR + o(1)) log |V |

as |V | → ∞.

Remark 3.3 (see part (iv)). If θmax,R < μR < 1, then 1/2 < μR < 1.

Remark 3.4. In the case R = 0 and 0 < θ < 1/2, i.e., single rare ξV -peaks,
Theorem 3.1 was proved by Astrauskas (2001). For the Gaussian random field
ξ(·) with correlated values, the case R = 0 was studied by Astrauskas (2003).
Here the results depend slightly on the correlation function of ξ(·). Finally,
assertion (i) generalizes Corollary 2.15(b) in (Gärtner and Molchanov, 1998)
where the continuity of Q is assumed.
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Proof of Theorem 3.1. To simplify the proof, we assume throughout that θR(·) ≡
θ(·) < 1 in BR. The general case is treated similarly.

(i) We denote by ṼR ⊂ VR the maximal subset of nonintersecting balls

BR(z) in V , so that |ṼR| 
 |V |. The claimed bound is proved by estimating∣∣ER
V,θ ∩ ṼR

∣∣ similarly as in the proof of Theorem 1 in Astrauskas (2001), where
the exceedances {ξ(x) � LV,θ} (x ∈ V ) are replaced by mutually independent

(multiple) exceedances {ξ(·) � LV,θ(·−z) in BR(z)} (BR(z) ∈ ṼR). In particular,
if Q(tQ−) = ∞, we obtain that, for any −1 < δ < 0 and V ↑ Z

ν ,

P

(∣∣ER
V,θ ∩ ṼR

∣∣ � (1 + δ)E
∣∣ER

V,θ ∩ ṼR

∣∣)
� exp

{
− const (δ) · E

∣∣ER
V,θ ∩ ṼR

∣∣(1 + o(1))
}

for some const (δ) > 0. Since the right-hand side is summable over V according
to the assertion of Remark 3.2(a), we conclude the proof of (i) by using the
Borel-Cantelli lemma.

(ii) We only need to estimate |ER
V,θ| from above. Fix a function θ′(·) : BR →

(−∞; 1) such that θ′(·) > θ(·) in BR, and pick a constant δ > 1 − μ′ where
μ′ :=

∑
y∈BR

(1−θ′(y)). We then apply Chebyshev’s inequality and the assertion
of Remark 3.2(b) to find that, for any V ⊃ V0,

P
(∣∣ER

V,θ′
∣∣ > |V |δ

)
� E

∣∣ER
V,θ′

∣∣|V |−δ � |V |−const (3.3)

where const = const (θ′(·), δ) > 0. Choose a subsequence {V (l) : l ∈ N} ⊂ {V }
such that

V (l) monotonously increases and |V (l)| = 2l(1 + o(1)) as l → ∞. (3.4)

Since the right-hand side of (3.3) is summable over the subsequence {V (l)},
the Borel–Cantelli lemma implies that almost surely

∣∣ER
V (l),θ′

∣∣ � |V (l)|δ for

all l � l0(ω). Because of the monotonicity of ER
V,θ in LV,θ(·), we obtain that

with probability 1, for any V such that V (l − 1) ⊂ V ⊆ V (l) and any l �
l0(ω; θ(·), θ′(·)), the set ER

V,θ is contained in ER
V (l),θ′ , therefore,∣∣ER

V,θ

∣∣ �
∣∣ER

V (l),θ′

∣∣ � |V (l)|δ � const |V |δ.
Since θ′(·) > θ(·) and δ > 1− μ′ are chosen arbitrarily, this estimate yields the
upper limit bound for log

∣∣ER
V,θ

∣∣, as claimed.

As in part (ii), it suffices to prove the assertions of (iii)–(iv) for the subse-
quence {V (l)} (3.4) instead of {V }.

(iii) We note that ER
V,θ �= ∅ if and only if there exists BR(z) ⊂ V such

that ξ(·) � LV,θ(·−z) in BR(z). According to the assertion of Remark 3.2(b),
the probability of the last event does not exceed E|ER

V,θ| � |V |−ρ for some

0 < ρ < −1 + μ. Therefore, P(ER
V,θ �= ∅) � |V |−ρ. Since the latter is summable

over {V (l)} (3.4), the Borel-Cantelli lemma yields that almost surely ER
V (l),θ = ∅

for all l � l0(ω), as claimed.

(iv) With ṼR ⊂ VR defined in part (i), the almost sure upper bound for

r(ER
V,θ ∩ ṼR) � r(ER

V,θ) is derived similarly as in the proof of Theorem 2 of
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Astrauskas (2001) where the exceedances {ξ(x) � LV,θ} (x ∈ V ) are replaced
by mutually independent (multiple) exceedances {ξ(·) � LV,θ(·−z) in BR(z)}
(BR(z) ∈ ṼR).

To obtain the lower bound for r
(
ER
V,θ

)
, we first note that the event

{
r
(
ER
V,θ

)
=

0,
∣∣ER

V,θ

∣∣ � 2
}
implies that there exists BR(z) ⊂ V such that ξ(·) � LV,θ(·−z) in

BR(z) and ξ(y) � LV,θmax for some y ∈
(
B3R(z) \ BR(z)

)
∩ V . Therefore, as in

the proof of (iii) we obtain that, for fixed y ∈ Z
ν \ BR and for any V ⊃ V0,

P
(
r
(
ER
V,θ

)
= 0,

∣∣ER
V,θ

∣∣ � 2
)

� const |V |P
(
ξ(·) � LV,θ(·) in BR, ξ(y) � LV,θmax

)
� |V |−ρ

for some 0 < ρ < μ − θmax. Second, similarly as in the proof of part (i), we

find that P

(∣∣ER
V,θ

∣∣ < 2
)

� |V |−const for any V ⊃ V0 and some const > 0.

Summarizing these bounds and picking 0 < ε < (2μ − 1)/ν arbitrarily, we get
that, for any V ⊃ V0,

P
(
r
(
ER
V,θ

)
< |V |ε

)
� P

(
1 � r

(
ER
V,θ

)
< |V |ε,

∣∣ER
V,θ

∣∣ � 2
)
+|V |−const1 � |V |−const2 (3.5)

for some const i > 0, where the last probability is estimated similarly as in the
proof of Theorem 2 of (Astrauskas, 2001) with mutually independent (multiple)
exceedances {ξ(·) � LV,θ(·−z) in BR(z)} instead of {ξ(x) � LV,θ}. Since the
right-hand side of (3.5) is again summable over {V (l)} (3.4), we conclude from
the Borel–Cantelli lemma that almost surely r

(
ER
V (l),θ

)
� |V (l)|ε for any l �

l0(ω; ε), as claimed. This completes the proof of Theorem 3.1.

Remark 3.5. By the same arguments as in the proof above, the assertions of
Theorem 3.1 are extended to the following class of high-level exceedances:

For fixed R ∈ N ∪ {0}, we denote by SR the set of all subsets U ⊂ Z
ν ,

the diameter of which does not exceed R. Let VR := {U ∈ SR : U ⊂ V }. For
a fixed set of functions ΘR :=

{
θU,R(·) ∈ (−∞; 1)|U | : U ∈ SR

}
, let ER

V,Θ ⊂ VR

be the subset of elements U ∈ VR such that ξ(·) � LV,θU,R(·) in U . I.e., ER
V,Θ

consists of clusters of exceedances in VR over level functions L
V,Θ

. Denote by
r
(
ER
V,Θ

)
the minimum distance among elements U,U ′ ∈ ER

V,Θ, U �= U ′. Finally,
let μR :=

∑
y∈U (1 − θU,R(y)) be a positive constant independent of U ∈ SR,

and write θmax,R := supU∈SR
maxy∈U θU,R(y). With these notation for ER

V,Θ and

r
(
ER
V,Θ

)
, the almost sure assertions (i)–(iv) of Theorem 3.1 hold true.

4. Spacings of order statistics of i.i.d. random fields

4.1. Spacings of consecutive order statistics

We first formulate the results for the exponential order statistics ηK,V and their
spacings, which are then transferred to ξ

K,V
= f(η

K,V
) under appropriate con-

ditions for f .
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Note that the random variables

η
1,V

− η
2,V

, . . . , (|V | − 1)(η|V |−1,V
− η|V |,V ), |V |η|V |,V

are mutually independent exponentially distributed with mean 1; see, e.g., (Sho-
rack and Wellner, 1986, pp. 336). This property immediately implies the first
assertion of the following lemma.

Lemma 4.1. (i) For fixed K ∈ N,

lim
V

P(η
1,V

− η
2,V

>t1, . . . , ηK−1,V
− η

K,V
>t

K−1
, η

K,V
− log |V |>t)

=

(K−1∏
l=1

e−ltl

)
1

(K − 1)!

∫ ∞

t

exp
{
−Ks− e−s

}
ds

for all tl � 0 (1 � l � K − 1) and all t ∈ R.
(ii) For an arbitrary sequence {K

V
} such that 1 � K

V
� |V |,

limsup
V

√
KV max

KV �k�|V |

∣∣∣∣ηk,V
− log

|V |
k

∣∣∣∣ < ∞ in probability.

Proof. Let us show (ii). Write η|V |+1,V
:= 0. By Kolmogorov’s inequality (Sho-

rack and Wellner, 1986, pp. 843), we have that

P

(
max

KV �k�|V |

∣∣∣∣ |V |∑
l=k

(
η
l,V

− η
l+1,V

− 1

l

) ∣∣∣∣ > (
C

KV

)1/2
)

� K
V

C

|V |∑
l=KV

E

(
η
l,V

− η
l+1,V

− 1

l

)2

� 2

C

for any C > C0 and any V ⊃ V0(C). Combining this bound with the following
simple estimate

max
KV �k�|V |

( |V |∑
l=k

1

l
− log

|V |
k

)
� 1

K
V

(V ⊃ V0),

we obtain the claimed assertion of (ii).

The almost sure asymptotic behavior of the random variables η
K,V

and η
K,V

−
η
K+1,V

(|V | → ∞) is more intricate.

Lemma 4.2. For any fixed constants K ∈ N and m ∈ N \ {1}, the following
almost sure limits hold true.

(i) liminf
V

log(ηK,V − ηK+1,V ) +
∑m−1

i=2 logi |V |
logm |V | = −1,

(ii) limsup
V

η
K,V

− η
K+1,V

−K−1
∑m−1

i=2 logi |V |
logm |V | =

1

K
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and

(iii) limsup
V

max
1�l�|V |

∣∣∣∣ηl,V
− log

|V |
l

∣∣∣∣ 1

log log |V | = 1;

here
∑1

2 . . . := 0.

Proof. Assertions (i) and (ii) follow from more general results for exponential
spacings in (Astrauskas, 2006, Corollary 12). Assertion (iii) follows from the cor-
responding strong limits for the uniform order statistics ζ|V |−k+1,V

(Shorack and
Wellner, 1986, pp. 408 and pp. 420–424) via transformation η

k,V
=

− log ζ|V |−k+1,V
(1 � k � |V |).

We now turn to the case ξ
k,V

= f(η
k,V

). For p � 0, we denote by AΠp
∞ the

class of functions f := Q← that satisfy

lim
s→∞

f(s)p
(
f(s+ c)− f(s)

)
= ∞ for any c > 0, (4.1)

and by AΠp
0 the class of functions f that satisfy

lim
s→∞

f(s)p
(
f(s+ c)− f(s)

)
= 0 for any c > 0, (4.2)

and, finally, OAΠp stands for the class of f satisfying

f(s)p
(
f(s+ c)− f(s)

)

 1 as s → ∞, for any c > 0. (4.3)

We see that, if f is in AΠp
∞ or OAΠp, then the right endpoint tQ is infinity

or, equivalently, f(s) → ∞ as s → ∞. Of course, AΠp
0 includes the trivial

case of finite tQ > 0. The characterization of AΠp
∞, AΠp

0 and OAΠp is given
in Lemmas A.6, A.7 and A.8 of Appendix A respectively. In particular, the
functions f := Q← ∈ OAΠp are associated with Weibull type distributions
1− e−Q, where Q(t) 
 tp+1 as t → ∞.

Theorem 4.3 (Cf. (2.7) and (Astrauskas, 2012; 2013)). For fixed natural K >
l � 1 and real p � 0, we have the following limits in probability.

(i) If f ∈ AΠp
∞, then

lim
V

ξpK,V (ξl,V − ξ
K,V

) = ∞. (4.4)

(ii) If f ∈ AΠp
0, then limV ξpK,V (ξl,V − ξ

K,V
) = 0.

(iii) If f ∈ OAΠp, then ξpK,V (ξl,V − ξ
K,V

) 
 1 as |V | → ∞.

Proof. Using notation (1.22)–(1.24), rewrite the left-hand side of (4.4) in the
form

f(η
K,V

)p
(
f(η

K,V
+ (η

l,V
− ηK,V ))− f(η

K,V
)
)
.

The claimed assertions follow by applying Lemma 4.1(i).



From extreme values of i.i.d. random fields 193

To obtain these limits with probability 1, we need the stronger conditions for
f . Let us abbreviate

dm,γ(s) := s
(m−1∏

i=1

logi s
)
(logm s)1+γ (s � s0).

Theorem 4.4 (Cf. (2.7)). For fixed constants K ∈ N and p � 0, the following
almost sure limits hold true.

(i) If lims→∞ f(s)p
(
f(s+1/dm,γ(s))−f(s)

)
= ∞ for some m ∈ N and γ > 0,

then
lim
V

ξpK+1,V (ξK,V − ξK+1,V ) = ∞.

(ii) If lims→∞ f(s)p
(
f(s+K−1 log dm,γ(s))− f(s)

)
= 0 for some m ∈ N and

γ > 0, then
lim
V

ξpK+1,V (ξK,V − ξK+1,V ) = 0.

(iii) If lims→∞
(
f(s+ log s)− f(s)

)
= 0, then

lim
V

(
ξ
K,V

− f(log |V |)
)
= 0.

Proof. Assertions (i)–(ii) follow by the same arguments as in the proof of The-
orem 4.3, where one applies Lemma 4.2 instead of Lemma 4.1(i). Assertion (iii)
follows from Lemma 4.2 (iii).

4.2. Spacings of intermediate order statistics

We denote by PI<2 the class of functions f := Q← satisfying the condition

limsup
s→∞

f((1− ε)s)

f(s)
< 1 for some 0 < ε < 1/2. (4.5)

Class (4.5) is characterized in Lemma A.13 (Appendix A).

Theorem 4.5 (Cf. (2.8)). Assume that f ∈ PI<2 (4.5). Then for fixed K ∈ N

and θ > ε, almost surely

limsup
V

ξ
[|V |θ ],V

/
ξ
K,V

< const < 1. (4.6)

Proof. By Lemma 4.2(iii), with probability one the random variable ξK,V =
f(ηK,V ) is bounded from below by f(log |V |−2 log log |V |) and ξ

[|V |θ ],V
is bounded

from above by f((1 − θ) log |V | + 2 log log |V |) for each V ⊃ V0(ω). Substitut-
ing these bounds into the left-hand side of (4.6) and using (4.5), we obtain the
claimed assertion.

We denote by RVρ the class of nondecreasing functions g : R+ → R+ such
that, for any c > 1, lims→∞ g(cs)/g(s) = cρ. I.e., g is regularly varying at infinity
with index 0 � ρ � ∞. The case ρ = ∞ (resp., ρ = 0) indicates a rapid variation
(resp., slow variation) of the function g. See Lemma A.3 in Appendix A for a
summary of the well-known properties of the class RVρ.
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Theorem 4.6 (Cf. (2.14) and (2.24)). For some 0 � ρ � ∞, assume that
ef ∈ RVρ. Then, for all constants 0 � ε < θ < 1, almost surely

lim
V

(
ξ
[|V |ε],V

− ξ
[|V |θ ],V

)
= ρ log

1− ε

1− θ
.

Proof. To prove this assertion, use Lemma 4.2(iii) and Lemma A.3(ii) similarly
as in the proof of Theorem 4.5.

The following statement is closely related to the result of Theorem 4.6 with
0 < ρ < ∞. As in Section 2.4, let BR(z) denote the closed ball in V with the
center z ∈ V and the radius R � 0.

Theorem 4.7 (Cf. (2.29) and (Gärtner and Molchanov, 1998)). For some 0 <
ρ < ∞, assume that ef ∈ RVρ. Then, for any fixed R ∈ N, almost surely

limsup
V

max
z∈V

∑
y∈BR(z)

exp
{(

ξ(y)− ξ
1,V

)
/ρ

}
� 1.

Proof. For continuous Q, this assertion is a straightforward consequence of
Corollary 2.12 in (Gärtner and Molchanov, 1998) and Theorem 4.4(iii) above.
(In view of Lemma A.3(ii), the condition of Theorem 4.4(iii) follows from the
assumption of Theorem 4.7). If the continuity condition on Q is dropped, one
applies slightly modified arguments based on the technique of function inversion,
e.g., Lemma A.11 in Appendix A.

Recall that the conditions of Theorems 4.6 and 4.7 are discussed in Lemma A.3.
In particular, the assumption of Theorem 4.7 implies that logQ(t) = t/ρ+ o(t)
as t → ∞, i.e., the double exponential tails e−Q.

4.3. Minimum of spacings

We first recall some notation from Section 2.3. For fixed 0 < θ < 1/2, we

write ξ̃(x) := ξ(x) if ξ(x) < f((1− θ) log |V |), and ξ̃(x) := 0, otherwise. For any

z ∈ V , let λ̃(z) denote the principal eigenvalue of the “single peak” Hamiltonian

κΔV + ξ(z)δz + ξ̃V (1 − δz ) in l2(V ). As in (2.13), let λ̃K,V denote the Kth

extreme order statistics of the random field λ̃V . For κ = 0 and 0 < ε < θ, we
know from Theorem 3.1(i)(R = 0) that with probability one λ̃k,V ≡ ξk,V for all
1 � k � |V |ε and all large V . For any κ � 0, we are interested in the asymptotic

behavior of the minimum of the gaps λ̃k,V − λ̃k+1,V (1 � k � |V |ε) defined by

SV,ε := min
{
λ̃k,V − λ̃k+1,V : 1 � k � |V |ε

}
.

Given a constant μ > 0, we say that the function F : R → R is log-Hölder
continuous of order μ > 0 at infinity, if F satisfies the following condition:

|F (t+ s)− F (t− s)| | log s|μ = O(1)

as t → ∞ and s ↓ 0 simultaneously.
(4.7)
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Theorem 4.8 (Cf. (2.15)). Let tQ = ∞, κ � 0 and 0 < ε < θ < 1/2, and
assume that the distribution tails e−Q are log-Hölder continuous of order μ > 0
at infinity. For κ > 0, assume additionally that ef ∈ RV∞. Then almost surely

limsup
V

log{− log(S
V,ε

∧ 1)}
log |V | � 1 + ε

μ
.

Proof. The assertion follows from Lemmas 3.5 and 4.3 in (Astrauskas, 2008)
and Theorem 3.1(ii) above, where R = 0 and 0 < θ < 1/2.

In (Astrauskas, 2003), the results of Theorem 4.8 are extended to the Gaus-
sian random fields with correlated values.

We end this section with some generalization of Theorem 4.3(iii) for the
functions f ∈ OAΠp (4.3) associated with Weibull type distributions 1− e−Q,
where Q(t) 
 tp+1 as t → ∞.

Theorem 4.9 (Cf. Lemma 4.2 in (Astrauskas, 2013)). For some p � 0, assume
that f ∈ OAΠp (4.3). Then, for arbitrarily fixed constants K ∈ N, 0 < ε < 1
and any sequence {nV } ⊂ N such that nV = O(|V |ε), we have the following
limits in probability:

(i) ξnV ,V 
 (log |V |)1/(p+1)
as |V | → ∞,

and

(ii) 0 < liminf
V

min
K+1�l�|V |ε

ξpl,V (ξK,V
− ξ

l,V
)

1

log l

� limsup
V

max
K+1�l�|V |ε

ξpl,V (ξK,V − ξ
l,V

)
1

log l
< ∞.

Proof. Assertion (i) follows from a combination of the formula ξ
k,V

= f(η
k,V

),

Lemma 4.1(ii) and the limit f(s) 
 s1/(p+1) as s → ∞ (the latter follows from
Lemma A.8(iii) with a(·) ≡ const ). Assertion (ii) is shown by combining the
formula ξ

k,V
= f(η

k,V
) and Lemmas 4.1(ii), A.8(iii) similarly as in the proof of

Theorems 4.3 and 4.5 above.

5. Neighboring effects for extremes of i.i.d. random fields

We finally study the asymptotic properties of ηV -values neighboring to ηV -peaks.
It is then straightforward to extend the results for η(· ) to ξ(· ) = f(η(· )).

The following lemma tells us that, for fixed y �= 0 and for small ε > 0,
asymptotic properties of the random variables η(z

k,V
+ y) (1 � k � |V |ε) and

their extremes are the same as in the case of exponential i.i.d. random variables.

Lemma 5.1. For fixed y ∈ Z
ν\{0}, 0 < ε < 1/2 and a sequence of integers

K := KV = O(|V |ε), the following assertions hold true.

(i) limV P
(
η(z

K,V
+ y) > t

)
= e−t for all t � 0.
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(ii) If, in addition, K := K
V
→ ∞, then

lim
V

P
(

max
1�l�K

η(z
l,V

+ y)− logK � t
)
= exp{− e−t} for all t ∈ R.

(iii) lim
M→∞

limsup
V

∣∣∣ max
M�l�|V |ε

η(z
l,V

+ y)

log l
− 1

∣∣∣ = 0 in probability.

Proof. Here and in the sequel, we need the following key statement (which is
frequently used in (Astrauskas, 2013) as well).

Lemma 5.2. Fix a finite subset U ⊂ Z
ν\{0}, U �= ∅, and a sequence of

nonrandom real functions {Dl(tU ) : t
U

∈ R
|U |} (l ∈ N). Abbreviate η(z; l) :=

Dl({η(z+x) : x∈U}) for z ∈ Z
ν and l ∈ N. Finally, pick a sequence of integers

K := KV = O(|V |ε) for some 0 < ε < 1
2 . Then, for any V and any t ∈ R,

∣∣∣∣P(
max

1�l�K
η(z

l,V
; l) � t

)
−

K∏
l=1

P(η(0; l) � t)

∣∣∣∣ � 3|V |−const,

where const > 0 does not depend on V and t.

Now, part (i) of Lemma 5.1 follows from Lemma 5.2 with U := {y}, where
DK(t

U
) ≡ ty and Dl(tU ) ≡ 0 for l �= K. Part (ii) follows from Lemma 5.2, where

Dl(tU ) ≡ ty (l ∈ N), combined with Lemma 4.1(i). Finally, by Lemma 5.2 with
Dl(tU ) ≡ ty/ log l (l � 2), we derive that, for any small δ > 0,

limsup
V

P

(
max

M�l�|V |ε
η(z

l,V
+ y)

log l
> 1 + δ

)
�

∞∑
l=M

e−(1+δ) log l → 0

and

limsup
V

P

(
max

M�l�|V |ε
η(z

l,V
+ y)

log l
< 1− δ

)
�

∞∏
l=M

(
1− e−(1−δ) log l

)
= 0

as M → ∞, i.e., assertion (iii) of Lemma 5.1 is proved.

Proof of Lemma 5.2. Fix a constant θ ∈ (ε, 1
2 ), so that K := KV � 1

2 |V |θ for
each V ⊃ V0. Write LV := (1−θ) log |V |. Denote by EV ⊂ V the subset consisting
of sites at which η(·) exceeds the level L

V
, and let r(EV ) be the minimum

distance among sites in EV ; cf. the notation at the beginning of Section 3. We
abbreviate by I the intervals (−∞, t] or (t,∞), where t ∈ R. Further, pick δ to
satisfy 0 < δ < (1− 2θ)/ν. Now

P

(
max

1�l�K
η(z

l,V
; l) ∈ I

)
� P

(
max

1�l�K
η(z

l,V
; l) ∈ I, 2−1|V |θ � |EV | � 2|V |θ, r(EV ) > |V |δ

)
+P

(
|E

V
| < 2−1|V |θ

)
+ P

(
|E

V
| > 2|V |θ

)
+ P

(
r(E

V
) � |V |δ

)
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=: p(I) + p(1) + p(2) + p(3).

Using the continuity of exponential distribution, similarly as in the proof of
Theorem 3.1(ii)–(iv) with R = 0 and 0 < θ < 1/2, we obtain that p(i) �
|V |−const for some const > 0. Thus, to show the assertion of Lemma 5.2, we
need to check that

p(I) � P

(
max

1�l�K
η(x̃

l
; l) ∈ I

)
+ |V |−const1 (5.1)

for a fixed (nonrandom) subset Ṽ := {x̃
l
: 1 � l � K} ⊂ Z

ν such that r(Ṽ ) >
|V |δ.

Let
∑

V ′ be the sum over all subsets V ′ ⊂ V with the properties: 1
2 |V |θ �

|V ′| � 2|V |θ and r(V ′) > |V |δ. We denote by
∑

{xl}
the sum over all permuta-

tions x1, . . . , x|V ′| of the subset V ′. Write pV : = |V |θ−1. Then, for V ⊃ V0 ,

p(I) �
∑
V ′

∑
{xl}

P

(
max

1�l�K
η(x

l
; l) ∈ I,

η(x1) � η(x2) � . . . � η(x|V ′|) � LV , max
x∈V \V ′

η(x) < LV

)
�

∑
V ′

∑
{xl}

P

(
max

1�l�K
η(x

l
; l) ∈ I, η(x1) � η(x2) � . . . � η(x|V ′|) � LV ,

max{η(x) : x ∈ V
∖
((V ′ + U) ∪ V ′)} < L

V

)
, (5.2)

where V ′ + U denotes the algebraic sum of the subsets V ′ and U . Since all the
random variables are mutually independent, the double sum on the right-hand
side of (5.2) is equal to

P

(
max

1�l�K
η(x̃l; l) ∈ I

) ∑
V ′

p
|V ′|
V (1− p

V
)|V |−(|U |+1)|V ′|

� P

(
max

1�l�K
η(x̃l; l) ∈ I

)
+ const |V |2θ−1 (V ⊃ V0),

since |V ′|p
V


 |V |2θ−1 via the notation. This completes the proof of (5.1).
Lemma 5.2 is proved.

We now turn to the case ξ(· ) = f(η(· )).
Theorem 5.3 (Cf. (2.10)). Fix y ∈ Zν\{0} and K ∈ N. Then

limsup
V

∣∣ξ(zK,V + y)
∣∣ < ∞ in probability .

Proof. The assertion follows from Lemma 5.1(i).

To the end of this section, let us fix constants 0 < ε < θ < 1/2. With L
V,θ

as

in Section 3, we write ξ̃(x) := ξ(x) if ξ(x) < L
V,θ

, and ξ̃(x) := 0, otherwise. For
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natural K � 1 and l > K, we put

χ
K,V

(l) :=ξ2K,V

(
ξK,V + 2νκ2ξ−1

K,V − ξl,V

− κ2
∑
|x|=1

(
ξK,V − ξ̃(zl,V + x)

)−1
)
1{

ξ
K,V

>L
V,θ

}; (5.3)

here 1Ω′ := 1Ω′(ω) denotes the indicator of Ω′ ⊂ Ω. To study the asymptotic
behavior of variables (5.3), we introduce the class SAΠ2

∞ of functions f := Q←

such that

lim
s→∞

inf
a∈(c,θs)

(
f(s)2

(
f(s+ a)− f(s)

)
− f(2a)

c

)
= ∞

for any 0 < c < 1 and some 0 < θ < 1/2.

(5.4)

The class SAΠ2
∞ is a strict subset of AΠ2

∞ (4.1). The following theorem provides
some generalization of limit (4.4) for p = 2.

Theorem 5.4 (Cf. (2.11)). Fix K ∈ N. If f belongs to the classes SAΠ2
∞ (5.4)

and PI<2 (4.5) with ε and θ as above, then

lim
V

min
K+1�l�2|V |θ

χ
K,V

(l) = ∞ in probability.

Proof. We begin with estimating χ(l) := χK,V (l) for K + 1 � l � M ; M � M0.

Let Ω
(1)
V,M ∈ F denote the subset of configurations ξ

(ω)
V satisfying the following

three inequalities:

max
|x|=1

max
K�l�M

ξ(z
l,V

+ x) � f(2 logM), (5.5)

ξ
K+1,V

> 0 and
ξ̃(· )
ξ
K,V

�
L

V,θ

ξ
K,V

� const ′ < 1 (5.6)

for const ′ > const (ε) specified in Theorem 4.5. According to Lemma 5.1(ii)

and Theorem 4.5, we obtain that limsup V P(Ω\Ω(1)
V,M ) → 0 as M → ∞. On the

other hand, expanding the sum
∑

|x|=1 in (5.3) over powers of ξ̃(z
l,V

+ x)/ξK,V

with K + 1 � l � M , we get that, for any M � M0 and any V ⊃ V0(M), the
inequalities (5.5) and (5.6) imply the following estimate

min
K+1�l�M

χ(l) �
(
ξK,V

)2(
ξK,V − ξK+1,V

)
− const f(2 logM),

where const > 0 does not depend on V and M . From this implication and
Theorem 4.3(i) with p = 2, we obtain that, for any C > 0,

limsup
V

P
(

min
K+1�l�M

χ(l) � C
)

� limsup
V

P
(
Ω\Ω(1)

V,M

)
→ 0 (5.7)

as M → ∞.
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It only remains to estimate χ(l) := χ
K,V

(l) for M � l � 2|V |θ. Using formu-
las (1.23) and (1.24), we represent ξ

l,V
and ξ(z

l,V
+ x) in the form:

ξ
l,V

= f

(
log

|V |
l

+ ρ
V
(l)

)
and ξ(z

l,V
+ x) = f(η(z

l,V
+ x)),

where ρ
V
(l) := η

l,V
− log(|V |/l). Denote by Ω

(2)
V,M ∈ F the subset of configura-

tions ξ(ω)(·) = f(η(ω)(·)) satisfying (5.6) and the following three inequalities:

|ρ
V
(K)| � 1

3
logM, max

M�l�2|V |θ
|ρ

V
(l)| < 1 (5.8)

and

max
|x|=1

max
M�l�2|V |θ

η(z
l,V

+ x)

log l
<

3

2
. (5.9)

We then apply Lemma 4.1(ii) to ρ
V
(l) and Lemma 5.1(iii) to the left-hand side

of (5.9) to obtain that limsup V P(Ω\Ω(2)
V,M ) → 0 as M → ∞. We now write

ξ+ := ξ ∨ 0 and note that, for any M � M0 and any V ⊃ V0(M), inequalities
(5.6), (5.8) and (5.9) imply the following estimate:

min
M�l�2|V |θ

χ(l)

� min
M�l�2|V |θ

[
ξ2K,V

(
ξK,V − ξl,V

)
−const

∑
|x|=1

ξ+(zl,V
+x)

]

� min
M�l�2|V |θ

[
f

(
log

|V |√
M

)2(
f

(
log

|V |√
M

)
− f

(
log

|V |
l

+ 1

))

− const′f

(
3

2
log l

)]
. (5.10)

Using this implication combined with the fact that, by condition (5.4), the right-
hand side of (5.10) tends to infinity as |V | → ∞, we obtain that, for any C > 0,

limsup
V

P

(
min

M�l�2|V |θ
χ(l) � C

)
� limsup

V
P
(
Ω\Ω(2)

V,M

)
→ 0

as M → ∞. This limit and (5.7) yield the assertion of Theorem 5.4.

6. Poisson limit theorems for the largest eigenvalues

This section is to provide an overview of current results on the extreme value
theory for the spectrum of the Anderson Hamiltonian HV = κΔV +ξV , V ↑ Z

ν ,
with an i.i.d. potential ξ(·). The results under consideration are taken from (As-
trauskas and Molchanov, 1992), (Astrauskas, 2007; 2008; 2012; 2013), (Bishop
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and Wehr, 2012), (Germinet and Klopp, 2013), (Gärtner and Molchanov, 1998)
and (Biskup and König, 2016).

In Section 6.1, we give Poisson limit theorems for the largest eigenvalues and
the corresponding localization centers, provided the distribution tails e−Q of
ξ(0) are heavier than the double exponential function (Theorems 6.2 and 6.9).
These limit theorems are then complemented and illustrated by the distributions
with polynomially decaying tails, Weibull distributions and those with fractional
double exponential tails (resp., Examples 6.11, 6.12 and 6.13).

In Section 6.2, we first give the second order expansion formulas for the
largest eigenvalues, provided the tails e−Q are lighter than the double exponen-
tial function (Theorem 6.14). For bounded ξ(0), further extensions of this result
are discussed.

Section 6.3 provides the second order expansion formulas for the principal
eigenvalue in the case of double exponential tails (Theorem 6.19), which are
further extended up to Poisson limit theorems for eigenvalues.

In Section 6.4, we comment and compare the proofs of Poisson limit theorems
stated in Sections 6.1 and 6.3. We mention, en passant, that Theorems 6.2, 6.9,
6.14 and 6.19 simply follow from the corresponding results of Sections 2–5.

6.1. Distribution tails heavier than the double exponential function

The extreme value theory for i.i.d. random variables ξ(x) deals with the asymp-
totic behavior of the Kth largest values ξ

K,V
of the sample ξV as V ↑ Z

ν . It
is well known that for suitable normalizing constants aV > 0 and bV , the non-
trivial limiting (max-stable) distributionsG(· ) for P

(
(ξ

1,V
−b

V
)a

V
�·

)
are either

Weibull law Dβ(t) := exp
{
−(−t)β

}
(t < 0) or Fréchet law Gβ(t) = exp{−t−β}

(t � 0) for some β > 0, or Gumbel law Gexp(t) = exp{− e−t} (−∞ < t < ∞);
see, e.g., (Resnick, 1987). Note that the weak convergence of maxima to Gumbel
law is equivalent to the limit

lim
V

|V |P
(
ξ(0) > bV + t/aV

)
= e−t for all t ∈ R. (6.1)

On the other hand, limit (6.1) implies that the point processN ξ
V on [−1/2; 1/2]ν×

R, defined by

N ξ
V :=

∑
z∈V

δΞ
V
(z) where Ξ

V
(z) :=

(
z|V |−1/ν , (ξ(z)− b

V
)a

V

)
, (6.2)

converges weakly (as V ↑ Z
ν) to the Poisson process on [−1/2; 1/2]ν × R with

the intensity measure dx × e−td t, i.e., the product of Lebesgue measure on
[−1/2; 1/2]ν and that defined by the increasing function logGexp(·) on R; see
(Leadbetter et al., 1983).

The necessary and sufficient conditions for (6.1) to hold are generally formu-
lated in terms of Γ-variation of the function eQ at the right endpoint tQ or,
equivalently, in terms of Π-variation of its inverse f◦log (Resnick, 1987). We say
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that f := Q← is in the class AΠ, if there exists a function a : (−∞; tQ) → R+

such that

lim
s→∞

f(s+ c)− f(s)

a(f(s))
= c for any c ∈ R+. (6.3)

Here a(·) is called an auxiliary function. The class AΠ (6.3) is an argument-
additive version of the original class of Π-varying functions f ◦ log considered,
e.g., in (Resnick, 1987, Section 0.4.3). In Lemma A.1 of Appendix A, we recall
the well-known characterization of the class AΠ in terms of Q.

Lemma 6.1 (Resnick, 1987, Sections 0.4.3 and 1.1). Limit (6.1) holds true if
and only if f ∈ AΠ for some auxiliary function a(·). In this case, the normalizing
constants can be chosen b

V
= f(log |V |) and a

V
= 1/a(b

V
).

We now formulate Poisson limit theorems for the largest eigenvalues λK,V of
the random Schrödinger operator HV = κΔV + ξV introduced in Section 2.1.
Throughout this subsection, we assume that ef ∈ RV∞, so that logQ(t) = o(t)
as t → ∞ by Lemma A.3 with ρ = ∞. This class of distributions includes
Weibull distributions (1.5) for arbitrary α > 0 and those with fractional double
exponential tails (1.8) with γ < 1. Using the notation from Section 4.3, for fixed

small 0 < θ < 1/2, we write ξ̃(x) := ξ(x) if ξ(x) < L
V,θ

:= f((1−θ) log |V |), and
ξ̃(x) := 0, otherwise. For any z ∈ V , denote by λ̃(z) the principal eigenvalue of

the “single peak” Hamiltonian κΔV + ξ(z)δ
z
+ ξ̃V (1− δ

z
). Let λ̃K,V be the Kth

order statistics of the stationary random field λ̃(·) in V , and let zτ(K),V ∈ V

stand for its location defined by λ̃(zτ(K),V ) := λ̃K,V . (Recall that the sites
z
l,V

∈ V (1 � l � |V |) are associated with the variational series (1.1) based

on ξV .) Note that, for Z := zτ(K),V and K ∈ N fixed, the eigenvalues λ̃(Z) are

expanded into a certain power series in the variables ξ(Z) and ξ̃(x) (x ∈ V );
cf. (2.20)–(2.22).

Theorem 6.2 (see Theorem 4 in (Astrauskas, 2007) and Theorem 5.2 in (As-
trauskas, 2008)). Let tQ = ∞ and ef ∈ RV∞, and assume that e−Q is log-
Hölder continuous of order μ>(1+θ)ν/(1−2θ) at infinity for some small θ > 0
as above, i.e., (4.7) holds true. Then the following assertions (I)–(II) hold true:

(I) (Poisson limit theorem) Assume, additionally, that there exist the normal-
izing constants AV > 0 and BV such that

lim
V

|V |P(λ̃(0) > B
V
+A−1

V t) = e−t for any t ∈ R, (6.4)

and define the point process N λ
V on [−1/2; 1/2]ν × R by

N λ
V :=

|V |∑
k=1

δΛ
V
(k) where Λ

V
(k) :=

(
z
τ(k),V

|V |1/ν ,
(
λ

k,V
−B

V

)
A

V

)
; (6.5)

then N λ
V converges weakly to the Poisson process N on [−1/2; 1/2]ν × R

with the intensity measure dx× e−td t.
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(II) (Exponential localization) Fix a constant ε such that 0 < ε < θ and write
MV := log(L

V,ε
− L

V,θ
) (so that MV → ∞); then with probability one

limsup
V

max
1�K�|V |ε

max
x �=zτ(K),V

log
∣∣ψ(x;λ

K,V
)
∣∣

M
V
|x− z

τ(K),V
| � −1. (6.6)

Sketch of the proof of Theorem 6.2(I). Using Theorem 4.6 with ρ = ∞, Theo-
rems 3.1 and 4.8 with R = 0 and 0 < ε < θ < 1/2, we obtain that almost
surely ξV satisfies the assumptions of Theorem 2.3, where K ∈ N is fixed
and N := [|V |θ]. Theorem 2.3 implies that almost surely λK,V = λ̃K,V +
O

(
exp{−|V |(1+θ)/μ}

)
as |V | → ∞, for fixed K ∈ N. This asymptotic formula

in turn yields that the point process N λ
V is approximated by the correspond-

ing point process Ñ λ
V where λ

k,V
are replaced by λ̃k,V (1 � k � |V |); see the

proof of Theorem 4 in (Astrauskas, 2007). The weak convergence of Ñ λ
V to N

is shown by checking Leadbetter’s mixing conditions for the random field λ̃(·)
(Astrauskas, 2007, Lemma 6). This concludes the proof of the theorem.

In Corollaries 6.3–6.7 below, we give the alternative conditions on Q (where
logQ(t) = o(t)) for the Poisson convergence of the largest eigenvalues to hold.

Corollary 6.3 (Specification of the normalizing constants A
V

> 0 and B
V

in (6.4) for some examples of potential distributions). Let Q(t) = tα for t � 0
where α > 0 (Weibull distribution), or Q(t) = et

γ

for t � t0; 0 < γ < 1 (frac-
tional double exponential distribution). Consequently, Q satisfies the regularity
and continuity conditions of Theorem 6.2. Moreover, the equations for the nor-
malizing constants AV > 0 and BV in (6.4) are derived by applying a certain

iteration scheme for λ̃1,V as in (2.20)–(2.22) combined with Laplace’s method for
the corresponding integrals (Astrauskas, 2008, Section 6), (Astrauskas, 2016);
see also (Astrauskas, 2013, Section 3). From these equations one derives the
explicit expansion formulas for B

V
and hence those for the eigenvalues λ

K,V
up

to the random max-stable fluctuations of order O(A−1
V ); cf. Examples 6.12 and

6.13 below.

Corollary 6.4. (Specification of the normalizing constants A
V

> 0 and B
V

in (6.4) under general RV conditions on potential distributions). Let tQ = ∞
and, for some large t0, assume that Q : [t0;∞) → R+ is (locally) absolutely
continuous with the positive density Q′ : [t0;∞) → R+ obeying the following
conditions:

lim
t→∞

Q′(t+ C)

Q′(t)
= 1 for any C > 0, (6.7)

and

liminf
t→∞

Q′(t) > 0. (6.8)

Consequently, the function Q satisfies the regularity and continuity conditions
of Theorem 6.2. Then the centralizing constants BV in (6.4) are defined by the
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equation:

P(λ̃(0) > B
V
) = |V |−1 (V ⊃ V0), (6.9)

and the normalizing constants AV > 0 in (6.4) and aV > 0, bV in (6.1) are
specified as follows:

AV = aV := Q′(bV ) where bV := f(log |V |) (V ⊃ V0). (6.10)

Therefore, for any t ∈ R and |V | → ∞,

|V |P
(
ξ(0) > bV +

t

aV

)
→ e−t and |V |P

(
λ̃(0) > B

V
+

t

aV

)
→ e−t, (6.11)

where

BV = bV + o(1). (6.12)

Corollary 6.4 ensures that both the distribution functions P(ξ(0) � t) =

1 − e−Q(t) and P(λ̃(0) � t) (t ∈ R) are in the domain of attraction of the
max-stable Gumbel law Gexp(·); cf. Lemma 6.1 and the assertions before this
lemma. Note also that the additional condition (6.8) is to exclude the heavy-
tailed (“subexponential”) distributions 1− e−Q which are considered in Theo-
rem 6.9(C0) and Example 6.11 below.

Proof of Corollary 6.4. We observe from Lemmas A.4(I) and A.3 with ρ = ∞
that conditions (6.7) and (6.8) imply the regularity and continuity conditions
of Theorem 6.2. Further, from Lemma A.4(III) and Lemma A.1 we derive that
f ∈ AΠ (6.3) with the auxiliary function a(·) ≡ 1/Q′(·) in [t0;∞); therefore, by
Lemma 6.1 we obtain the first limit in (6.11).

To prove the second limit in (6.11), we first notice that, for each V ⊃ V0, there
is a solution BV of equation (6.9) because of the continuity of the distribution

function of λ̃(0). Let us show (6.12). Since λ̃(0) � ξ(0), we get from (6.9) that

|V |−1 = P(λ̃(0) > B
V
) � P(ξ(0) > B

V
) = e−Q(BV ),

therefore, BV � bV = f(log |V |) for V ⊃ V0. If ξ(0) � LV,ε := f((1− ε) log |V |)
for some 0 < ε < θ, then we get from (2.20)–(2.22) that almost surely λ̃(0) �
ξ(0) + βV for some (nonrandom) 0 < βV ↓ 0 as |V | → ∞. Thus, for V ⊃ V0,

|V |−1 = P(λ̃(0) > B
V
) = P(λ̃(0) > B

V
, ξ(0) � L

V,ε
)

� P(ξ(0) > B
V
− βV ) = e−Q(BV −βV ),

therefore, BV � bV +βV = bV +o(1). These estimates imply (6.12), as claimed.
To prove the second limit in (6.11), we also need the following observations.
First, since liminf V aV > 0, it follows that limsup V |V |P(ξ(0) � b

V
+M) → 0
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as M → ∞. Second, for any M � M0 and any V ⊃ V0(M), if ξ(0) � b
V
−M ,

then λ̃(0) < b
V
−M/2. These two assertions imply that, for any t ∈ R,

|V |P
(
λ̃(0) > B

V
+ ta−1

V

)
= |V |P

(
λ̃(0) > B

V
+ ta−1

V , |ξ(0)− bV | < M
)
+ o

V,M
(1), (6.13)

where oV,M (1) → 0 letting first V ↑ Z
ν and then M → ∞. Thus, it suffices to

check that, for any t ∈ R, any M � M0(t) and V ↑ Z
ν ,

P
(
λ̃(0) > BV + ta−1

V , |ξ(0)− bV | < M
)

= e−t
P
(
λ̃(0) > BV , |ξ(0)− bV | < M

)
(1 + o(1)). (6.14)

To prove (6.14), we follow the arguments of the paper (Biskup and König, 2016,
Section 7.1) which are now simplified and adapted to our case logQ(t) = o(t).
(Recall that this paper considers the case of double exponential tails of potential,
i.e., logQ(t) ≈ t/ρ.) The main idea here is the observation that the shift of the

eigenvalue λ̃(0) by ta−1
V is achieved by the corresponding shift of the single

ξV -peak ξ(0) on the left-hand side of (6.14). Indeed, write ξ(t) := ξ(0) − ta−1
V ,

and denote by λ(t) the principal eigenvalue of the Hamiltonian κΔV + ξ(t)δ
0
+

ξ̃V (1−δ0) in l2(V ). Note that ξ(0) = ξ(0) and λ(0) = λ̃(0). Fix t � 0. Comparing

expansion formulas (2.20)–(2.22) for λ(t) with those for λ̃(0), we find that, for
any (small) ε > 0, any M � M0(t, ε) and any V ⊃ V0(M, t, ε),

if |ξ(0)− bV | < M, then λ(t+ε) � λ̃(0)− ta−1
V � λ(t);

therefore, we obtain the following bounds for the left-hand side of (6.14):

P
(
λ(t+ε) > B

V
, |ξ(t+ε) − bV | < M/2

)
� P

(
λ̃(0) > B

V
+ ta−1

V , |ξ(0)− bV | < M
)

(6.15)

� P
(
λ(t) > BV , |ξ(t) − bV | < 2M

)
.

Since ε > 0 is arbitrarily small, it suffices to prove limit (6.14) for the upper and
lower bounds in (6.15). We write λ(t)(ξV ) = λ(t) to emphasize the dependence
of λ(t) on the sample ξV = {ξ(x)}x∈V . Let us consider the functions λ(t)(sV )
of sV = {s(x)}x∈V ∈ R

|V | and the corresponding integrals on the right hand-
side of (6.15) with respect to the probability measure

∏
x∈V dF (s(x)); here

F := 1 − e−Q stands for the distribution function of ξ(0) with the density
p(·) := F ′(·) in [t0;∞). By the change of variables u(0) := s(0) − ta−1

V and
u(x) := s(x) for all x ∈ V \ {0}, we get that λ(t)(sV ) = λ(0)(uV ); therefore, for
fixed M > 0 and V ↑ Z

ν ,

P
(
λ(t) > B

V
, |ξ(t) − bV | < M

)
=

∫
R|V |

1{
λ(t)(sV )>BV ,|s(0)−ta−1

V −bV |<M
} ∏

x∈V

dF (s(x))
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=

∫
R|V |

1{
λ(0)(uV )>BV ,|u(0)−bV |<M

} p(u(0) + ta−1
V )

p(u(0))

∏
x∈V

dF (u(x))

= E

(
1{

λ(0)(ξV )>BV ,|ξ(0)−bV |<M
} p(ξ(0) + ta−1

V )

p(ξ(0))

)
(6.16)

= P
(
λ(0)(ξV ) > BV , |ξ(0)− bV | < M

)(
e−t + o(1)

)
by applying Lemma A.4(IV) to the ratio of the densities in the last expec-
tation (6.16) where aV = Q′(bV ). Formula (6.16) combined with (6.15) im-
plies (6.14) for t � 0, as claimed. Since the case t � 0 is treated similarly, this
concludes the proof of assertions of Corollary 6.4.

Corollary 6.5 (Suppression of the log-Hölder continuity of e−Q in Theo-
rem 6.2). Let tQ = ∞. Assume that ef ∈ RV∞, and let assumption (6.4)
be fulfilled with

AV = O
(
(LV,ε − L

V,ε′ )
|V |(1−2δ)/ν)

for some constants 0 < ε < ε′ < δ <
1

2
.

(6.17)

Then the point process N λ
V (6.5) converges weakly to the Poisson process N

as in Theorem 6.2(I) and, moreover, the Kth eigenfunction obeys exponential
localization (6.6) in probability.

To prove Corollary 6.5, we again apply Theorem 2.3. So we need to show that
the samples ξV satisfy limits (2.9), (2.14) and (2.15) in probability with the same
abbreviation as in the proof of Theorem 6.2. First, since the condition ef ∈ RV∞
implies (3.1) (see Lemma A.3 with ρ = ∞), we may apply Theorem 3.1(iv) with
R = 0 to obtain limit (2.9) with N = [|V |θ] where ε′ < θ < δ. Second, by
Theorem 4.6 with ρ = ∞, the condition ef ∈ RV∞ yields (2.14) with fixed
K ∈ N and N as above. It remains to prove limit (2.15) in probability with
those K and N . As mentioned in the proof of Theorem 6.2, assumption (6.4)

implies that the point process Ñ λ
V , based on the sample λ̃V , converges weakly

to the corresponding Poisson process. This convergence in turn yields that with
probability 1 + o(1) the normalized spacings A

V

(
λ̃

k,V
− λ̃

k+1,V

)
are bounded

away from zero as V ↑ Zν , for any fixed k ∈ N (Astrauskas, 2007, Corollary
1(jj)). Combining this with the upper bound (6.17) for AV and observing from
Lemma 4.2(iii) and Theorem 3.1(iv) (R = 0) that almost surely ξK,V − ξN,V �
L

V,ε
− L

V,ε′ and r
N,V

� |V |(1−2δ)/ν for any V ⊃ V0, we arrive at limit (2.15)

in probability with N = [|V |θ], as claimed. The assertions of Corollary 6.5 are
proved.

Corollary 6.6. (The second order expansion formula for the top eigenvalues).
Let again tQ = ∞, and ef ∈ RV∞. Assume, in addition, that f(s + log s) −
f(s) → 0 as s → ∞. Then, for fixed K � 1, with probability one

lim
V

(
λK,V − f(log |V |)

)
= lim

V

(
ξK,V − f(log |V |)

)
= 0.
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Notice that the additional condition of Corollary 6.6 is to exclude the heavy-
tailed (“subexponential”) distributions 1− e−Q, or in other words, the class of
i.i.d. potentials whose extremes possess sharp random fluctuations; see Lemma
4.4(iii).

Proof of Corollary 6.6. We first obtain from Theorem 3.1(iv) with R = 0 and
Theorem 4.6 with ρ = ∞ that the samples ξV (V ↑ Z

ν) satisfy almost surely
the conditions of Theorem 2.1(ii) and Remark 2.4 with N := [|V |θ] for some
0 < θ < 1/2. Thus, using the lower bound for λ

K,V
(Theorem 2.1(ii)) and the

almost sure limit (2.23) for λ1,V (Remark 2.4) combined with Theorem 4.4 (iii),
we arrive at the assertion of Corollary 6.6.

Corollary 6.7. (Localization centers). Assume that Q satisfies the conditions of
Theorem 6.2 on the regular increase (i.e. ef ∈ RV∞) and the log-Hölder continu-
ity at infinity. Then almost surely the eigenfunction ψ(· ;λ

K,V
) is asymptotically

delta-function at the site zτ(K),V ∈ V for eachK = o(|V |ε); see Theorem 6.2(II).
Consequently, any site zτ(k),V in (6.5) can alternatively be defined as a local-
ization center of the eigenfunction ψ(· ;λ

k,V
), viz.

ψ(z
τ(k),V

;λ
k,V

) := max
1�l�|V |

ψ(z
l,V

;λ
k,V

) for some τ(k) = τV (k), (6.18)

for all 1 � k � |V |.
The latter definition of the sites zτ(k),V in (6.5) is more natural in the context

of the localization theory for the Anderson Hamiltonians.
The asymptotic behavior of the localization indices τ(K) = τV (K) is studied

by Astrauskas (2013).

Lemma 6.8 (Astrauskas, 2013, Theorem 2.1). Assume that the condition of
Theorem 6.2 on the log-Hölder continuity of e−Q at infinity holds true. Fix
K ∈ N.

(i) If f ∈ OAΠ2 (4.3), then

limsup
V

τ
V
(K) < ∞ in probability.

(ii) If f ∈ AΠ2
0 (4.2) and ef ∈ RV∞, then

lim
V

τ
V
(K) = ∞ and lim

V

log τ
V
(K)

log |V | = 0 in probability.

Recall that, in Theorem 6.2 and Lemma 6.8, the condition ef ∈ RV∞ implies
logQ(t) = o(t) (see Lemma A.3 with ρ = ∞ ); the condition f ∈ OAΠ2 yields
Q(t) 
 t3 (see Lemma A.8(ii) with p = 2); finally, the condition f ∈ AΠ2

0 implies
t−3Q(t) → ∞ as t → ∞ (see Lemma A.7 with p = 2).

In the case Q(t) = o(t3) as t → ∞ (for example, Weibull distribution (1.5)
with α < 3), the eigenvalue λK,V approaches the Kth extreme value of ξV as
V ↑ Z

ν , for fixed K � 1. For such distributions, we obtain a simplified version
of Poisson limit theorems for the largest eigenvalues:
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Theorem 6.9 (see Theorem 5 in (Astrauskas, 2007) and Theorem 2.5 in (As-
trauskas, 2012)). Let tQ = ∞, and f ∈ AΠ (6.3) for some auxiliary function
a(·), and assume that either of the following conditions (C0)–(C2) holds true:

(C0) lims→∞ a(s) = ∞,
(C1) lims→∞ sa(s) = ∞ and f ∈ PI<2 (4.5)

or

(C2) f ∈ SAΠ2
∞ (5.4) and f ∈ PI<2. (4.5)

Write now bV := f(log |V |), AV = aV := 1/a(bV ) and

B
V
:=

{
bV , under conditions (C0) or (C1),

bV + 2νκ2b−1
V , under condition (C2).

Define the point process N λ
V on [−1/2; 1/2]ν × R by

N λ
V :=

|V |∑
k=1

δΛ
V
(k) where Λ

V
(k) :=

(
z
k,V

|V |1/ν ,
(
λ

k,V
−B

V

)
A

V

)
. (6.19)

Then N λ
V converges weakly to the Poisson process N on [−1/2; 1/2]ν × R with

the intensity measure dx× e−td t.

Sketch of the proof. Conditions (6.3) and (C0) imply that f ∈ AΠ0
∞ (4.1).

Therefore, by Theorem 4.3(i) with p = 0, the samples ξV satisfy the condition
of Theorem 2.2(i), consequently, λK,V = ξK,V +o(1) in probability as |V | → ∞,
for fixed K ∈ N. Similarly, (6.3) and (C1) imply that f is in the classes AΠ1

∞
(4.1) and PI<2 (4.5). Therefore, by combining Theorem 4.3(i) for p = 1, The-
orems 4.5 and 3.1(iv) with R = 0 and 0 < ε < θ < 1/2, we obtain that the
samples ξV satisfy the conditions of Theorem 2.2(ii) with N = [|V |θ]. Conse-
quently, λK,V = ξK,V + O(ξ−1

K,V ) in probability, for fixed K ∈ N. Using these
asymptotic expansion formulas for λK,V , we obtain that in the cases (C0) and
(C1) the point process N λ

V (6.19) is approximated by the corresponding point

process N ξ
V with ξ instead of λ; see the proof of Theorem 2.5(ii) in (Astrauskas,

2012). Since N ξ
V converges weakly to N (Leadbetter et al. 1983), this concludes

the proof of the theorem for (C0) and (C1).
In the case of (C2), we combine Theorem 4.3(i) for p = 2 and Theorems 4.5,

3.1(iv), 5.3 and 5.4 for R = 0 and 0 < ε < θ < 1/2, to find that the samples
ξV satisfy the conditions of Theorem 2.2(iii) in probability, with N and K as
above. Consequently, λK,V = ξ0K,V +O(ξ−2

K,V ) in probability, where ξ0K,V is the

Kth extreme value of the i.i.d. field ξ0(·) := ξ(·) + 2νκ2/(ξ(·) ∨ 1) in V . Using
this limit and applying the same arguments as above with ξ replaced by ξ0, we
obtain the assertion of the theorem in the case (C2).

From Lemmas A.6 and A.13 we know that condition (C0) (resp., (C1) or
(C2)) implies that Q(t) = o(t) (resp., Q(t) = o(t2) or Q(t) = o(t3)) as t tends
to infinity.
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The following corollary provides some limiting distributions for the top eigen-
values and the corresponding localization centers, which immediately follow
from the Poisson convergence results of Theorems 6.2 and 6.9; see (Astrauskas,
2007). We also refer the reader to (Leadbetter et al., 1983, Chapter 5) for a
detailed survey on Poisson limit theorems and their applications concerning the
extremal properties of random fields.

Corollary 6.10. (Eigenvalue statistics). Assume that the conditions of Theo-
rem 6.2 or Theorem 6.9 are fulfilled, with the normalizing constants A

V
> 0 and

BV specified herein. Then, for fixed K � 1 and V ↑ Z
ν , we have the following

assertions:

(i) The normalized spectral gaps

(λ
1,V

− λ
2,V

)A
V
, . . . , (λ

K−1,V
− λ

K,V
)A

V
, (λ

K,V
−B

V
)A

V

are asymptotically mutually independent and have limiting joint distribu-
tions with the density

exp
{
−t1 − · · · − (K − 1)tK−1 −KtK − e−tK

}
for all tk � 0 (1 � k � K − 1) and all t

K
∈ R.

(ii) The normalized localization centers

z
τ(1),V

|V |1/ν ,
z
τ(2),V

|V |1/ν , . . . ,
z
τ(K),V

|V |1/ν

are asymptotically mutually independent, and each of them is asymptoti-
cally uniformly distributed on [−1/2; 1/2]ν .

(iii) As a consequence of (ii), the distance between the localization centers is
of order |V |1/ν , i.e., for all 1 � l < k � K,∣∣z

τ(k),V
− z

τ(l),V

∣∣ 
 |V |1/ν in probability.

We now give three examples of distributions 1− e−Q, where logQ(t) = o(t).

Example 6.11 (Astrauskas, 2012). Polynomially decaying distributions. For
some β > 0, assume that f ◦ log ∈ RV1/β or, equivalently, eQ ∈ RVβ . The latter
is the sufficient and necessary condition for the distribution 1 − e−Q to be in
the domain of attraction of the max-stable Fréchet law Gβ(·), or equivalently,
the following limit holds true:

lim
V

|V |P
(
ξ(0) > tf(log |V |)

)
= t−β for all t ∈ R+;

see, e.g., (de Haan and Ferreira, 2006, Chapter 1). Since f ∈ AΠ0
∞ (4.1), from

Theorem 4.3(i) with p = 0 and Theorem 2.2(i) we see that λK,V = ξK,V + o(1)
in probability, for fixed K ∈ N. Using this limit and denoting BV ≡ 0 and
aV = 1/f(log |V |), we obtain similarly as in the proof of Theorem 6.9(C0)
that the point process N λ

V (6.19) converges weakly to the Poisson process on
[−1/2; 1/2]ν × R+ with the intensity measure βdx× t−β−1d t.
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Example 6.12 (Grenkova et al., 1990; Astrauskas and Molchanov, 1992; As-
trauskas, 2008). Weibull distributions. Let Q(t) = tα for t � 0, where α > 0. For
α � 1, the function Q satisfies conditions (6.7) and (6.8) of Corollary 6.4. For
α < 3, the inverse function f(s) := Q←(s) = s1/α (s � 0) satisfies conditions
(6.3) and (C2) of Theorem 6.9. Therefore, by Theorems 6.2, 6.9 and Corollary
6.4,

lim
V

|V |P
(
ξ(0) > bV +

t

aV

)
= lim

V
|V |P

(
λ̃(0) > B

V
+

t

aV

)
= e−t (t ∈ R).

Consequently, the point processes N ξ
V (6.2) and N λ

V (6.5) converge weakly to
the same Poisson process N as in Theorem 6.2, where the normalizing constants
can be chosen as follows: bV = (log |V |)1/α, AV = aV = Q′(bV ) = αbα−1

V and

(a) B
V
= b

V
if α < 2,

(b) BV = bV + 2νκ2b−1
V if 2 � α < 3

and, as |V | → ∞,

(c) BV = bV + 2νκ2b−1
V +O(b

−α+1
α−1

V ) if α � 3.

For α � 3, asymptotic equations for BV are given in (Astrauskas, 2008, Section
6).

In the case α < 1, we obtain the following almost sure asymptotic bounds
for the eigenvalues and their spacings for any fixed K ∈ N and m ∈ N\{1}:

limsup
V

|λ
K,V

− b
V
|a

V

log2 |V | =
1

K
,

liminf
V

(
log

(
(λ

K,V
−λ

K+1,V
)a

V

)
+

m−1∑
i=2

logi |V |
)/

logm |V |=−1

and

limsup
V

(
(λ

K,V
−λ

K+1,V
)a

V
− 1

K

m−1∑
i=2

logi |V |
)/

logm |V |= 1

K
,

with aV and bV as above; here logm := logm−1(log) for m � 2. For any α > 0,
these strong limits for ξ instead of λ are proved in (Astrauskas, 2006, Section
3). Therefore, the case of λ and α < 1 is derived by the same arguments as in
the proof of Theorem 6.9(C1) above, where one explores Theorem 4.4(i) (p = 1)
instead of Theorem 4.3(i).

Example 6.13 (Astrauskas, 2013; 2016). Distributions with fractional double
exponential tails. Let Q(t) = et

γ

for t � t0, where 0 < γ < 1. Obviously, Q
satisfies conditions (6.7) and (6.8) of Corollary 6.4, therefore,

lim
V

|V |P
(
ξ(0) > bV +

t

aV

)
= lim

V
|V |P

(
λ̃(0) > B

V
+

t

aV

)
= e−t (t ∈ R).
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Consequently, the point processes N ξ
V (6.2) and N λ

V (6.5) converge weakly to
the same Poisson process N as in Theorem 6.2; here

bV = (log log |V |)1/γ , AV = aV = Q′(bV ) = γbγ−1
V log |V |

and

BV = bV + c1
bγ−1
V

log bV
+ c2

bγ−1
V log log bV
(log bV )2

+ c3
bγ−1
V

(log bV )2
(
1 + o(1)

)
as |V | → ∞, where c1 := νκ2γ(1 − γ)−1, c2 := c1(γ − 1)−1 and c3 :=

c2 log
2(1−γ)

√
e

κγ . The last formula and the asymptotic equations for BV are de-

rived in (Astrauskas, 2016); see also (Astrauskas, 2013, Section 3).

6.2. Distribution tails lighter than the double exponential function

Throughout this subsection, we assume that the upper tails e−Q are lighter than
the double exponential function. This class of distributions includes fractional
double exponential tails (1.8) with γ > 1 and bounded tails (tQ < ∞).

We start with the second order asymptotic expansion formula for the largest
eigenvalues λ

K,V
of HV = κΔV + ξV .

Theorem 6.14. Let ef ∈ RV0, and fix K ∈ N. Then with probability 1

lim
V

(λ
K,V

− f (log |V |)) = 2νκ.

Proof. We apply part (i) of Theorem 3.1, where R ∈ N is fixed, θR(·) ≡ θ is a
constant, and m := |BR|. Thus, with probability one there is a ball BR(zV ) such
that ξ(·) � LV,θ in BR(zV ) for some θ ∈

(
m−1
m ; m

m+1

)
and each V ⊃ V0(ω;R).

Therefore, by Theorem 4.4(iii) and Lemma A.3(ii) with ρ = 0, almost surely

ξ(·)− ξ1,V � LV,θ − LV,0 + o(1) = o(1) uniformly in BR(zV ),

as |V | → ∞, for any R ∈ N. The latter means that with probability one the
samples ξV satisfy the condition of Theorem 2.6, therefore, λ

K,V
= LV,0+2νκ+

o(1), as claimed. Theorem 6.14 is proved.

From the proof of Theorems 2.6 and 6.14 we see that the top eigenvalue λ
K,V

of HV is approximated by the corresponding eigenvalue of the Hamiltonian
restricted to the (random) relevant regions Bopt := BRV

(zV ) ⊂ V where ξ(· ) is
close to ξ1,V and the diameter of which tends to infinity as |V | → ∞.

Bishop and Wehr (2012) have obtained more accurate asymptotic bounds for
the principal eigenvalue λ1,V of the one-dimensional Schrödinger operators in
V ⊂ Z, with the Bernoulli i.i.d. potential. In particular, their results imply the
following
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Theorem 6.15 (Bishop and Wehr, 2012). Let ν = 1, and suppose that the
random sequence ξ(·) has a common Bernoulli distribution: a = P(ξ(0) = 1)
and 1− a = P(ξ(0) = 0), so that tQ = 1. Then with probability one

λ
1,V

= tQ + 2κ+ (log |V |)−2(−D + o(1)) as V ↑ Z,

where D = D(κ, a) > 0 is the universal constant depending on κ and a.

In the proof of this theorem, the authors have established that almost surely
the relevant region Bopt ⊂ V is the longest consecutive sequence of sites in V
with ξ(·) equal to 1, so that the size of Bopt is of order log |V |. See, e.g., the
review paper by Binswanger and Embrechts (1994) for the strong and weak limit
theorems for the length |Bopt| as V ↑ Z.

Recently, Germinet and Klopp (2013) have proved the Poisson limit theorem
for the top eigenvalues under nonlinear renormalization, i.e., for the so-called
unfolded eigenvalues. Write, as above, N(λ) (λ ∈ R) for the integrated density
of states, i.e., the nonrandom distribution function of eigenvalues defined as the
almost sure limit of the empirical distribution function NV (λ) := #{k : λ

k,V
�

λ}/|V | as |V | → ∞ (Kirsch, 2008).

Theorem 6.16 (Germinet and Klopp, 2013, Theorem 2.3). Assume that HV

is the one-dimensional Anderson Hamiltonian (ν = 1), where the potential is
bounded (|ξ(0)| � const ) with the distribution density p(·) := e−Q(·)Q′(·). As-
sume, in addition, that the density p(·) is bounded and does not decay too fast

at tQ (say, p(t) = e−(tQ−t)o(1) or p(t) = e−(tQ−t)−ϑ

as t ↑ tQ, for 0 < ϑ < 1/2).
Define the point process Mλ

V on the positive half-axis R+ by

Mλ
V :=

|V |∑
k=1

δ|V |(1−N(λ
k,V

)).

Then Mλ
V converges weakly to the Poisson process on R+ with the intensity

measure d t, the Lebesgue measure.

For ν � 2, this Poisson limit theorem was shown to hold if the Laplacian Δ is
replaced by some translation invariant operator T ψ(x) =

∑
y∈Zν T (y)ψ(x− y),

where T (· ) is a real nonrandom function decaying exponentially at infinity.
The proof of Theorem 6.16 relies on the improved versions of Wegner and

Minami estimates that control the structure of eigenvalues λ
k,V

in a small neigh-
borhood I of the upper spectral edge, so the amount N(I) is allowed to be
exponentially small in |I|−1; see Section 1.3 for more explanations. See also
(Minami, 2007) for a detailed background of Poisson convergence results for
unfolded spectral values. It is important for applications that this convergence
result is given in terms of the integrated density of states, the main quantity
in the theory of random Schrödinger operators. However, in the proof of The-
orem 6.16, neither extreme value theory, nor links to the asymptotic geometric
properties of random potential are explored.
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Corollary 6.17. Assume that HV is the one-dimensional Anderson Hamilto-
nian (ν = 1), where the potential has the distribution density p(·) satisfying
the conditions of Theorem 6.16. Then, for fixed K � 1 and V ↑ Z, we have the
following asymptotic formulas in probability:

(i) If p(t) = e−(tQ−t)o(1) as t ↑ tQ, then

λ
K,V

= tQ + 2κ− (log |V |)−2+o(1).

(ii) If there is 0 < ϑ < 1/2 such that p(t) = e−(tQ−t)−ϑ

as t ↑ tQ, then

λ
K,V

= tQ + 2κ− (log |V |)−2/(1+2ϑ)+o(1).

Corollary 6.17 can be proved by using the limit theorems for the unfolded
eigenvalues and asymptotic expansion formulas for the tails 1−N(·) at the upper
spectral edge derived, e.g., in (Klopp, 1998; Biskup and König, 2001). See also
(Klopp, 2000) and Section 3.5 of (Kirsch and Metzger, 2007) for a detailed
discussion on the edge asymptotics of the integrated density of states. Thus,
the bifurcations in the asymptotic behavior of the top eigenvalues are caught by
those in the tail behavior of the integrated density of states, i.e. “Lifshits tails”.
Notice that the asymptotics in Corollary 6.17(i) agree with the results in the
Bernoulli case (Theorem 6.15). Meanwhile, if the tails e−Q decays faster at tQ,
then the fluctuations of λ

K,V
are much sharper (Corollary 6.17(ii)) than those

in the Bernoulli case (Theorem 6.15).
For the tails lighter than the double exponential function including the case

tQ < ∞, some heuristics on the asymptotic formulas for λ
1,V

(ν � 1) and their
relations to the long-time asymptotic formulas for the parabolic Anderson model
have earlier been discussed by Biskup and König (2001), and van der Hofstad
et al. (2006). Their assumptions are given in terms of scaling and regularity
properties of the cumulant generating function logE etξ(0) as t → ∞.

Recently, Biskup et al. (2014) have proved the “homogenized” versions of
limit theorems for the largest eigenvalues of the (scaled) finite-volume discrete
Schrödinger operators H(ε) with a bounded random potential. Their results as-
sert that, as the scale parameter ε tends to zero, then 1) the largest eigenvalues
of H(ε) converge in probability to the corresponding eigenvalues of the limiting
(nonrandom) finite-volume continuous Schrödinger operator, and 2) the fluctu-
ations of the largest eigenvalues centered by their means are Gaussian in limit.

We notice that the conditions of the above statements imply that
t−1 logQ(t) → ∞ as t ↑ tQ > 0 (see Lemma A.3 with ρ = 0 below).

We end this subsection with a discussion on the following important model
of spatially continuous random Schrödinger operators:

Example 6.18. (Schrödinger operators in R
ν with a bounded Poisson potential

of obstacles). Let Δcont be the ν-dimensional continuum Laplacian. Define the
random potential ξ(·) by

ξ(x) = −
∑
i

W (x+ xi) (x ∈ R
ν); (6.20)
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here {xi} is a Poisson point process in R
ν with the constant intensity μ > 0;W (·)

is a fixed nonnegative compactly supported, bounded measurable function,W (·)
is non-identically zero Lebesgue-a.e. The potential ξ(·) is known as a Poisson
field of “soft” obstacles. Denote by V := [−s; s]ν ⊂ R

ν the cubes of the volume
|V | such that V ↑ R

ν . Let us consider the principal Dirichlet eigenvalue λcont
1,V

< 0

of the operator Δcont + ξ(·) in V . The eigenvalue λcont
1,V

satisfies the following
asymptotic formula (e.g., Sznitman, 1998): As V ↑ R

ν , almost surely

λcont
1,V

= (log |V |)−2/ν(−C(ν, μ) + o(1)), (6.21)

where C(ν, μ) > 0 is the universal constant depending on ν and μ; see below.
Let us sketch a derivation of the lower bound for λcont

1,V
. By the monotonicity

property of eigenvalues, we have the bound λcont
1,V

� λ0
1,A, where λ0

1,A is the

local principal Dirichlet eigenvalue of the operator Δcont + ξ(·) restricted to the
obstacle-free connected open region A ⊂ V . We now maximize the eigenvalue
λ0
1,A over such A. First, since the probability of region A to have no points {xi} is

equal to e−μ|A| and the number of disjoint shifts of A is of order |V |, we obtain
from the Borel-Cantelli lemma that the volume |A| should be approximately
equal to μ−1 log |V |; cf. the proof of Theorem 3.1 above. On the other hand, we
have from the Faber-Krahn inequality that the principal Dirichlet eigenvalues
λ0
1,A of the Laplacian Δcont in regions A of the constant volume achieve their

maximum at the ball. Thus, λcont
1,V

� λ0
1,Bopt

(1 + o(1)), where λ0
1,Bopt

is the

principal Dirichlet eigenvalue of the operator Δcont in the ball Bopt := BRV
(zV )

centered at some random zV ∈ V with the radius RV :=
(
|B1|−1μ−1 log |V |

)1/ν
,

and |B1| is the volume of the unit ball B1 ⊂ R
ν . Consequently, as V ↑ R

ν , almost
surely

λcont
1,V

� λ0
1,Bopt

(1+o(1)) = R−2
V

(
λ0
1,B1

+ o(1)
)
= (log |V |)−2/ν(−C(ν, μ)+o(1)),

where C(ν, μ) := −λ0
1,B1

(|B1|μ)2/ν > 0. This lower bound can be shown to be

equal to the upper bound for λcont
1,V

, concluding the proof of (6.21). Notice also

that the rough upper bound for λcont
1,V

can be derived by using the spatially
continuous version of Lemma 2.8 above.

Summarizing, we conclude that the principal Dirichlet eigenvalue λcont
1,V

is

approximated, as V ↑ R
ν , by the local principal Dirichlet eigenvalue λ0

1;Bopt
of

the operator restricted to the relevant region Bopt := BRV
(zV ) ⊂ V , so that

λcont
1,V

↔ Bopt. These observations and formulas agree with the corresponding
formulas for the discrete Anderson models in Z with the Bernoulli i.i.d. potential
(Theorem 6.15).

As already mentioned, formula (6.21) and the more explicit asymptotic
bounds for the principal Dirichlet eigenvalue λcont

1,V
(V ↑ R

ν) were proved by
Sznitman (1998) exploring his original method of enlargement of obstacles. By
this method, the geometry of the spatial regions where ξ(·) > 0 and ξ(·) ≡ 0
is reduced to the simpler geometry of regions associated with the modified po-
tential in the spectral problems, without changing the eigenvalues very much.
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Finally, notice that the asymptotic bounds for the principal eigenvalues are cru-
cial for study of the intermittent behavior of a Brownian motion in a Poisson
field of obstacles; cf. Section 7 below.

6.3. The double exponential tails

In the double exponential case (1.14), Gärtner and Molchanov (1998, Theo-
rem 2.16) have obtained the second order expansion formula for the principal
eigenvalue λ1,V of HV = κΔV + ξV by claiming a continuity of Q. We now
provide their result with the continuity condition removed.

Theorem 6.19. If ef ∈ RVρ for some 0 < ρ < ∞, then with probability 1

lim
V

(λ1,V − f (log |V |)) = 2νκq(ρ/κ),

where the nonrandom function q is defined in Section 2.5.

Proof. We check the conditions of Theorem 2.7. First, by Theorem 4.7, almost
surely ξV satisfies condition (2.29). To prove (2.30), we fix constants R ∈ N,
δ > 0, and write

θ(y) := θR(y) := 1− exp
{(

hBR
opt(y)− δ

)
/ρ

}
(y ∈ BR),

where the nonrandom function hBR
opt(·) is defined in Section 2.5. Consequently,

θ(·) satisfies the assumptions of Theorem 3.1(i). Combining the statements of
Theorem 3.1(i), Lemma A.3(ii) and Theorem 4.4(iii), we obtain the following
assertion with probability one: for any V ⊃ V0(ω; δ,R) there is zV ∈ V such
that

ξ(y) � LV,θ(y−z
V
) � ξ1,V + hBR

opt(y − zV )− 2δ for all y ∈ BR(zV ).

Since R ∈ N and δ > 0 are arbitrary constants, this estimate concludes the
proof of the almost sure limit (2.30). Now, Theorems 2.7 and 4.4(iii) imply the
assertion of Theorem 6.19.

From the proof of Theorems 2.7 and 6.19 we see that almost surely the
eigenvalue λ1,V approaches (as |V | → ∞) the local principal eigenvalue in the

random region, where ξ(· ) ≈ ξ1,V + hBR
opt(· ) for R arbitrarily large, so that λ1,V

is associated with the (random) “relevant island” of high ξV -values of optimal
shape, the diameter of which is asymptotically bounded. From Theorem 3.1(iv),
Remark 3.5 and the last assertion of Lemma A.3, it follows that the “islands”
of ξV -extremes are located asymptotically far away from each other. Moreover,
if the constant ρ/κ is large enough, these “islands” are located in the neigh-
borhood of single extremely high ξV -peaks; see (Astrauskas, 2008, Theorem 4.4
and Corollary 4.5) and (Astrauskas, 2013, Theorem 2.1(iii)).

For arbitrary 0 < ρ < ∞, Poisson limit theorems for the largest eigenvalues
and the corresponding localization centers are proved by Biskup and König
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(2016); see also the survey by König (2016) on these limit theorems and related
topics. To formulate their result, we again define the sites zτ(k),V ∈ V by (6.18),
i.e., the localization centers of the kth eigenfunctions ψ(· ;λ

k,V
) (1 � k � |V |)

of the Hamiltonian HV = κΔV + ξV .

Theorem 6.20 (Biskup and König, 2016, Theorem 1.2). Let tQ = ∞, and
assume that Q is a continuously differentiable function such that

lim
t→∞

Q′(t)

Q(t)
=

1

ρ
for some 0 < ρ < ∞.

Then the following assertions (I) and (II) hold true:

(I) (Poisson limit theorem) There are constants BV = f(log |V |)+2νκq(ρ/κ)+
o(1) and AV = ρ−1 log |V | such that the point process N λ

V (6.5) converges
weakly to the Poisson process N on [−1/2; 1/2]ν × R with the intensity
measure dx× e−td t.

(II) (Exponential localization) As V ↑ Z
ν and K � 1 fixed, we have with

probability 1 + o(1) that there exist non-random constants C > 0, M > 0,
C ′ > 0 and M ′ > 0 such that

|ψ(x;λ
K,V

)| � C exp{−M |x− z
τ(K),V

|} for all x ∈ V,

and

|ψ(x;λ
K,V

)| � C ′ exp
{
−M ′(log log |V |)

∣∣x− z
τ(K),V

∣∣}
for |x− z

τ(K),V
| � log |V |,

i.e., the Kth eigenfunction is highly concentrated in the neighborhood of
its localization center.

For sufficiently large ρ, i.e. ρ > ρ0, Poisson limit theorems and localiza-
tion theorems for the top eigenvalues were earlier proved by Astrauskas (2007;
2008; 2013). For ρ > ρ0, the corresponding localization properties present an
interesting intermediate case between the single site concentration property, i.e.
λK,V ↔ z

τ(K),V
, in the case ρ = ∞ (Theorem 6.2(II)) and the non-single site

concentration property, i.e. λK,V ↔ B
K
opt, for 0 � ρ < ρ0 (Section 6.2 and

Theorem 6.20).

From Remark A.5(i) and Lemma A.3, we notice that the conditions of Theo-
rem 6.20 imply ef ∈ RVρ, i.e., the assumption of Theorem 6.19. Moreover, from
Remark A.5(ii), Lemma A.1 and Lemma 6.1 with a(·) ≡ 1/Q′(·) we also see
that the conditions of Theorem 6.20 yield the limit (6.1) with bV = f(log |V |)
and aV = AV = ρ−1 log |V |. Consequently, the distribution 1 − e−Q is in the
domain of attraction of the max-stable Gumbel law Gexp(·). We finally notice
that the conditions of Theorem 6.19 or Theorem 6.20 imply the limit f(s) =
(ρ+ o(1)) log s as s → ∞, which in turn is equivalent to logQ(t) = ρ−1t+ o(t)
as t → ∞; see Lemma A.3.
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6.4. Some comments on the proofs

In this section, we briefly comment and compare the proof of Theorems 2.2,
2.3, 6.2, and 6.9 by Astrauskas and Molchanov (1992) and Astrauskas (2007;
2008; 2012; 2013) (“relevant single peak” approximation) and the proof of The-
orem 6.20 by Biskup and König (2016) (“relevant island” approximation).

(RSP) “Relevant single peak” approximation. As already mentioned in Sec-
tion 1.2, the proof of Theorems 2.2, 2.3, 6.2, and 6.9 is based on the finite-rank
perturbation arguments and the analysis of Green functions involving the cluster
expansion over paths. To be more precise, fix Z := zτ(K),V ∈ V , the localization
center of the Kth eigenfunction, and denote by λ(Z) the extreme eigenvalue

of HV = κΔV + ξV associated with the site Z. Let G(Z)
V (λ; · , · ) be the Green

function of the Hamiltonian κΔV + (1− δZ)ξV on l2(V ). Under the conditions
of Theorem 2.2 or 2.3 (i.e. sparseness and difference in height of ξV -peaks as
V ↑ Z

ν), the eigenvalue λ(Z) is a solution to the dispersion equation

G(Z)
V (λ;Z,Z) =

1

ξ(Z)
(6.22)

and the corresponding eigenfunction is G(Z)
V (λ(Z); · , Z). By expanding the Green

function G(Z)
V (λ; · , · ) over paths, one proves that equation (6.22) is approximated

by the corresponding equation G̃V (λ;Z,Z) = 1/ξ(Z) for the principal eigenvalue

of the “single peak” Hamiltonian κΔV + ξ̃V +ξ(Z)δZ ; here G̃V (λ; · , · ) stands for
the Green function of the operator κΔV + ξ̃V . Again expanding G̃V (λ; · , · ) over
paths, one finds that the eigenvalue λ(Z) of HV is approximated by a certain

(nonlinear) function on ξ̃V and ξ(Z); cf. (2.20)–(2.22). Moreover, because of the
sparseness of ξV -peaks, the extreme eigenvalues λ(Z) become asymptotically
independent, so that they obey asymptotic Poisson behavior as V ↑ Z

ν (see
Theorems 6.2 and 6.9).

We notice that the analysis of the Green functions combined with the finite-
rank perturbation theory is essential to study the largest eigenvalues of the
finite-volume operators HV in the “relevant single peak” approximation. Recall
that these techniques also play a crucial role in the proof of the Anderson local-
ization for the infinite-volume Hamiltonian H (Kirsch, 2008; Stolz, 2011); see
also Section 1.3 above.

(RI) “Relevant island” approximation. Recently, Biskup and König (2016)
have developed novel arguments to prove Poisson limit theorems for the largest
eigenvalues in the case of double exponential tails (see Theorem 6.20 above). As
in the single-peak approximation, the analysis of the extreme eigenvalues is here
based on controlling the dependence of an eigenvalue on the geometric proper-
ties of ξV -peaks and the associated regions in V . This enables to identify the
“relevant” regions BK

opt := BRV
(zKV ) ⊂ V (where ξ(· ) is high and of the optimal

shape) such that the Kth largest eigenvalue λK,V of κΔV + ξV is approximated
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by the local principal eigenvalue λ1,BK
opt

of the Hamiltonian restricted to l2(BK
opt)

(cf. also Theorems 2.7 and 6.19 and their proofs in the present survey). In other
words, the eigenvalues associated with a block of “relevant islands” of high
ξV -values can be determined by the local principal eigenvalues associated with
separate “relevant islands”. It is worth noticing that the conditions of Theo-
rem 6.20 imply that the islands of high ξV -values are located extremely far from
each other as V ↑ Z

ν . (See also Theorem 3.1 for the related limits under the
continuity assumption (3.1)). The proof of Theorem 6.20 involves the follow-
ing procedures on a simplification of potential configurations: 1) those regions,
where the potential possesses the lower values, are deleted from V (domain trun-
cation and component trimming); 2) for the radius RV tending to infinity slowly,
the analysis of the local principal eigenvalues in all balls BRV

(z) ⊂ V is reduced
to the consideration of independent identically distributed local principal eigen-
values in disjoint balls in V (coupling to i.i.d. variables); 3) the local principal
eigenvalue in the region B

K
opt is separated from other local eigenvalues in B

K
opt

(reduction to one eigenvalue per component); 4) extremal type limit theorems
for the local principal eigenvalues in BRV

(z) are comparable to each other for
the different increase rate of RV → ∞, with the same normalizing constants AV

and BV (stability with respect to partition side), and so on.
Summarizing, the main idea of the proof of Theorem 6.20 explores the straight-

forward geometric arguments controlling the dependence of eigenvalues on po-
tential configurations, rather than the techniques of resolvents or Green func-
tions. This is in contrast to the relevant single peak approximation in (RSP),
where the Green functions are the main object of analysis. On the other hand,
although most of the proof of Theorem 6.20 is based on deterministic arguments,
we are not able to reformulate this assertion in terms of ξV -extremes (like in
Theorems 2.2–2.7 above), except for the case of sufficiently large ρ considered
in (Astrauskas, 2008, Theorem B.3).

7. Applications to the parabolic Anderson model

7.1. The parabolic Anderson model

The parabolic Anderson model (PAM) is the Cauchy problem for the following
heat equation with random potential:

∂u(s, x)

∂s
=κ

∑
|y|=1

(u(s, x+y)−u(s, x))+ξ(x)u(s, x), s � 0, x ∈ Z
ν ,

u(0, x) = δ0(x), x ∈ Z
ν ;

(7.1)

here, as above, ξ(·) is an i.i.d. random field (potential) with distribution
P(ξ(0) > t) = e−Q(t); δ0 is the Kronecker delta function at the origin (i.e.,
the localized initial datum of the problem); the variable s � 0 is referred to as a
time. The equation has almost surely a unique nonnegative solution, provided
ξ(0) ∨ 0 has a finite moment of order > ν (Gärtner and Molchanov, 1990).
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The PAM appears in the context of population dynamics, chemical kinetics,
magnetism and turbulence, etc. (e.g., Gärtner and Molchanov, 1990; Molchanov,
1994). The following interpretation of the solution u is well-known in the math-
ematical literature (e.g., Molchanov, 1994): Let (X(s) : s � 0) be a continuous-
time random walk in Z

ν with a generator κΔdif , where Δdifψ(x) :=∑
|y−x|=1(ψ(y) − ψ(x)). Let ξ+(·) � 0 and ξ−(·) � 0 be independent ran-

dom i.i.d. fields on Z
ν , and write ξ(·) := ξ+(·) − ξ−(·). For a fixed realization

(ξ+(·); ξ−(·)), consider a system of particles which obey the following diffusion
and branching mechanism:

1) at time s = 0, there is a single particle at the origin;
2) particles move independently of each other according to the random walk

X(·);
3) at the site x a particle disappears with intensity ξ−(x) and splits into two

new particles with intensity ξ+(x), which further move according to X(·).
Then, for a fixed realization (ξ+(·); ξ−(·)), the solution u(s, x) to (7.1) is the
expected number of particles at the site x at time s, where the expectation is
taken over a branching mechanism and diffusion (but not over random medium
ξ+(·), ξ−(·)). Thus, the sum U(s) :=

∑
x∈Zν u(s, x) is the expected total mass

of particles at time s. We see from the Feynman-Kac formula (7.2) below that
U(s) is equal to U(s, 0), where U(s, ·) is the solution to equation (7.1) with the
homogeneous initial datum U(0, ·) ≡ 1 instead of the localized one.

For i.i.d. random potentials, the PAM exhibits an intermittency effect: As
s → ∞, the overwhelming contribution to the total mass U(s) =

∑
x u(s, x) of

the solution u to (7.1) comes from a small number of spatially separated and
relatively small islands of large u(s, ·)-values, i.e., intermittent islands. This is
in contrast to the case of constant potential ξ(·) ≡ const , for which the solution
u(s, ·) is spread over the spatial ball of radius O(

√
s) as s → ∞, i.e., diffusion

effect.
Various aspects of long-time intermittent behavior of the PAM (asymptotic

expansion formulas for the total mass U(s) and its statistical moments, concen-
tration properties for the solutions u(s, ·), etc.) have been intensively studied,
during the last two decades, by mathematicians Molchanov, Gärtner, Sznit-
man, König, Biskup, Mörters, den Hollander, Sidorova, van der Hofstad, and
their colleagues. See (König, 2016) for a recent survey on the subject and ref-
erences therein. The main technical tools of intermittency theory are a spectral
representation and the Feynman-Kac formula for the solutions u, U . Recall the
latter formula:

u(s, x) = Ex

[
exp

{∫ s

0

ξ(X(a)) da

}
u(0, X(s))

]

= Ex

[
exp

{∫ s

0

ξ(X(a)) da

}
δ0 (X(s))

]
, s � 0, x ∈ Z

ν ; (7.2)

here the expectation Ex is taken with respect to the random walk X(·) in Z
ν as

above, conditioned by X(0) = x. Looking at (7.2), we see that the intermittent
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behavior is determined by competition between two factors: (i) extremely large
exponential factor in (7.2) associated with a portion of the trajectoriesX[0; s] :=
(X(a) : 0 � a � s) spending much time at spatial regions where ξ(·) is high,
and (ii) very small probabilities of such trajectories in (7.2). In the model, the
potential necessitates concentration properties of u; meanwhile, the Laplacian
forces these properties to be less expressed. It turns out that, as the upper tails
of potential distribution get heavier, the ξV -extremes get more pronounced as
V = V (s) ↑ Z

ν (cf. Section 1.2); therefore, the long-time intermittent properties
(in particular, mass concentration properties) of the PAM become stronger. In
(Gärtner and Molchanov, 1998; Gärtner and den Hollander (1999); Gärtner et
al., 2007), the emphasize has been made on the double exponential tails (1.14).
Such tails indicate the critical situation between formation of widely-spaced
single peaks of u(s, · ) in the case of tails heavier than in (1.14) (e.g., Gärtner
et al., 2007; König et al., 2009; Sidorova and Twarowski, 2014; Fiodorov and
Muirhead, 2014), and formation of widely-spaced extremely large “islands” of
higher values in the behavior of u(s, · ) for the tails lighter than in (1.14) (Biskup
and König, 2001; van der Hofstad et al., 2006). The results of these papers
suggest that the optimal strategy of particles is to move quickly to the spatial
region where the potential values are high and of preferred shape, and to stay
here for the remaining time.

In this section, we will focus on the representation of the solutions u and
U in the spectral terms of the Anderson Hamiltonian HV = κΔV + ξV where
V = V (s) ↑ Z

ν . In view of this representation, we will discuss some techniques
of the extreme value theory for eigenvalues, which can be applied to study
intermittent properties of the PAM; cf. Theorems 7.1–7.2 below.

7.2. Asymptotic expansion formulas for the total mass

The first result in this direction was obtained by Gärtner and Molchanov (1998),
who particularly derived the second-order asymptotic formula for the logarithm
of the total mass U(s) (s → ∞) with probability one (and, as a by-product, the
corresponding result for the principal eigenvalue of the operator HV ), provided
the potential distribution satisfies mild RV conditions and has all positive expo-
nential moments finite; cf. the assumptions of Theorem 7.1 below. Let us sketch
the proof of the almost sure asymptotic formula for the PAM following the ar-
guments of their paper. The first key observation is that the solutions u and U
are approximated, as s → ∞, by their finite-volume analogues u

V (s)
and U

V (s)
,

respectively. I.e., u
V (s)

and U
V (s)

are solutions to the corresponding equations
in V (s) with the Dirichlet boundary condition; here V (s) ⊂ Zν denote cubes
centered at the origin, whose size length is of order s(log s)c for some constant
c > 1. In particular, almost surely

U(s) = U
V (s)

(s) + o(1) and u(s, x) = u
V (s)

(s, x) + o(1) as s → ∞ (7.3)

uniformly in x, by using the standard cut-off procedure for the solutions u and
U , based on the following facts: 1) the overwhelming asymptotic contribution to
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the Feynman-Kac representation of u and U is given by trajectories X(·) which
stay inside the box V (s) during the whole time interval [0, s] i.e. X[0; s] ⊂ V (s);
and 2) the contribution from trajectories X(·) visiting the complement of V (s)
during the time interval [0, s] is much smaller. On the other hand, the solution
uV with V := V (s) admits the spectral representation

u
V
(s, x) =

|V |∑
k=1

eλk,V
s−2νκsψ(0;λ

k,V
)ψ(x;λ

k,V
) for each s � 0 and x ∈ V,

(7.4)

and, therefore, the total mass U
V
(s) =

∑
x∈V u

V
(s, x) has the following repre-

sentation

U
V
(s) =

|V |∑
k=1

eλk,V
s−2νκs(ψ(· ;λ

k,V
), 1

)
V
ψ(0;λ

k,V
) for each s � 0; (7.5)

here
(
ψ,ϕ

)
V

denotes the inner product of the functions ψ and ϕ in l2(V ),
and 1 stands for the function taking everywhere value 1. Recall that λ

k,V
and

ψ(· ;λ
k,V

) are the kth eigenvalue and the corresponding eigenfunction of the
Hamiltonian HV = κΔV + ξV . Moreover, the eigenfunctions are chosen to form
an orthonormal basis of l2(V ), and the principal eigenfunction to be strictly
positive in V . We may also assume, without loss of generality, that ψ(0;λ

k,V
) � 0

for all k.
Let us prove that the main asymptotic contribution to the logarithm of UV (s)

in (7.5) comes from the first term associated with the principal eigenvalue, and
the contribution from the other terms is asymptotically negligible. Looking at
(7.5) and applying the Cauchy-Schwarz inequality and Parseval’s identity, we
easily obtain the upper bound

UV (s) � eλ1,V
s−2νκs

√
|V | (7.6)

for each s � 0 and each V . To derive the lower bound for U(s), one needs more
sophisticated arguments: Let V = V (s) denote centered cubes of side length of
order s(log s)−c for some c > 1, and the site z1 ∈ V as a localization center
of the principal eigenfunction of the operator HV = κΔV + ξV . Recall the
Feynman-Kac representation for U(s):

U(s) = E0

[
exp

{∫ s

0

ξ(X(a)) da

}]
, s � 0,

so that U(s) � U(s), where U(s) is the same expectation E0[·] when restricted
to the particle trajectories X[0; s] ⊂ V (s), which initially move from the origin
to the site z1 until time 1, then stay in V (s) time interval of length s − 1, at
the end of which the particles return to z1 and the remaining time move freely.
Assuming that ξ(·) is bounded from below (so percolation effects of very low
values of ξ(·) are neglected), we obtain from the strong Markov property that
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U(s) = v(s − 1, z1) e
o(s) almost surely, where v(s, x) is the expectation over

trajectories in V (s) starting from x ∈ V (s) and ending at z1 during the time
interval [0; s], viz.

v(s, x) = Ex

[
exp

{∫ s

0

ξ(X(a)) da

}
1 {X[0;s]⊂V (s)}δz1

(X(s))

]
.

Thus, v(s, ·) is the solution to equation (7.1) in V (s) with the initial datum δ
z1

instead of δ0 . Using the spectral representation for v(s− 1, z1) (where all terms
are nonnegative!) combined with the previous estimates, we finally obtain the
lower bound for U(s): As s → ∞, almost surely

U(s) � v(s− 1, z1) e
o(s) � eλ1,V s−2νκs+o(s)ψ(z1;λ1,V )

2

� eλ1,V s−2νκs+o(s)|V (s)|−1 = eλ1,V s−2νκs+o(s).

From this formula and (7.6), we get that almost surely

λ
1,V (s)

− 2νκ+ o(1) � s−1 logU(s) � λ
1,V (s)

− 2νκ+ o(1) as s → ∞.

Applying the almost sure asymptotic formulas for the principal eigenvalue λ
1,V

in Corollary 6.6 (ρ = ∞), Theorem 6.19 (0 < ρ < ∞) and Theorem 6.14 (ρ = 0)
of the present paper, we can now derive the corresponding asymptotics for the
total mass U(s):

Theorem 7.1 (Gärtner and Molchanov, 1998; Section 2.1). Let essinf ξ(0) >
−∞. Assume that f := Q← satisfies the following RV conditions: there is a
constant 0 � ρ � ∞ such that ef ∈ RVρ and, additionally, f(a+log a)−f(a) →
0 as a → ∞. Then with probability 1

logU(s)

s
= f(ν log s)− 2νκ(1− q(ρ/κ)) + o(1) as s → ∞. (7.7)

Here the nonrandom constants q(ρ) are specified in Section 2.5; in particular,
q(ρ) are strictly decreasing in ρ; q(0) = 1 and q(∞) = 0.

Recall that the condition ef ∈ RVρ with 0 < ρ < ∞ (resp., ρ = ∞ and ρ = 0)
ensures the double exponential upper tails (1.14) (resp., heavier and lighter
upper tails than the double exponential) of the potential distribution 1− e−Q;
see Lemma A.3 of Appendix A. The additional RV condition of the theorem
is to exclude heavy-tailed distributions of potential. Therefore, the first term
on the right-hand side of (7.7) is equal (with the accuracy o(1)) to the largest
values of the potential in V (s); see Theorem 4.4(iii). The second term describes
the shape of the potential in the neighborhood of its maxima and is specified
by deterministic variational principles; see Section 2.5. From Sections 1.2, 2
and 6, we know that the principal eigenvalue λ

1,V (s)
of the operator HV (s) =

κΔV (s) + ξV (s) is approximated (as s → ∞) by the local principal eigenvalue in
the connected region Aopt(s) ⊂ V (s) where the potential ξV (s) possesses high
values of a particular preferred shape. The logarithmic asymptotics of U(s) is
therefore fully specified by these high values of the potential.
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Gärtner and Molchanov (1998) derived also the second-order expansion for-
mulas for statistical moments of the total mass U(s) as s → ∞. For the upper
distributional tails of ξ(0) lighter than the double exponential, Biskup and König
(2001), van der Hofstad et al. (2006) obtained more accurate expansion formulas
for statistical moments and almost sure behavior of U(s). The spatial correlation
structure for the PAM was investigated by Gärtner and den Hollander (1999).
See also (Molchanov and Zhang, 2012) for the Anderson parabolic model with
Δdif replaced by the fractional Laplacian −(−Δdif)

θ, 0 < θ < 1, where the
potential has Weibull type tails. In these papers, refined variational arguments
were involved to obtain additional information on intermittent islands of solu-
tions u(s, ·) and the asymptotic structure of related ξV (s)-extremes (their size,
optimal shape, etc., as s → ∞). See also (König, 2016) for a recent survey on
the subject.

Van der Hofstad et al. (2008) considered the case of i.i.d. potentials with
heavy upper tails, i.e., polynomially decaying (Pareto) distributions and Weibull
distributions (1.5) with α < 1. Thus, all positive exponential moments of the
potential are infinite, in contrary to the assumptions of Theorem 7.1. For such
classes of potentials, they proved extremal type limit theorems and almost sure
asymptotic bounds for the logarithm of the total mass U(s).

7.3. Asymptotic concentration formulas

However, the rough asymptotic expansion formulas for the PAM (like in The-
orem 7.1) provide only appropriate information on the geometric structure of
intermittent islands of the solutions u(s, ·) to (7.1). Recall that the intermittent
islands are formed by those highly concentrated u(s, ·)-values which give the
main contribution to the total mass U(s) =

∑
x u(s, x), and the contribution

from the complement of these islands is negligible as s → ∞. Recently, there has
been a considerable attention to the following mathematical problems regarding
a geometric characterization of intermittency effect:

1) description of the shape and location of intermittent islands;
2) description of the shape of potential values which generate intermittent

islands;
3) specification of the minimal number of these islands, etc.

Thus, taking into account (7.3), one needs to prove the following concentra-
tion formula for the total mass U(s): As s → ∞,

U(s) ∼ U
V (s)

(s) ∼
n(s)∑
k=1

∑
x∈Ak

opt(s)

u(s, x) (7.8)

in the sense of asymptotic equivalence almost surely or in probability, where
A

k
opt(s) are believed to present random connected regions (i.e. intermittent is-

lands) in V (s) at a large distance from each other, such that the diameter of each
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A
k
opt(s) is much smaller than this distance; n(s) are relatively small numbers,

and V (s) ↑ Z
ν are centered cubes as above.

Let us give a heuristic explanation of formula (7.8) in the spectral terms of
the operator HV = κΔV + ξV in V = V (s), provided the conditions of Theo-
rem 7.1 are fulfilled. To this end, we need more careful inspection of spectral
representation formulas (7.4)–(7.5), by applying extreme value theory for eigen-
values including Poisson limit theorems and localization properties discussed in
Sections 1.2, 2, and 6. First, notice that the exponents of the top eigenvalues
are essentially larger than those associated with lower eigenvalues. Therefore, it
suffices to consider the sum of a few first terms of (7.4)–(7.5) associated with
the largest eigenvalues λ

k,V
, 1 � k � n := n(s); the other terms in (7.4)–(7.5)

associated with the lower eigenvalues are asymptotically negligible. Thus, the
random field u(s, ·) (s → ∞) may be interpreted as a superposition of a few wave
functions ψ(· ;λ

k,V
) for 1 � k � n. The general theory of Anderson localization

suggests that the kth eigenfunction ψ(· ;λ
k,V

) is exponentially localized at the
s-dependent center z

τ(k),V
∈ V , and it is highly concentrated in a s-dependent

neighborhood A
k
opt ⊂ V of the site z

τ(k),V
. The regions A

k
opt ⊂ V possess a

relatively small size and are asymptotically far from each other according to
Poissonian behavior of the localization centers z

τ(k),V
|V |−1/ν ; k � 1. Moreover,

ξ(·) possesses in A
k
opt the deterministic optimal shape specified by the varia-

tional principles; cf. Section 2.5. From these observations when applied to (7.4)
as s → ∞, we see that the function

eλk,V
s−2νκsψ(0;λ

k,V
)ψ(·;λ

k,V
)

is a very good approximation for uV (s, ·) in the region A
k
opt for each 1 � k � n.

This in turn suggests that the mass concentration formula (7.8) holds true,
where V = V (s) ↑ Zν as above, n = n(s) are relatively small numbers, and
A

k
opt ⊂ V are the relevant regions defined above. Thus, the intermittent islands

A
k
opt(s) have relatively small size and are far away from each other as s → ∞.

This concludes the heuristic explanation of formula (7.8).
Gärtner et al. (2007) proved the concentration formula (7.8) almost surely, for

potential distributions satisfying the conditions of Theorem 7.1 with 0 < ρ � ∞,
i.e., the double exponential upper tails and heavier than the double exponen-
tial. They showed that almost surely n(s) = so(1), and the connected regions
A

k
opt(s) ⊂ V (s) are asymptotically bounded only when defined properly (see

above), and the distance between them is of order s1−o(1). For ρ = ∞, the re-
gions A

k
opt(s) shrink to singletons. Moreover, the shape of the solutions u(s, ·)

and potential values in A
k
opt(s) are specified (via the variational formulas) by

the local principal eigenfunction and the principal eigenvalue in A
k
opt(s). This

agrees with the heuristics given above; cf. also Sections 1.2, 2, and 6 treat-
ing the extreme value theory for eigenvalues of the Hamiltonian HV . However,
the proof of the asymptotic concentration becomes complicated by applying
straightforwardly the asymptotic results for the top spectrum of HV , because
of the possibly different signs of the kth eigenfunctions in (7.4)–(7.5) where the
factor ψ(0;λ

k,V
) should be also taken into account. Instead, the authors explore
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the Feynman-Kac formulas for u(s, ·), U(s) as well as for the principal eigenfunc-
tions with a slightly modified potential. To prove the exponential decay of the
principal eigenfunctions, they apply a decomposition technique for the trajec-
tories of the random walk in the corresponding Feynman-Kac representations.

Sznitman (1998) earlier proved similar mass concentration results for a Brow-
nian motion in R

ν among Poisson obstacles; here the potential ξ(·) is given by
formula (6.20). In particular, the spatial regions A

k
opt(s) ⊂ R

ν in (7.8) were
shown to have no obstacles and unboundedly increase almost surely as s → ∞.
The optimal strategy of the Brownian particle during the time period [0; s] is to
move quickly to one of the obstacle-free regions A

k
opt(s) of the optimal shape,

i.e. the ball of radius const (log s)1/ν , and to stay here for the remaining time.
Notice that the intermittent behavior of this model is rather similar to that
of the spatially discrete PAM with the potential bounded from above. The re-
lated asymptotic results for the principal Dirichlet eigenvalues are discussed in
Example 6.18 of the present survey.

However, in (Gärtner et al., 2007) and (Sznitman, 1998), the problem of the
minimal number of intermittent islands was not considered. This problem in
precise setting was solved by several mathematicians for Pareto distributions

P(ξ(0) > t) = e−Q(t) = t−β (t � 1) (7.9)

with β > ν, and Weibull distributions (1.5) with arbitrary α > 0. Recall that
the choice of β > ν in (7.9) is to guarantee the existence and uniqueness of the
solution u(s, ·) to equation (7.1). Write, as above, U(s) :=

∑
x u(s, x) for the

total mass.

Theorem 7.2 (e.g., König et al., 2009; Sidorova and Twarowski, 2014; Fiodorov
and Muirhead, 2014). Assume that the potential has either Pareto distribution
with β > ν, or Weibull distribution (1.5) with arbitrary α > 0 . Then there
exists a random process Zopt(s) (s � 0) with values in Zν such that

lim
s→∞

u (s, Zopt(s))

U(s)
= 1 in probability. (7.10)

This theorem states the complete localization property for u(s, ·) as s → ∞,
which is the strongest case of mass concentration formula (7.8) in probability
with n(s) ≡ 1 and A

1
opt(s) ≡ {Zopt(s)}, a singleton.

For the Weibull distribution with 0 < α < 2, asymptotic formula (7.10) was
proved by Sidorova and Twarowski (2014). This result was extended by Fiodorov
and Muirhead (2014) to an arbitrary α > 0. See also (Muirhead and Pymar,
2014) for the proof of the single-site concentration property for a random walk in
a random environment (instead of the standard random walk like in the PAM)
for the Weibull-distributed i.i.d. potential.

Earlier, König et al. (2009) proved (7.10) for the Pareto-distributed potential.
They also established a two-site concentration property for the PAM: Almost
surely U(s) ∼ u(s, Z(1)(s)) + u(s, Z(2)(s)) as s → ∞, where Z(k)(s) are distinct
random processes with values in Z

ν . I.e., one obtains (7.8) with probability one,
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where n(s) ≡ 2, A1
opt(s) and A

2
opt(s) are two singletons. This is the strongest

almost sure version of the localization property, since for i.i.d. random potentials,
the random field u(s, ·) is asymptotically concentrated on at least two distinct
sites in Z

ν . The reason of this fact lays on the observation that the localization
sites are changing infinitely often as s → ∞; thus, at very rare time moments
when particles move from the previous localization site to a new one, the mass
of particles should be concentrated on at least two different sites.

We recall from Sections 3–5 of the present survey that, for potential distri-
butions as in Theorem 7.2, the ξV -peaks are strongly pronounced as V ↑ Z

ν ;
therefore, the single-site concentration formula, no surprise, holds true according
to the general picture of intermittency based on the Feynman-Kac formulas. On
the other hand, for such potential distributions, there is a very precise extreme
value theory for eigenvalues of the operators HV = κΔV + ξV , which can (and
does) provide powerful techniques for the investigation of single-site concentra-
tion properties; cf. Sections 1.2, 2.2–2.3 and 6.1. See also (König, 2016) for a
recent survey on the subject.

Let us sketch the proof of Theorem 7.2 for the Weibull-distributed potentials
by applying the extreme value theory for eigenvalues. We follow the terminology
and ideas of (Fiodorov and Muirhead, 2014). First, one obtains finite-volume
approximation formulas (7.3) with “good” accuracy, where V = V (s) are cen-
tered cubes in Z

ν with the size length of order s(log s)1/α. Then, let us look
at the spectral representation formulas (7.4) and (7.5) for uV (s, ·) and UV (s).
Because of the factor

(
ψ(· ;λ

k,V
), u(0, ·)

)
V

= ψ(0;λ
k,V

) � 0 (1 � k � |V |) in
(7.4), we need to study the penalised spectrum

Ψ(s; k) := λk,V + s−1 logψ(0;λ
k,V

)− 2νκ (1 � k � |V |)

instead of the usual Spect (HV ) =
{
λ

k,V
: 1 � k � |V |

}
. Let us rewrite uV (7.4)

in the terms of the penalised spectrum Ψ(s) := {Ψ(s; k) : 1 � k � |V |}:

u
V
(s, x) =

|V |∑
k=1

esΨ(s;k)ψ(x;λ
k,V

) (x ∈ V ). (7.11)

For 1 � l � |V |, denote by Ψ
l,V

(s) the lth largest value in the sample Ψ(s). It
will turn out that the gap Ψ1,V (s)−Ψ2,V (s) between the the first largest Ψ1,V (s)
and the second largest Ψ

2,V
(s) in Ψ(s) is sufficiently large; and moreover, the

eigenfunctions ψ(·;λ
k,V

) decay exponentially (so that ψ(0;λ
k,V

) > 0), for each
k � |V |ε with ε > 0 small enough; cf. also Theorem 6.2, Corollary 6.10 and
Example 6.12 of the present paper. We shall prove that the right-hand side of
(7.4)–(7.5) is dominated by just one term associated with Ψ1,V (s); therefore,
the localization center of the corresponding eigenfunction should be the con-
centration site for the random field uV (s, ·) as s → ∞. To be more precise, let
λopt := λ

k∗,V
and ψopt(·) denote the eigenvalue and eigenfunction of the op-

erator HV associated with the first largest value Ψ
1,V

(s) among the penalised
spectrum Ψ(s), i.e.

Ψ1,V (s) = λk∗,V + s−1 logψopt(0)− 2νκ;
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here k∗ < |V |ε with ε > 0 small enough. Let Zopt(s) ∈ V stand for the local-
ization center of the eigenfunction ψopt(·). Also, for random processes Y (s) and
W (s), we write Y (s) ≈ W (s) as s → ∞, if the difference Y (s) − W (s) tends
to zero sufficiently fast in probability. Using this abbreviation and applying
Cauchy-Schwarz inequality for eigenfunctions in (7.11), we obtain that

max
x

∣∣∣∣ uV (s, x)

esΨ1,V
(s)

− ψopt(x)

∣∣∣∣ � |V | exp {−s (Ψ1,V (s)−Ψ2,V (s))} ≈ 0,

therefore, for the total mass UV (s) we have that∣∣∣∣ UV (s)

esΨ1,V
(s)

− (ψopt, 1)V

∣∣∣∣ � |V |2 exp {−s (Ψ1,V (s)−Ψ2,V (s))} ≈ 0,

as s → ∞. Consequently,

uV (s, Zopt(s))

UV (s)
≈ ψopt(Zopt(s))

(ψopt, 1)V
≈ 1

as s → ∞, because of the sharp exponential decay of ψopt(·). Since u(s, ·) ≈
uV (s, ·) in V and U(s) ≈ UV (s), the last formula implies (7.10), as claimed.

However, the penalised spectral values are too complicated to handle. In order
to study the spacings of the largest values in Ψ(s) as well as further properties
of the concentration site Zopt(s), one needs a good approximation for Ψk,V (s)
by a simpler function on potential configurations. To this end, we introduce the
following auxiliary quantities: Write J := [(α − 1)/2] (= the integer part) for
α � 1, and J = 0 otherwise. Given z ∈ V , let λ(J)(z) denote the principal
eigenvalue of the single-peak Hamiltonian

κΔV +
∑

y : 1�|y−z|�J

ξ̃(y)δy + ξ(z)δz on l2(V ).

I.e., λ(J)(z) is the local principal eigenvalue on the lattice ball of radius J with

a single ξV -peak at z surrounded by the island of lower ξV -values. Let λ
(J)
k,V :=

λ(J)(zτ(k),V ) denote the kth largest value of the sample {λ(J)(z) : z ∈ V }. We
now observe from Section 6.1 of the present survey that the eigenvalue λk,V

is approximately equal to the local eigenvalue λ
(J)
k,V , i.e., λk,V ≈ λ

(J)
k,V as V =

V (s) ↑ Z
ν and k < |V |ε with ε > 0 small enough. This observation and more

careful inspection of the exponential decay of the kth eigenfunction ψ(·;λ
k,V

) at
the origin (cf. Astrauskas, 2008; Section 6) suggest that, with high probability,
the Kth largest value Ψ

K,V
(s) of the penalised spectrum Ψ(s) is approximately

equal to the Kth largest value Υ
(J)
K,V (s) of the penalisation functional

Υ(J)(s, z) := λ(J)(z)− |z|
s

· log log s
α

− 2νκ (z ∈ V ). (7.12)

Comparing the penalised spectral values to (7.12), we observe, in addition,
that the quantity α−1 log log s = log bV (s) + O(1) is the nonrandom rate of
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the exponential decay of the kth eigenfunction ψ(·;λ
k,V

) described in Propo-
sition 1.3; moreover, logψ(0;λ

k,V
) asymptotically behaves like −|z

τ(k),V
| log bV

as V ↑ Zν . Recall also that, for each z ∈ V , the eigenvalue λ(J)(z) is a certain
(nonlinear) function of the sample {ξ(z + x) : 0 � |x| � J}; cf. (2.20)–(2.22).
Now the concentration site Zopt(s) can be defined as the maximizer of the
random field Υ(J)(s, ·) in V ; here Υ(J)(s, z) is a certain function of both the
sample {ξ(z + x) : 0 � |x| � J} and the site z. Similarly as in Theorem 6.2
above, one obtains Poisson limit theorems for the (normalized) penalisation
functionals Υ(J)(s, ·) and their locations. This limit theorem implies the limit-
ing distributions for the normalized concentration site Zopt(s) as well as for the

spacings Υ
(J)
K,V (s) − Υ

(J)
K+1,V (s) of the random field Υ(J)(s, ·) in V . The latter

in turn implies the existence of a sufficiently large gap between the largest val-
ues in the penalised spectrum Ψ(s), as claimed. This assertion concludes the
heuristic proof of the single-site concentration property (7.10) of the solution
u(s, ·).

As stated in (Fiodorov and Muirhead, 2014), the above considerations are
a starting point in obtaining more information on the asymptotic behavior of
the concentration site Zopt(s) and the shape of potential in its neighborhood as
s → ∞, provided the random potential has Weibull distributions. In particu-
lar, Poisson limit theorems for the penalisation functional (7.12) imply that the
site Zopt(s) ∈ V (s) is of order s up to logarithmic corrections and has the lim-
iting distribution as a product of univariate Laplace distributions. Recall also
that the random field Υ(J)(s, ·) has the finite range (=J) of dependency; see
(Fiodorov and Muirhead, 2014) where J is called as the radius of influence. For
sufficiently heavy tails (Weibull distributions with α < 2), the eigenvalue λ(J)(z)
in (7.12) may be replaced by ξ(z), so that Υ(J)(s, z) (z ∈ V ) are independent
non-identically distributed random variables. (Recall that the case α < 2 was
studied in (Sidorova and Twarowski, 2014) by exploring the Feynman-Kac rep-
resentations). These observations are crucial for describing the shape of ξ(·) in
the neighborhood of the concentration site Zopt(s): As s → ∞, with probability
1 + o(1) the single peak ξ (Zopt(s)) is extremely high:

ξ (Zopt(s)) = b
V (s)

(1 + o(1)),

where b
V

:= (log |V |)1/α; cf. Example 6.12 above. Meanwhile, the neighboring
values ξ(x) (1 � |x− Zopt(s)| � J) are essentially lower: there exists a strictly
decreasing nonrandom function d(·) : [1; J ] �→ [0; 1) such that

ξ (x) 
 bd(|x−Zopt(s)|)
V (s)

for 1 � |x− Zopt(s)| � J.

This characterization of the concentration site Zopt(s) agrees with the asymp-
totic results for the largest eigenvalues λ

K,V
and eigenfunctions ψ(· ;λ

K,V
) of

the Hamiltonian H
V

= κΔV + ξV as V ↑ Zν and K � 1 fixed, provided ξ(0)
has Weibull distribution; cf. Sections 1.2, 2.2–2.3, and 6.1 of the present pa-
per. In particular, let us look at the asymptotic expansion formulas for λ

K,V

(Example 6.12) to observe that the leading term bV comes from an isolated
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high peak ξ(z
τ(K),V

); meanwhile, the further terms of order o(1) come from

the neighboring values ξ(x) (1 �
∣∣x− z

τ(K),V

∣∣ � J) with the same influence
radius J as in the PAM above; cf. also (Astrauskas, 2008; Section 6). More-
over, the eigenfunction ψ(· ;λK,V ) is highly concentrated at the site z

τ(K),V
,

the localization center (cf. Theorem 6.2(II)); and the neighboring values ξ(x)
(1 �

∣∣x− z
τ(K),V

∣∣ � J) have significant influence on the asymptotic behavior
of the localization index τ(K) = τV (K) and on the concentration degree of
ψ(· ;λ

K,V
) in the neighborhood of z

τ(K),V
; see (Astrauskas, 2013). These obser-

vations suggest the following conclusion: the lighter are the tails of potential,
the larger is the influence radius in both models; thus, the weaker are the lo-
calization properties of both models, PAM and (time-independent) Anderson
Hamiltonian.

It is worth mentioning, at the heuristic level of rigor, that Section 2 (resp.,
Section 6) of the present paper exhibits all classes of “typical” configurations
of the potential (resp., RV classes of potential distributions) which are thought
to guarantee certain concentration properties for the solutions u to equation
(7.1). For instance, the results of Sections 2.3 and 6.1 (i.e., “relevant single-
peak” approximation) should be preliminaries to establish a single-site con-
centration property in probability for solutions u, provided the upper tails of
potential are heavier than the double exponential. In particular, the results
of Section 2.2 and Theorem 6.9 (“sharp single-peak” approximation) are re-
lated to the single-site concentration property for u with zero influence radius
J = 0, provided the distributional tails are heavier than Weibull’s tails with
α = 3. In view of the results of Sections 2.5 and 6.3 (“relevant island” ap-
proximation in the double exponential case), it can be conjectured that, with
high probability, the solution u(s, ·) exhibits entire concentration on a sin-
gle island, the diameter of which is asymptotically bounded or increases very
slowly as s → ∞. See (König, 2016) for a heuristic explanation of this conjec-
ture.

If the upper tails of potential are lighter than those of double exponential
including bounded tails (tQ < ∞), no results on concentration properties for
the PAM are known, with the exception of the very special (but important)
spatially continuous model of Brownian motion in a Poisson field of obstacles
studied by Sznitman (1998).

Appendix A: Regular variation

In this section, we study the classes of functions f := Q← (the left-continuous
inverse of the cumulative hazard function) introduced in Sections 4–6. These
classes are characterized in terms of Q. The tail behavior of Q(t) as t ↑ tQ is
also treated. In Section A.1, we recall the classical results on the domain of
attraction of Gumbel max-stable law and regular variation RVρ. The classes
AΠp

∞ (4.1), AΠp
0 (4.2) and OAΠp (4.3) are studied in Section A.2, and PI<2

(4.5) in Section A.3. Finally, examples and counterexamples are given in Sec-
tion A.4.
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A.1. The domain of attraction of Gumbel max-stable distribution
and regular variation

We now give the well-known characterization statements for the distribution
function to be in the domain of attraction of the max-stable Gumbel law Gexp(·).

Lemma A.1 ((Resnick, 1987; de Haan and Ferreira, 2006)). The following
assertions (i)–(iii) are equivalent:

(i) f ∈ AΠ (6.3) with an auxiliary function a(· ) > 0;
(ii) there exists another auxiliary function a1 : (−∞; tQ) → R+ such that

Q(t+ ca1(t))−Q(t) → c as t ↑ tQ, for any c ∈ R;

(iii) there exist functions b : (−∞; tQ) → R and a2 : (−∞; tQ) → R+ such that

Q(t) = b(t) +

∫ t

t0

1/a2(s) ds (t < tQ),

here b(t) → b ∈ R (t ↑ tQ), the function a2 is locally absolutely continuous
with the density a′2(t) → 0 (t ↑ tQ) and, for tQ < ∞, a2(t) → 0 (t ↑ tQ).

In this case, a ◦ f(s) = a1 ◦ f(s)(1 + o(1)) = a2 ◦ f(s)(1 + o(1)) as s → ∞.
Moreover, the limit in (ii) with an auxiliary function a1(· ) > 0 implies that
f ∈ AΠ (6.3) with the same auxiliary function a(· ) ≡ a1(· ).

Example A.2. For tQ = ∞, p � 0 and B > 0, consider the subclass AΠp
B ⊂ AΠ

associated with the auxiliary function a2(s) := B(p+1)−1s−p in Lemma A.1(iii).
In this case, Q(t) = B−1tp+1 + const + o(1), i.e., 1 − e−Q are Weibull type
distributions. In the next section, we extend the subclass AΠp

B to the boundary
cases B = ∞, B = 0 and O-type asymptotics.

Let us discuss the class RVρ of (nondecreasing) functions, which are regularly
varying at infinity with index ρ. Recall that, for 0 < β < ∞, the condition
f ◦ log ∈ RV1/β is sufficient and necessary for the distribution 1 − e−Q to be

in the domain of attraction of max-stable Fréchet law Gβ(t) := exp
{
−t−β

}
(t > 0); cf. Example 6.11. We now explore the class RVρ to characterize the
double exponential type distributions.

Lemma A.3. For tQ = ∞ and 0 � ρ � ∞, the following assertions are
equivalent:

(i) ef ∈ RVρ;
(ii) f(s)− f(δs) → −ρ log δ as s → ∞, for any 0 < δ < 1;
(iii) Q(t+ C)/Q(t) → eC/ρ as t → ∞, for any C > 0.

For any 0 � ρ � ∞, either of (i)–(iii) implies that limt→∞ t−1 logQ(t) = ρ−1.
Finally, for any 0 < ρ � ∞, either of (i)–(iii) yields that Q(t−)/Q(t) → 1 as
t → ∞, i.e., the continuity condition (3.1).
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Proof. The equivalence of (i)–(iii) follows from Theorems 1.5.12, 2.4.7 and Propo-
sitions 2.4.4(iv) and 1.3.6(i) in (Bingham et al., 1987) combined with the ob-
servation in (Resnick, 1987, Sect. 0.2) that Q(t − ε) � f←(t) � Q(t) for all
t ∈ R and all ε > 0. For ρ = ∞ and ρ = 0, the equivalence of (i)–(iii) is also
proved, respectively, in Lemma A.6 (p = 0) and Lemma A.7 (p = 0) of the
present paper adapted for the argument-additive functions; see also (de Haan
and Ferreira, 2006, Chapter 1 and Appendix B.1) for the case 0 < ρ < ∞.

The following lemma is compounded of Lemma A.1 and Lemma A.3 with
ρ = ∞, provided that there exists the density of the distribution 1− e−Q.

Lemma A.4 (Cf. Corollary 6.4). Let tQ = ∞. For some large t0, assume that
Q : [t0;∞) → R+ is (locally) absolutely continuous with the positive density
Q′ : [t0;∞) → R+ obeying the following conditions:

lim
t→∞

Q′(t+ C)

Q′(t)
= 1 for any C > 0, (A.1)

and

liminf
t→∞

Q′(t) > 0. (A.2)

Then the following limits (I)–(IV) hold true:

(I) limt→∞ Q(t+u)/Q(t) = limt→∞ Q′(t+u)/Q′(t) = 1 uniformly in compact
sets of u ∈ R;

(II) liminf t→∞ Q(t)/t > 0;
(III) limt→∞

(
Q(t + va1(t)) − Q(t)

)
= v uniformly in compact sets of v ∈ R,

with a1(·) ≡ 1/Q′(·) in [t0;∞);
(IV) with p(t) := e−Q(t)Q′(t) (t � t0) as the distribution density and a1(·) as

in part (III),

lim
t→∞

p(t+ u+ va1(t))

p(t+ u)
= e−v

uniformly in compact sets of v, u ∈ R.

Proof. (I) By L’Hôpital’s rule, we obtain the first limit for any u ∈ R. The uni-
form convergence follows from Theorem 1.2.1 in (Bingham et al., 1987) adapted
for the argument-additive functions.

(II) The assertion follows from (A.2).
(III) Writing

Q(t+ va1(t))−Q(t)− v = v

∫ 1

0

(
a1(t)Q

′(t+ θva1(t))− 1
)
dθ for t � t0

and applying assertion (I) and condition (A.2), we easily obtain the claimed
limit.

(IV) Let us rewrite the ratio under the limit in the form:

p(t+ u+ va1(t))

p(t+ u)
= exp

{
−

(
Q(t+ u+ va1(t))−Q(t+ u)

)}
×
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Q′(t+ u+ va1(t))

Q′(t)

(
Q′(t+ u)

Q′(t)

)−1

; (A.3)

t � t0. Since a1(·) is a bounded function, assertion (I) implies that the last
two ratios on the right-hand side of (A.3) converge to 1 locally uniformly in
u, v ∈ R. It remains to prove the uniform convergence of the exponent on the
right-hand side of (A.3). By the theorem of continuous convergence (see, e.g., p.
2 in (Resnick, 1987)), it suffices to check that, for arbitrary functions u(t) → u
and v(t) → v, the following limit holds true:

Q
(
t+ u(t) + v(t)a1(t)

)
−Q

(
t+ u(t)

)
− v(t) → 0 as t ↑ ∞.

This is shown similarly as in part (III), so we omit the details. Lemma A.4 is
proved.

Remark A.5 (Cf. Theorem 6.20). Let tQ = ∞. For some t0, assume that
Q : [t0;∞) → R+ is (locally) absolutely continuous with the positive density
Q′ satisfying the following condition: (logQ)′(t) → ρ−1 as t → ∞, for some
0 < ρ < ∞. Then the following limits hold true:

(i) limt→∞ Q(t + C)/Q(t) = limt→∞ Q′(t + C)/Q′(t) = eC/ρ uniformly in
compact sets of C ∈ R;

(ii) with a(·) ≡ 1/Q′(·) in [t0;∞),

lim
t→∞

(
Q(t+ Ca(t))−Q(t)

)
= C for any C ∈ R.

Proof of the assertions of Remark A.5. (i) Write logQ in the form:

logQ(t) = const +
t

ρ
+

∫ t

t0

ε(s) ds (t � t0),

where ε(t) := (logQ)′(t) − ρ−1 → 0 as t → ∞. Using this representation and
the conditions of Remark A.5, we obtain the claimed limits for any C ∈ R.
The uniform convergence follows from Theorem 1.5.2 in (Bingham et al., 1987)
adapted for the argument-additive functions.

(ii) Since a(t) = o(1), the claimed limit is derived similarly as in the proof of
Lemma A.4(III).

A.2. Classes AΠp
∞, AΠp

0 and OAΠp

Recall that, for p � 0, the classes AΠp
∞, AΠp

0 and OAΠp consist of functions
f := Q← satisfying, respectively, f(s)p

(
f(s + c) − f(s)

)
→ ∞, → 0 and 
 1

as s → ∞, for any c > 0; cf. (4.1)–(4.3). We first formulate the results of this
section. To avoid trivialities, we restrict ourselves to the case tQ = ∞.

Lemma A.6. For any p � 0, f ∈ AΠp
∞ if and only if

lim
t→∞

(
Q(t+ ct−p)−Q(t)

)
= 0 for any c > 0. (A.4)
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In this case,

Q(t) = o(tp+1) as t → ∞. (A.5)

Lemma A.7. For any p � 0, f ∈ AΠp
0 if and only if

lim
t→∞

(
Q(t+ ct−p)−Q(t)

)
= ∞ for any c > 0. (A.6)

In this case,

Q(t)t−p−1 → ∞ as t → ∞. (A.7)

Lemma A.8. For any p � 0 and f ∈ OAΠp, the following assertions hold true:

(i) there is a constant c > 0 such that Q(t+ ct−p)−Q(t) 
 1 as t → ∞;
(ii) Q(t) 
 tp+1 as t → ∞;
(iii) if a function a : R+ → R+ is chosen to satisfy liminf s→∞ a(s) � c1 > 0

and liminf s→∞(s− a(s)) � c2 > 0, then

const (s− a(s))s−p/(p+1) � f(s)− f(a(s))

� const ′
(
s1/(p+1) − a(s)1/(p+1) + a(s)−p/(p+1)

)
for any s � s0 and for some const ′ � const > 0.

Before proving Lemmas A.6–A.8, we provide an example of Q satisfying as-
sertion (i) of Lemma A.8 such that f := Q← does not belong to OAΠp for p � 0,
and further on, two technical lemmas for later use.

Example A.9. For p � 0, write Q(t) := tp+1 + [t], t � 0. Note that, for each
c > 0,

Q(t+ ct−p)−Q(t) = c(p+ 1) + g(t) + o(1) as t → ∞,

where 0 � g(t) := [t + ct−p] − [t] = O(1). I.e., Q satisfies the assertion of
Lemma A.8(i) for any c > 0. However, for each t := n ∈ N, we get Q(n) −
Q(n−) = 1, therefore, f := Q← /∈ OAΠp according to Lemma A.10 below.

Lemma A.10. If liminf s→∞ f(s)p
(
f(s+ c)− f(s)

)
> 0 for each c > 0 and for

some p � 0, then
lim
t→∞

(
Q(t)−Q(t−)

)
= 0,

i.e., Q is continuous at infinity.

Proof. Assume for a moment that there exists a sequence tn → ∞ such that
Q(tn) − Q(tn−) → c0 > 0. This limit implies that sn := Q(tn) → ∞ and,
in addition, that f(sn − c) = f(sn) for any 0 < c < c0 and any n � n0(c),
contradicting the assumption of the lemma. This completes the proof of the
claimed assertion.

Lemma A.11 (Resnick, 1987, pp. 4). For all s ∈ R+ and t ∈ (−∞; tQ), the
following assertions hold true:
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(i) f(s) � t if and only if s � Q(t);
(ii) f(s) > t if and only if s > Q(t);
(iii) Q(f(s)−) � s � Q(f(s)).

We now are in a position to prove Lemmas A.6–A.8. To simplify the proceed-
ings, we need the following abbreviations:

fp(s; c) := f(s)p
(
f(s+ c)− f(s)

)
and Qp(t; c) := Q(t+ ct−p)−Q(t).

Proof of Lemma A.6. Assume first that (A.4) holds true. I.e., for each ε > 0
there is s0 = s0(ε) > 0 such that

Qp(f(s); ε
−1) < ε for all s � s0. (A.8)

Since (A.4) implies a continuity of Q at infinity, from Lemma A.11(iii) we have
that Q(f(s)) � s + ε for each s � s0. This and (A.8) yield that Q

(
f(s) +

ε−1f(s)−p
)
< s+ 2ε for each s � s0. Inverting Q (see Lemma A.11(ii)), we get

that fp(s; 2ε) > 1/ε for each ε > 0 and each s � s0(ε). I.e., f ∈ AΠp
∞.

To prove the inverse implication, assume for a moment that there are a se-
quence of reals tn → ∞ and constants c > 0, ε > 0 such that Q(tn + ct−p

n ) �
Q(tn) + ε for all n � n0(ε, c). Inverting Q (see Lemma A.11(i)), we get that
f
(
Q(tn) + ε

)
� tn + ct−p

n , which combined with tn < f
(
Q(tn) + ε/2

)
(see

Lemma A.11(ii)) gives that, for each n � n0(ε, c),

fp(sn; ε/2) � c with sn := Q(tn) + ε/2.

Since sn → ∞, the latter violates the assumption f ∈ AΠp
∞, concluding the

proof of the first part of Lemma A.6.
To prove (A.5), we note that, for any natural M � 2 and any s � 2M ,

f(s+ 1)p+1 − f(s)p+1 � fp(s; 1) � I(M) := inf
s�M

fp(s; 1),

and, therefore,
f(s)p+1 − f(M)p+1 � (s−M − 1)I(M).

Hence liminf s→∞ f(s)s−1/(p+1) � I(M)1/(p+1). Since I(M) → ∞ (as M → ∞)
by the assumption, the latter implies that f(s)s−1/(p+1) → ∞ as s → ∞, which
in turn yields (A.5). Lemma A.6 is proved.

Proof of Lemma A.7. Assume first that (A.6) holds true, i.e., for each ε > 0
there is t0 = t0(ε) such that Qp(t; ε) � 1/ε for each t � t0. By Lemma A.11(i),
the latter is equivalent to f

(
Q(t)+1/ε

)
� t+ εt−p. Substituting t := f(s) → ∞

into this inequality and then applying Q(f(s)) � s (see Lemma A.11(iii)), we
obtain fp(s; 1/ε) � ε for each ε > 0 and each s � s0(ε), i.e., f ∈ AΠp

0.
To prove the inverse implication, assume for a moment that there are a

sequence tn → ∞ and constants δ > 0, c > 0 such that Qp(tn; δ) < c for
each n � n0(c, δ). Here, inverting Q (see Lemma A.11(i),(ii)) and denoting
sn := Q(tn) → ∞, we obtain that fp(sn; c) > δ for each n � n0(c, δ), contra-
dicting the assumption f ∈ AΠp

0. This completes the proof of the first part of
Lemma A.7.
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We will prove (A.7) under the weaker condition by assuming (A.6) for some
c > 0. (The forthcoming arguments are applied to prove assertion (ii) of
Lemma A.8 as well). Write Q(c)(t) := Q(c1/(p+1)t) and observe that

lim
t→∞

Q(c)
p (t; 1) = lim

t→∞
Qp(t; c) = ∞,

i.e., limit (A.6) for c > 0 is reduced to that for c = 1. With the abbreviation
R(k) := [kp], we obtain that, for fixed natural M � 3 and any natural t � 2M ,

Q(c)(t)−Q(c)(M)

=

t−1∑
k=M

R(k)−1∑
l=0

(
Q(c)

(
k +

l + 1

R(k)

)
−Q(c)

(
k +

l

R(k)

))

�
t−1∑
k=M

R(k)−1∑
l=0

Q(c)
p

(
k +

l

R(k)
; 1

)
� inf

τ�M
Q(c)

p (τ ; 1)

t−1∑
k=M

R(k)

= inf
τ�M

Q(c)
p (τ ; 1)

tp+1

p+ 1
(1 + o(1))

as t → ∞. Here, by (A.6), the infimum tends to infinity as M → ∞, therefore,
(A.7) is fulfilled. This completes the proof of Lemma A.7.

Proof of Lemma A.8. (i) We first prove that if, for each c > 0, the function
fp(s; c) is asymptotically bounded away from zero as s → ∞, then Qp(t; δ) =
O(1) as t → ∞, for some δ > 0. Assume otherwise that, for each δ > 0, there
exists a sequence tn → ∞ such that Qp(tn; δ) � 2M for any M > 0 and any
n � n0(M). Here, inverting Q similarly as in the proof of Lemma A.6, we
obtain that fp(sn;M) � δ with sn := Q(tn) +M → ∞ as n → ∞. Therefore,
liminf s→∞ fp(s;M) � δ. Since δ > 0 is arbitrary, we obtain the contradiction
proving the desired implication. We next observe that, if Qp(t; δ) = O(1) for
some δ > 0, then

Qp(t; kδ) = O(1) as t → ∞, for any k ∈ N. (A.9)

This implication is easily proved by induction in k. We omit the details.
With the abbreviation

M := 2 limsup
s→∞

fp(s; 1) > 0,

we finally show that the function Qp(t;M) is asymptotically bounded away
from zero as t → ∞. For this, fix an arbitrary sequence tn → ∞, and define
a sequence {sn} by f(sn+) � tn � f(sn) (n ∈ N). Write τn := f(sn). Com-
bining Lemmas A.10 and A.11(iii), we have that Q(tn) − Q(τn) = o(1) and,
consequently,

Qp(tn;M) � Qp(τn;M) + o(1) as n → ∞. (A.10)
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On the other hand, from the definition of M , it follows that f(sn)+Mf(sn)
−p >

f(sn + 1) for any n � n0. Applying Q to both sides of this inequality and
then using Lemmas A.10 and A.11(iii), we obtain that Qp(τn;M) � 1/2 for
n � n0. The latter combined with (A.10) implies that the sequence Qp(tn;M)
is asymptotically bounded away from zero, as claimed. This and (A.9) conclude
the proof of part (i).

(ii) The assertion is shown by the same arguments as in the proof of limits
(A.5) and (A.7). We omit the details.

(iii) If a(s) or s − a(s) are bounded from above for any large s, then the
bounds in (iii) simply follow from part (ii) and condition (4.3).

For simplicity we abbreviate a := a(s), and assume that both a and s − a
tend to infinity as s → ∞. By combining assumption (4.3) and the limit f(s) 

s1/(p+1), we obtain that, for s � s0,

f(s)− f(a) �
∑

0�k�s−a

(f(a+ k + 1)− f(a+ k))

� const
∑

0�k�s−a

(a+ k)−p/(p+1)

� const a−p/(p+1) + const

∫ s−a

0

(a+ k)−p/(p+1) dk

and

f(s)− f(a) �
∑

0�k�s−a−1

(f(a+ k + 1)− f(a+ k))

� const
∑

0�k�s−a−1

(a+ k)−p/(p+1)

� const (s− a− 1)s−p/(p+1),

as claimed. Lemma A.8 is proved.

Remark A.12 (A relationship with classical regular variation). (i) Consider
the case p = 0. Obviously, for β = ∞ or β = 0, f is in AΠ0

β if and only if
g := exp ◦f ◦ log ∈ RVβ . Therefore, for p = 0, Lemmas A.6 and A.7 follow from
the well-known results for the class RVβ with β = ∞ and β = 0, respectively
(Bingham et al., 1987).

The class OAΠ0 links to the exponential type distributions 1 − e−Q, with
Q(t) 
 t as t → ∞. Moreover, if f ∈ OAΠ0, then g := exp ◦f ◦ log is in ORV ,
the class of O-regularly varying functions studied, e.g., in (Bingham et al., 1987,
Section 2).

(ii) In the case of p � 0, if f ∈ OAΠp, then f ◦ log is asymptotically balanced
or, equivalently, the maximum ξ1,V of i.i.d. sample ξV is stochastically compact
(Bingham et al., 1987, Sections 3.11 and 8.13.12).
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A.3. Class PI<2

Recall that the class PI<2 consists of functions f := Q← such that

liminf
s→∞

f(cs)

f(s)
> 1 for some 1 < c < 2;

cf. (4.5). This is the subclass of positive increase class PI considered, e.g., in
(Bingham et al., 1987, Section 2.1.2).

Lemma A.13. f ∈ PI<2 if and only if

limsup
t→∞

Q(C0t)/Q(t) < 2 for some C0 > 1. (A.11)

In this case,

limsup
t→∞

logQ(t)

log t
� const :=

log 2

logC0
. (A.12)

Proof. Assume in contrary to (A.11) that, for any C > 1, there is a sequence
tn = tn(C) → ∞ such that Q(Ctn) � (2 − ε)Q(tn) for any ε > 0 and
any n � n0(ε). Similarly as in the proof of Lemma A.6, inverting Q (see
Lemma A.11(i),(ii)) and writing sn := Q(tn) + ε → ∞, we obtain that

limsup
n

f(δsn)/f(sn) � C for any 1 < δ < 2 and any C > 1

or, equivalently, limn f(δsn)/f(sn) = 1, contradicting the assumption f ∈ PI<2.
According to these arguments, the inclusion f ∈ PI<2 implies (A.11).

To show the inverse implication, we suppose otherwise that f := Q← /∈ PI<2,
i.e., for each 1 < c < 2, there exists a sequence sn = sn(c) → ∞ such that
f(csn) � (1 + ε)f(sn) for any ε > 0 and any n � n0(ε). In this inequality, we
invert f (see Lemma A.11(i)) to obtain csn � Q

(
(1 + ε)f(sn)

)
. On the other

hand, by Lemma A.11(iii),

csn � cQ
(
f(sn)−

)
� cQ

(
(1− ε)f(sn)

)
.

Summarizing these estimates and using the abbreviations tn := (1−ε)f(sn) and
δ := (1+ε)/(1−ε), we have thatQ(δtn) � cQ(tn). Since 1 < c < 2 is an arbitrary
constant but close to 2, the latter implies the limit limsup t Q(δt)/Q(t) � 2 for
each δ > 1, contradicting assumption (A.11). This concludes the first part of
the lemma.

Let us show (A.12). By (A.11), there exist numbers C > 1 and t0 = t0(C)
such that Q(Ct)/Q(t) � 2 for all t � t0. Applying this estimate, we obtain that,
for any n ∈ N and any t ∈

[
Cnt0;C

n+1t0
)
,

Q(t) =
Q(t)

Q(Cnt0)
· Q(Cnt0)

Q(Cn−1t0)
· · · Q(Ct0)

Q(t0)
·Q(t0)

� Q(t0)2
n+1 � const t(log 2)/ logC ,

i.e., (A.12) is done. Lemma A.13 is proved.
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A.4. Comparison of the classes AΠp
∞, AΠ and PI<2. Examples

In view of limit theorems for eigenvalues (see Theorems 6.2 and 6.9), we need
to compare the classes AΠp

∞ (4.1), SAΠ2
∞ (5.4), AΠ (6.3) and PI<2 (4.5) of

functions f := Q←.

Lemma A.14. (i) For any p � 0, there exist examples f1 ∈ PI<2\AΠp
∞ and

f2 ∈ AΠp
∞\PI<2. Consequently, there is f2 ∈ SAΠ2

∞\PI<2.
(ii) There exist examples f3 ∈ PI<2\AΠ and f4 ∈ AΠ\PI<2 with an auxiliary

function a4 � 1.
(iii) For any p > 0, there exists an example f5 ∈

(
AΠp

∞ ∩ PI<2

)
\AΠ and,

therefore, there is f5 ∈
(
SAΠ2

∞ ∩ PI<2

)
\AΠ.

(iv) For p � 0, if f ∈ AΠ with an auxiliary function a : R+ → R+ such that
spa(s) → ∞ as s → ∞, then f ∈ AΠp

∞.
(v) For 0 � ρ < ∞, if ef is in RVρ, then f(s+ log s)− f(s) → 0 as s → ∞.

Proof. (i) Write Q(t) := [t], t � 0; i.e., 1 − e−Q is the geometric distribution.
Let us show that f1 := Q← ∈ PI<2\AΠp

∞. Indeed, since Q(n)−Q(n−) = 1 for
all n ∈ N, Lemma A.10 implies that f1 /∈ AΠp

∞ for any p � 0. However, since Q
satisfies (A.11), we have that f1 ∈ PI<2, as claimed.

Consider the function f2(s) :=
∫ s

1
b(t) dt, where b(t) := n if 22n < t � 22n+1,

and b(t) := 2n if 22n+1 < t � 22n+2 for all n ∈ N ∪ {0}. Let us show that
f2 ∈ AΠ0

∞\PI<2. Obviously f2 ∈ AΠ0
∞. With sn := 22n+1 and 1/2 < δ < 1, we

see that
f2(δsn)

f2(sn)
= 1−

∫ sn
δsn

b(t) dt∫ sn
1

b(t) dt
,

where
∫ sn
δsn

b(t) dt = const 4nn and∫ sn

1

b(t) dt =

n−1∑
l=0

(∫ sl

sl/2

l dt+

∫ 2sl

sl

2l dt

)
+

∫ sn

sn/2

ndt

=

n−1∑
l=0

(
l · 4l + 2 · 8l

)
+ n · 4n =

2

7
· 8n(1 + o(1))

as n → ∞. Summarizing, we find that f2(δsn)/f2(sn) → 1 (as n → ∞) for
each 1/2 < δ < 1, i.e., f2 /∈ PI<2. Since AΠ1

∞ ⊂ SAΠ2
∞, we also obtain that

f2 ∈ SAΠ2
∞\PI<2.

(ii) As in part (i) above, let f3 be the inverse of the cumulative hazard function
of the geometric distribution. Since f3 is not in AΠ (Resnick, 1987, Corollary
1.6), we obtain that f3 ∈ PI<2\AΠ.

To prove the existence of f4 ∈ AΠ\PI<2, it suffices (via Lemmas A.1 and A.13)
to find a continuous function a : [1;∞) → [1;∞), with derivative a′(t) → 0 as

t ↑ ∞, such that the function Q(t) :=
∫ t

1
1/a(s) ds does not satisfy (A.11). For

this, we abbreviate tn := (logn)n, mn := (logn)2,

εn :=
1

mn

(
tn+1

tn
− 1

)
− 1

tn
and bn := 1 + tn+1εn,
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and consider the functions

a(t) :=

{
t/tn if tn < t � tn+1 −mn,

−εnt+ bn if tn+1 −mn < t � tn+1; for n � 2,
(A.13)

and Q(t) :=
∫ t

1
1/a(s) ds. Obviously, a � 1 is continuous in [1;∞) and a′(t) → 0

as t ↑ ∞. Therefore, f4 := Q← ∈ AΠ with the auxiliary function a. Let us show
that, for each c > 1,

Q(ctn)

Q(tn)
= 1 +

∫ ctn
tn

1/a(t) dt∫ tn
1

1/a(t) dt
→ ∞ as n → ∞, (A.14)

so that f4 /∈ PI<2. Indeed, from (A.13) we see that, for n � n0(c),∫ ctn

tn

dt

a(t)
=

∫ ctn

tn

tn
t
dt = tn log c. (A.15)

To estimate the integral
∫ tn
1

in (A.14), we again use (A.13) and the bound a � 1.
Thus, ∫ tn

t2

dt

a(t)
�

n−1∑
k=2

(
tk

∫ tk+1−mk

tk

dt

t
+

∫ tk+1

tk+1−mk

1 dt

)

�
n−1∑
k=2

(
tk log(tk+1/tk) +mk

)
� tn(log n)

−1/2 (A.16)

for any n � n0. Now (A.15) and (A.16) imply (A.14), as claimed.
(iii) Consider the example Q(t) = t + sin t (t � 0) given by Von Mises.

Obviously, Q satisfies (A.4) and (A.11), consequently, f5 := Q← is in AΠp
∞ ∩

PI<2 for any p > 0. However, f5 /∈ AΠ. We observe that the function f6(s) :=
s+sin s (s � 0) is also in

(
AΠp

∞ ∩PI<2

)
\AΠ for any p > 0. (This is verified by

straightforward calculations). Consequently, since AΠ1
∞ ⊂ SAΠ2

∞, the functions
f5 and f6 are in

(
SAΠ2

∞ ∩ PI<2

)
\AΠ.

(iv) The assertion follows from the definition of AΠ (6.3) and AΠp
∞ (4.1).

(v) The assertion follows from Lemma A.3(ii). Lemma A.14 is proved.

We finally provide two examples of distributions which represent RV classes
considered in Sections 3–6.

Example A.15. For α > 0, let Qα(t) = tα (t � 0), i.e., 1 − e−Qα is Weibull
distribution. Clearly fα(s) := Q←

α (s) = s1/α for s � 0. By straightforward
calculations, we obtain that if α < p+1 (resp., α > p+1 or α = p+1), then fα ∈
AΠp

∞ (resp., fα ∈ AΠp
0 or fα ∈ OAΠp). Also, for α < 3, fα ∈ SAΠ2

∞. Finally,
for any α > 0, fα ∈ PI<2, exp ◦fα ∈ RV∞ and fα is in AΠ with the auxiliary
function a(t) := α−1t1−α. The latter means that the distribution 1− e−Qα is in
the domain of attraction of the max-stable Gumbel law; cf. Section 6.1.
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Example A.16. Given γ > 0 and ρ > 0, let Qγ,ρ(t) = eρ
−1tγ (t � t0), i.e.,

the fractional double exponential distribution. Then fγ,ρ(s) = (ρ log s)1/γ for
s � s0. Obviously, if 0 < γ < 1 (resp., γ > 1 or γ = 1 ), then exp ◦fγ,ρ is in
RV∞ (resp., RV0 or RVρ); cf. Section 6.
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Elgart, A., Krüger, H., Tautenhahn, M., Veselić, I.: Discrete
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Fröhlich, J., Martinelli, F., Scoppola, E., Spencer, T.: Constructive
proof of localization in the Anderson tight binding model. Commun. Math.
Phys. 101, 21–46 (1985) MR0814541
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