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1. Introduction

Komlós, Major, and Tusnády [KMT] [31, 32] approximations to the partial sum
and empirical processes are two of the most important results in probability over
the last forty years. In particular, they proved the following powerful Gaussian
coupling to partial sums [PS] of i.i.d. random variables. (We shall use the words
approximation and coupling almost interchangeably.)
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Theorem [PS]. Let X be a random variable with mean 0 and variance 0 <
σ2 <∞. Also assume that E exp (a |X |) <∞ for some a > 0. Then on the same
probability space there exist i.i.d. X random variables X1, X2, . . . , and i.i.d.
standard normal random variables Z1, Z2, . . . , such that for positive constants
C, D and λ for all x ∈ R and n ≥ 1,

P

{
max

1≤k≤n

∣∣∣∣∣σ
−1

k∑

i=1

Xi −
k∑

i=1

Zi

∣∣∣∣∣ > D log n+ x

}
≤ C exp (−λx) . (1)

This is Theorem 1 of KMT [32]. The original version given in Theorem 1 of
KMT [31] is stated under added conditions.

One of the key tools needed in its proof was a quantile inequality. To describe
it let us introduce some notation. Let {Yn}n≥1 be a sequence of random variables
and for each integer n ≥ 1 let

Fn(x) = P{Yn ≤ x}, for x ∈ R, (2)

denote the cumulative distribution function [cdf] of Yn. Its inverse distribution
function or quantile function is defined by

Hn(s) = inf{x : Fn(x) ≥ s}, for s ∈ (0, 1) . (3)

Let Z denote a standard normal random variable, Φ be its cdf and φ its density
function. Since Φ(Z) =d U , we see that for each integer n ≥ 1,

Hn(Φ(Z)) =d Yn.

For this reason, we shall from now on write for convenience

Hn(Φ(Z)) = Yn. (4)

Consider now the special case of {Yn}n≥1 such that for each n ≥ 1,

Yn =d

n∑

i=1

Xi/
(
σ
√
n
)
, (5)

where X1, X2, . . . , are i.i.d. X satisfying the conditions of Theorem [PS]. Funda-
mental to the proof of Theorem [PS] is the following quantile inequality, which
is implicit in the proof of Theorem 1 of KMT [31].

Proposition [KMT]. Assume that X1, X2, . . . , are i.i.d. X satisfying the con-
ditions of Theorem [PS]. Then there exist a 0 < D < ∞ and an 0 < η < ∞
such that for all integers n ≥ 1, whenever Yn is as in (5) and (4), and

|Yn| ≤ η
√
n,

we have

|Yn − Z| ≤ DY 2
n√
n

+
D√
n
.
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For a multidimensional version of Proposition [KMT] consult Einmahl [19].
We shall soon show that if additional assumptions are imposed on X that

this inequality can be improved, in particular when X is symmetric and its
distribution has a nonzero absolutely continuous component. Refer to Theorem
3 and Proposition 5 below for details.

We shall also see that this inequality leads to a coupling of Yn and Z such
that for suitable constants C > 0 and λ > 0

P
{√

n |Yn − Z| > z
}
≤ C exp (−λz) , for all z ≥ 0, (6)

which via Lemma A1 of Berkes and Philipp [4] implies that for each integer
n ≥ 1 there existX1, . . . , Xn i.i.d.X and i.i.d. standard normal random variables
Z1, . . . , Zn such that on a suitable probability space for all z ≥ 0

P

{
√
n

∣∣∣∣∣σ
−1

n∑

i=1

Xi −
n∑

i=1

Zi

∣∣∣∣∣ > z

}
≤ C exp (−λz) .

KMT [31] also stated the following Brownian bridge coupling to the uniform
empirical process αn, along with an outline of its proof. But first, here is the
definition of αn. Let U1, U2, . . . , be a sequence of independent Uniform (0, 1)
random variables. For each integer n ≥ 1 let

Gn(t) = n−1
n∑

i=1

1{Ui ≤ t}, t ∈ R,

denote the empirical distribution function based on U1, . . . , Un. The uniform
empirical process [EP] αn is the process

αn(t) =
√
n{Gn(t)− t}, t ∈ [0, 1] . (7)

Theorem [EP]. There exists a probability space (Ω,A, P ) with a sequence of
independent Uniform[0, 1] random variables U1, U2, . . ., a sequence of Brownian
bridges B1, B2, . . . , and positive constants a, b and c such that for all n ≥ 1 and
x ∈ R,

P

{
sup

0≤t≤1
|
√
n {αn(t)−Bn(t)} | ≥ a logn+ x

}
≤ b exp(−cx).

Mason and van Zwet [38], Major [36] and Mason [37] have published the
details of the proof of Theorem [EP] based on Proposition [KMT] as it applies
to

Yn =d
2Sn − n√

n
, (8)

where Sn is a Binomial random variable with parameters n and 1/2. A proof of
Theorem [EP] can also be obtained using a binomial inequality due to Tusnády
(Proposition [T]) [55]. This inequality is often referred to as the Tusnády lemma,
which for comparison we state here.
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Proposition [T]. For all integers n ≥ 1, with Yn as in (8) and in (4)

|Yn| ≤
2√
n
+ |Z|

and

|Yn − Z| ≤ 2√
n
+

Z2

4
√
n
.

Tusnády [55] did not provide a fully detailed proof of his lemma. In fact, M.
Csörgő and Révész [12] remarked in their monograph on strong approximations,
“Although the proof of the inequality is elementary, it is not simple. It will
not be given here however.” When Bretagnolle and Massart [6] published a
complete proof of the Tusnády lemma, it indeed was not simple. Other proofs
of the Tusnády lemma can be found in M. Csörgő and Horváth [11], Dudley
[17], Massart [40] and Lawler and Trujillo Ferreras [33]. Carter and Pollard [9]
improved upon the Tusnády inequality. More specifically, they showed that with
Yn as in (8) and (4)

|Yn − Z| ≤ C√
n
+
C |Z|3
n

, whenever |Yn| ≤ ε
√
n (9)

for some C, ε > 0. Bretagnolle and Massart [6], Csörgő and Horváth [11] and
Dudley [17]) also give proofs of Theorem [EP] based on the Tusnády lemma.
It is sometimes thought that the Tusnády lemma is indispensable to its proof.
However this is not the case. As pointed out above, its original proof as sketched
in KMT [31] was based on the binomial special case of Proposition [KMT].
Clearly the quantile coupling of a standardized sum of i.i.d. Bernoulli(1/2) with
a normal random variable lies at the heart of KMT construction for the empirical
process.

In the last decade the KMT construction has played a key role in the progress
of the asymptotic equivalence of experiment theory. Nussbaum [41] made a re-
markable breakthrough in asymptotic equivalence theory using KMT. He es-
tablished the asymptotic equivalence of density estimation and Gaussian white
noise under a Hölder smoothness condition. A major step toward the proof of
this equivalence result is the functional KMT construction for the empirical
process by Koltchinskii [30]. His construction relies on the Tusnády lemma. The
main consequence of this result is that an asymptotically optimal result in one
of these nonparametric models automatically yields an analogous result in the
other model.

Our paper is largely expository. Its two goals are to spotlight and prove a
basic quantile inequality that is implicit in KMT [31], as well as establish the
improvements that we alluded to above, and then show how they can be used
to obtain a number of interesting couplings of a sequence of random variables
Yn to a standard normal random variable Z and describe their applications
in probability and statistics. As a by-product, we get Proposition [KMT] and
(9) as special cases of formally more general results. In an applications section
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we shall also describe how refinements to the KMT quantile inequality lead to
advances in asymptotic equivalence of experiment theory. It is hoped that this
paper helps to make these quantile inequalities known to a wider mathematical
and statistical audience.

Our paper is organized as follows. In Section 2, we state our basic quantile
couplings, then in Section 3 we discuss examples of their use in probability
theory and the theory of statistical experiments. Section 4 is devoted to proofs.
Appendices A, B and C provide additional information for the interested reader.

2. Quantile inequalities

2.1. The KMT quantile inequality

The following quantile inequality is essentially due to KMT [31] and it can be
implied from their analysis. That it holds more generally than in the i.i.d. sum
setup of Proposition [KMT] is more or less known. (See Remark 1 below.) The
proof that we provide here basically follows the lines of that given for the special
case of the standardized Binomial random variable (8) with parameters p = 1/2
and n in Section 1.2 of Mason [37]. This proof, in turn, was largely adapted
from notes taken from the Diplomarbeit of Richter [44]. Very similar details are
to be found in Einmahl [18]. Let {Fn}n≥1 be a sequence of cdfs, not necessarily
being that of a sequence of sums of i.i.d. random variables of the form (5), and
let Yn be defined as in (4).

Theorem 1. With the above notation, assume there exist a sequence Kn > 0,
a sequence 0 < εn < 1 and an integer n0 ≥ 1 such that for all n ≥ n0 and
0 < z ≤ εn

√
n

P {Yn > z} ≤ (1− Φ (z)) exp
(
Kn

(
z3 + 1

)
/
√
n
)
, (10)

P {Yn > z} ≥ (1− Φ (z)) exp
(
−Kn

(
z3 + 1

)
/
√
n
)
, (11)

P {Yn < −z} ≤ Φ (−z) exp
(
Kn

(
z3 + 1

)
/
√
n
)
, (12)

and
P {Yn < −z} ≥ Φ (−z) exp

(
−Kn

(
z3 + 1

)
/
√
n
)
. (13)

Then whenever n ≥ n0 ∨
(
64K2

n

)
and

|Yn| ≤ ηn
√
n, (14)

where ηn = εn ∧ (1/ (8Kn)), we have

|Yn − Z| ≤ 2KnY
2
n√

n
+

2Kn√
n
. (15)

Remark 1. Though not explicitly stated in KMT [31], Theorem 1 has long
been known in one form or another by practitioners in strong approximation
theory.
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Theorem A in KMT [31] implies that if X1, X2, . . . , are i.i.d. X satisfying the
assumptions of Theorem [PS], then the sequence of random variables {Yn}n≥1 as
defined in (5) satisfies (10), (11), (12) and (13). KMT [31] do not provide a proof
of their Theorem A, however they refer the reader to a large deviation theorem
in Petrov [42] (see Theorem 1 on page 218 of Petrov [42] or Theorem 5.23 of
Petrov [43]), where it is pointed out that, though the result is formulated under
the more restrictive assumption that εn → 0 as n → ∞, his proof is applicable
to establishing this refinement. Direct proofs of the fact that {Yn}n≥1 fulfills
the assumptions of Theorem 1 are given by Einmahl [18] (see his Corollary 1 for
a more general result from which this result follows) and Theorem 3.1 of Arak
and Zaitsev [2]. Theorem 1 of Einmahl [18] provides conditions under which the
assumptions hold for independent but not necessarily identically distributed
sums. For further quantile inequalities along this line consult Sakhanenko [46,
48, 49].

Theorem [PS] implies that under its assumptions and on its probability space,
as n→ ∞,

σ−1
n∑

i=1

Xi =

n∑

i=1

Zi +Rn, a.s. (16)

with rate Rn = O(log n). We should point out that the improved quantile in-
equalities that in subsection 2.2 are shown to hold under additional assumptions
on X do not in general lead to corresponding improvements in the rate in (16),
namely, O(log n) cannot be replaced by o(log n). A result of Bártfai [3] implies
that this can only happen when σ−1X =d Z. Refer to Theorem 2.3.2 in M.
Csörgő and Révész [12] and especially to the very nice expository paper on
strong invariance principles by P. Major [35]. In short, unless σ−1X =d Z, the
best rate possible in (16) is O(log n).

Remark 2. Obviously, whenever K2
n/n→ 0 then there exists an integer n1 ≥ 1

such that for all n ≥ n1 we have n ≥ n0 ∨
(
64K2

n

)
.

Remark 3. In typical applications Kn = K, εn = ε and ηn = η for all n ≥ 1,
where K, ε and η are fixed positive constants.

Here is a special case of Theorem 1 that will lead to some interesting appli-
cations.

Theorem 2. Assume there exist an L > 0, an 0 < ε < 1, a p ≥ 2 and an
integer n0 ≥ 1 such that for all n ≥ n0 and 0 < z ≤ εn1/p

P {Yn > z} ≤ (1− Φ (z)) exp
(
L
(
z3 + 1

)
/n1/p

)
, (17)

P {Yn > z} ≥ (1− Φ (z)) exp
(
−L

(
z3 + 1

)
/n1/p

)
, (18)

P {Yn < −z} ≤ Φ (−z) exp
(
L
(
z3 + 1

)
/n1/p

)
, (19)

and
P {Yn < −z} ≥ Φ (−z) exp

(
−L

(
z3 + 1

)
/n1/p

)
. (20)
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Then whenever n ≥ n0 ∨
(
64L2n1−2/p

)
and

|Yn| ≤ ηn1/p, (21)

where η = ε ∧ (1/ (8L)), we have

|Yn − Z| ≤ 2LY 2
n

n1/p
+

2L

n1/p
. (22)

Proof. The proof follows from Theorem 1 by setting Kn = Ln1/2−1/p and εn =
εn−1/2+1/p.

From Theorem 2 we get the following distributional bound for the coupling
|Yn − Z|.
Corollary 1. In addition to the assumptions of the Theorem 2, assume that
for suitable positive constants a, b and c for all n ≥ 1 and z ≥ 0

P {|Yn| ≥ z} ≤ c exp

(
− bz2

1 + a
(
n−1/pz

)2p/(p+2)

)
. (23)

Then for positive constants C and λ, for all z ≥ 0 and n ≥ 1,

P
{
n1/p |Yn − Z| > z

}
≤ C exp

(
−λz4/(p+2)

)
, (24)

where Yn is defined as in (4).

For conditions that imply that the assumptions of Corollary 1 hold refer to
Prob-example 1 in subsection 3.1.

Here is an interesting application of Theorem 1 and the methods of proof of
Corollary 1 to martingale difference sequences. It shows how to apply Theorem
1 when the parameters depend on n.

Corollary 2. Let (ξi,Fi)i=0,...,n be a square integrable martingale difference
sequence with ξ0 = 0, and F0 ⊂ · · · ⊂ Fn ⊂ F for n = 1, 2, . . . , satisfying

max
i

|ξi| ≤ L (25)

and ∣∣∣∣∣

n∑

i=1

E(ξ2i
∣∣Fi−1)− n

∣∣∣∣∣ ≤M2, (26)

where L and M are finite positive constants. Also assume that for all n ≥ 1

n∑

i=1

Eξ2i = n. (27)

Then there exist constants α > 0 and D > 0 and an integer n1 ≥ 2 such that
whenever n ≥ n1 and

|Yn| ≤ α 4
√
n, (28)
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where Yn =d

∑n
i=1 ξi/

√
n and is defined as in (4), we have

√
n |Yn − Z| / logn ≤ 2D

(
Y 2
n + 1

)
. (29)

Furthermore, there exist positive constants C and λ such that for all z ≥ 0 and
n ≥ 1,

P
{

4
√
n |Yn − Z| > z

}
≤ C exp (−λz) . (30)

By repeated application of Lemma A.1 of Berkes and Philipp [4] in combi-
nation with the Kolmogorov extension theorem we obtain the following propo-
sition.

Proposition 1. Let ξ1, ξ2, . . . , be a sequence of random variables on the same
probability space. For each integer n ≥ 1 let gn be a measurable function from
R

d to R and pn be a non-negative function defined on [0,∞). Suppose that for

each integer n ≥ 1 there exists a probability space on which sit (ξ̃1, . . . , ξ̃n) such

that (ξ̃1, . . . , ξ̃n) =d (ξ1, . . . , ξn) and a standard normal random variable Z̃n such
that for all z ≥ 0 and n ≥ 1,

P
{∣∣∣gn

(
ξ̃1, . . . , ξ̃n

)
− Z̃n

∣∣∣ > z
}
≤ pn (z) . (31)

Then one can construct a probability space on which sit a sequence of random
variables ξ̃1, ξ̃2, . . . having the same distribution as ξ1, ξ2, . . . , and a sequence
of standard normal random variables Z̃1, Z̃2, . . . , such that inequality (31) holds
for each n ≥ 1.

Here is an example of the use of Proposition 1.

Corollary 3. Let X,X1, X2, . . . be a sequence of i.i.d. mean zero random vari-
ables with variance 0 < σ2 < ∞, such that E exp (a |X |) < ∞ for some a > 0.
Further for each n ≥ 1, let σ1.n, . . . , σn.n be an array of constants satisfying
(i)

∑n
i=1 σ

2
i.n = 1 and (ii) for some c > 0, max1≤i≤n |σi.n| ≤ c/

√
n. Then

i.i.d. X,X1, X2, . . . random variables and a sequence of standard normal ran-
dom variables Z1, Z2, . . . can be put on the same probability space so that for
suitable constants C > 0 and λ > 0 one has for all x ≥ 0

P

(
√
n

∣∣∣∣∣σ
−1

n∑

i=1

σi.nXi − Zn

∣∣∣∣∣ > x

)
≤ C exp (−λx) .

This can be shown by using Corollary 1 with p = 2, in combination with
Proposition 1. In particular, that inequality (23) holds for appropriate constants
a, b and c follows from an application of the classic Bernstein inequality (cf. p.
855 of Shorack and Wellner [53]). To verify that the conditions of Theorem 2
are satisfied with p = 2 we apply Corollary 1 in Einmahl [18].

2.1.1. Some remarks on strong approximations

Let X = {Xn, n ≥ 1} denote a sequence of independent mean zero random vari-
ables such that Xn has variance 0 < σ2

n < ∞, n ≥ 1, and let Y = {Yn, n ≥ 1}
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be a sequence of independent mean zero normal random variables such that
each Yn has variance 0 < σ2

n < ∞, n ≥ 1. Whenever X and Y are on the same
probability space set for each n ≥ 1

∆n (X ,Y) = max
1≤j≤n

∣∣∣∣∣

j∑

i=1

Xi −
j∑

i=1

Yi

∣∣∣∣∣ .

Consider the special case when X is an i.i.d. X sequence of random variables,
where EX = 0 and 0 < V arX = σ2 < ∞. Theorem [PS], i.e. Theorem 1 of
KMT [32], implies that whenever, in addition, E exp (a |X |) < ∞ for some
a > 0, then on the same probability space one can define X and Y such that

∆n (X ,Y) = O (logn) , a.s. (32)

If, instead, we assume that E |X |r <∞ for some r > 2, we have

∆n (X ,Y) = o
(
n1/r

)
, a.s. (33)

The case 2 < r ≤ 3 is the Corollary in Major [34] and the case r > 3 is Theorem
2 of KMT [32].

Couplings such that almost sure statements as (32) and (33) hold allow one
to infer laws of the iterated logarithm [LILs] for the i.i.d. partial sums

∑n
i=1Xi

from the LIL for the partial sums of i.i.d. normal random variables
∑n

i=1 Yi.
These are special cases of strong approximations. To learn more about strong
approximations and their applications refer to M. Csörgő and Révész [12].

Corollary 3 is not a strong approximation. However, Proposition 1, upon
which it is based, and versions of it play a vital role in establishing strong ap-
proximations via quantile and conditional quantile coupling inequalities, com-
bined with dyadic construction schemes and blocking arguments.

The classical KMT approximation results for i.i.d. sums have been extended
by Sakhanenko to the independent but not necessarily i.d. case. Here are his
two main coupling inequalities. Quantile and conditional quantile inequalities
play an indispensable role in establishing these results.

Theorem A (Sakhanenko [46]). Let X = {Xn, n ≥ 1} be a sequence of inde-
pendent mean zero random variables such that Xn has variance 0 < σ2

n < ∞,
n ≥ 1. Suppose there exists a λ > 0 such that for all n ≥ 1

λE |Xn|3 exp (|Xn|) ≤ EX2
n. (34)

Then on the same probability space one can define X and Y such that for all
n ≥ 1

E exp (λA∆n (X ,Y)) ≤ 1 + λ

n∑

i=1

EX2
i , (35)

where A is a universal constant.
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Theorem B (Sakhanenko [48]). Let X = {Xn, n ≥ 1} be a sequence of inde-
pendent mean zero random variables such that Xn has variance 0 < σ2

n < ∞,
n ≥ 1. Suppose that for some r > 2, E |Xn|r < ∞ for all n ≥ 1. Then on the
same probability space one can define X and Y such that for all n ≥ 1

E |∆n (X,Y )|r ≤ (Cr)
r

n∑

i=1

E |Xi|r , (36)

where C is a universal constant.

Theorems A and B were announced in Sakhanenko [45]. Theorem A is proved
in Sakhanenko [46], where it is appears as Theorem 1, and Theorem B is es-
tablished in Sakhanenko [48], where it is stated and proved in Section 5 of his
paper as Corollary 5. (An earlier version with worse constants is given in Sakha-
nenko [47].) The above formulations of the Sakhanenko coupling inequalities
were adapted from those given in Shao [52]. (Actually our Theorem B implies
Shao’s version via Markov’s inequality.) He uses Theorems A and B to establish
strong approximations for partial sums of independent random variables, and
shows how they lead to LILs and strong laws.

2.2. Refined quantile inequalities

To formulate the results in this section we shall need the following regularity
condition. Let {Yn}n≥1 be a sequence of random variables, where each Yn has
cdf Fn. Assume that for every n ≥ 1 there is an εn > 0 such that

0 < Fn (−εn−) ≤ Fn (εn) < 1. (37)

Note that this assumption is very weak. It holds as long as EYn = 0 and
P (Yn = 0) < 1, for instance, when for each n ≥ 1, Yn is as in (5), with
X1, X2, . . . , i.i.d. X , where X is nondegenerate having expectation zero.

We shall show that the KMT quantile coupling for Yn as in (5) given in
Proposition [KMT] can be improved with a rate 1/

√
n, when X satisfies ad-

ditional regularity conditions. Our main result in this section is the following
refined KMT quantile coupling inequality.

Theorem 3. In addition to the assumptions of Proposition [KMT] suppose that
EX3 = 0 and its characteristic function v (t) satisfies

lim sup
|t|→∞

|v (t)| < 1. (38)

Then there exist C > 0 and ε > 0 such that for every integer n ≥ 1, with Yn
defined as in (5) and (4),

|Yn − Z| ≤ C

n
+
C

n
|Yn|3

for |Yn| ≤ ε
√
n.
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Notice that if the random variable X is symmetric then EX3 = 0. Also if
the absolutely continuous component of the distribution of the random variable
X is nonzero, one can readily conclude by the Riemann–Lebesgue lemma that
assumption (38) is satisfied. Theorem 3 will be an immediate consequence of
Theorem 4 and Proposition 2 below.

Our next result discloses a relationship between the existence of a certain
type of large deviation result and a sharp quantile coupling inequality. Such
a large deviation is often called a “Petrov expansion”. Actually, the expansion
that we use in this paper is even more “precise” than that of Petrov (see Remark
4), and perhaps it is better to call it a Saulis expansion (see pages 249 and 169
in Petrov [42]).

Note in this paper, we use the notation An (x) = O (an (x)) with x ∈ Dn,
where {Dn}n≥1 is a sequence of sets, to mean that there is an n0 ≥ 1 and C > 0
such that for all n ≥ n0

−Can (x) ≤ An (x) ≤ Can (x)

uniformly over all x ∈ Dn.

Theorem 4. Let Z be a standard normal random variable. Let Yn be a sequence
of random variables. Assume that there is a positive ε such that

P {Yn > x} = Φ(x) exp
(
O
(
n−1x4 + n−1

))
,

P {Yn < −x} = Φ(−x) exp
(
O
(
n−1x4 + n−1

))
,

where Φ (x) = 1 − Φ (x), O
(
n−1x4 + n−1

)
is uniform on the interval x ∈

[0, ε
√
n], and (37) holds. Then there exist C1 > 0 and ε1 > 0 such that for

every n ≥ 1, with Yn defined as in (4),

|Yn − Z| ≤ C1

n
+
C1

n
|Yn|3 (39)

for |Yn| ≤ ε1
√
n.

Remark 4. Let

a (n, x) = n−1/2x3 + n−1/2x+ n−1/2.

The Petrov expansion is obtained by replacing the O
(
n−1x4 + n−1

)
in Theorem

4 by O (a (n, x)) (see Theorem 1 in Chapter VIII of Petrov [42], or Theorem A
in Komlós, Major, and Tusnády [31]). In this case, as in Theorem 1 above, the
corresponding coupling inequality becomes

|Yn − Z| ≤ C1√
n
+
C1√
n
|Yn|2

(see Sakhanenko [46, 49]). The deviation term O
(
n−1x4 + n−1

)
improves the

O (a (n, x)) term with a rate 1/
√
n uniformly in x ∈ [0, a] for any a > 0, which

shows in the corresponding quantile coupling inequality.
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In some applications, it is more convenient to use the following corollary,
where the bound involves only the standard normal random variable Z. Zhou
[57] used such a coupling of a standardized Beta random variable with a stan-
dard normal random to establish asymptotic equivalence of Gaussian variance
regression and Gaussian white noise with a drift. He found that his analysis
was much easier when he used the following bound in his moment calculations.

Corollary 4. Under the assumptions of Theorem 4, there exist C > 0 and
ε > 0 such that for every n ≥ 1

|Yn − Z| ≤ C

n

(
1 + |Z|3

)
, whenever |Z| ≤ ε

√
n, (40)

where Yn is defined as in (4).

We have the following Saulis expansion (see page 188 in Saulis and Statule-
vicius [51]), which shows that the conditions of Theorem 4 hold when those of
Theorem 3 are satisfied. Note that the following proposition, when combined
with Theorem 4 establishes Theorem 3.

Proposition 2. Let X1, X2, . . . , Xn be i.i.d. X random variables for which
EX = 0, EX2 = 1, EX3 = 0 and E exp (a |X |) < ∞ for some a > 0. Further
assume that (38) holds. Then for Yn is as in (5) and (4), there exists a positive
constant η such that

P {Yn > x} = Φ(x) exp
(
O
(
n−1x4 + n−1

))
, (41)

P {Yn < −x} = Φ(−x) exp
(
O
(
n−1x4 + n−1

))
, (42)

in the interval 0 ≤ x ≤ η
√
n.

Proof. We only verify (42). The proof that (41) holds is similar. Saulis [50] shows
that there is a constant η > 0 such that for some C > 0 and n sufficiently large,

P {Yn < −x} ≤ Φ (−x) exp
(
Cn−1x4 + Cn−1

)

and
P {Yn < −x} ≥ Φ (−x) exp

(
−Cn−1x4 − Cn−1

)

for 1 ≤ x ≤ η
√
n, when the third moment of X is 0. See also page 249 of

Petrov [42].
Theorem 3 in page 169 of Petrov [42] together with EX3 = 0 imply

|P {Yn < −x} − Φ (−x)| = O

(
1

n

)

uniformly over 0 ≤ x ≤ 1, i.e., P (Yn < −x) = Φ (−x) exp
(
O
(
n−1

))
.

The proof of Proposition 2 can also be derived by arguments similar to those
in Section 8.2 of Petrov [42]. Also note that the above expansion holds when
the random variables Xi are replaced by −Xi. This implies that the expansion
above holds when “<” is replaced by “ ≤”.
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Other couplings are possible. Consider the following coupling result, which
can yield refinements when for each n ≥ 1 the distribution of Yn is concentrated
on a lattice.

Theorem 5. Let Z be a standard normal random variable. Let Yn be a sequence
of random variables. Assume that there exists a sequence of sets {Cn}n≥1 such
that P {Yn ∈ Cn} = 1 and a positive ε such that for all n ≥ 1,

P {Yn > x} = Φ(x) exp
(
O
(
n−1x4 + n−1/2

))
,

P {Yn < −x} = Φ(−x) exp
(
O
(
n−1x4 + n−1/2

))
,

where Φ (x) = 1−Φ (x), O(n−1x4 + n−1/2) is uniform in the set [0, ε
√
n]∩Cn,

and (37) holds. Moreover, the expansions above hold when “<” is replaced by
“ ≤”. Then there exist C1 > 0 and ε1 > 0 such that for every n ≥ 1, with Yn
defined as in (4),

|Yn − Z| ≤ C1√
n
+
C1

n
|Yn|3 (43)

for |Yn| ≤ ε1
√
n.

Results in Carter and Pollard [9] show that the assumptions of Theorem 5
hold when Yn is the standardized sum of i.i.d. Bernoulli(1/2) with

Cn =
{
2 (x− n/2) /

√
n : x = 0, 1, . . . , n

}
. (44)

Arguing as in the proof of Corollary 4, we obtain:

Corollary 5. Under the assumptions of Theorem 5, there exist C > 0 and
ε > 0 such that for every n ≥ 1, with Yn defined as in (4),

|Yn − Z| ≤ C√
n
+
C

n
|Z|3 , whenever |Z| ≤ ε

√
n.

Remark 5. If the sequence of random variables {Yn}n≥1 in Theorems 4 or 5
does not satisfy condition (37), then their conclusions hold for all large enough n.

To see what kind of couplings one can get for standardized partial sums of
i.i.d. X random variables when the condition that E exp (a |X |) < ∞ for some
a > 0 is replaced by the assumption that E exp {g (|X |)} < ∞ for a suitable
continuous increasing function g on [0,∞), refer to Appendix C.

3. Applications of quantile couplings

3.1. Applications to probability theory

Prob-example 1 (Partial sums) AssumeX,X1, . . . , Xn are i.i.d. with EX = 0,
0 < V arX = σ2 <∞, satisfying for some γ ≥ 0 and K ≥ σ

E |Xm| ≤ (m!)
1+γ

Km−2σ2, for m ≥ 3,
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or in terms of for p ≥ 2,

E |Xm| ≤ (m!)
(p+2)/4

Km−2σ2, for m ≥ 3. (45)

(Note that the case p = 2 is the classic Bernstein condition.) An application of
Theorem 3.1 in Saulis and Statulevičius [51] shows that the sequence of random
variables

Yn =d

n∑

i=1

Xi/
(
σ
√
n
)
,

satisfies the conditions of Corollary 1. The case p = 2, i.e. γ = 0, corresponds
to the conditions of Theorem [PS]. In fact, a random variable X having mean
zero and variance 0 < σ2 < ∞ satisfies (45) if and only if for some C > 0 and
d > 0 for all x ≥ 0

P {|X | > x} ≤ C exp
(
−dxβ

)
, (46)

where β = 4/(p+ 2). Refer to Appendix B for a proof.

If one also assumes that the characteristic function of X satisfies (38) then
one can apply an expansion due to Wolf [56] to show that the coupling (24) can
be improved to say that for positive constants C and λ, for all z ≥ 0 and n ≥ 1,

P
{
n1/2 |Yn − Z| > z

}
≤ C exp

(
−λz4/(p+2)

)
. (47)

For a sketch of how this done see Appendix C.

Note that in the following Prob-examples 2-5, it is understood that Kn = K,
εn = ε and ηn = η for all n ≥ 1, where K, ε and η are fixed positive constants.

Prob-example 2 (Self-normalized sums) Let X1, X2, . . . , be i.i.d. X , where X

has mean 0, variance 0 < σ2 <∞ and finite third absolute moment E |X |3 <∞.
For each integer n ≥ 1 consider the self-normalized sum

Yn =d
X1 + · · ·+Xn√
X2

1 + · · ·+X2
n

.

A special case of the results of Jing, Shao and Wang [29] (also see Theorem 7.1
in de la Peña, Lai and Shao [14]) shows that for 0 ≤ x ≤ √

n,

P{Yn > x}
1− Φ (x)

= exp (O (1)∆n,x) and
P{Yn < −x}

Φ (−x) = exp (O (1)∆n,x) , (48)

where

∆n,x =
(1 + x)

2
E |X |2 1 {|X | > σ

√
n/ (1 + x)}

σ2

+
(1 + x)

3
E |X |3 1 {|X | ≤ σ

√
n/ (1 + x)}

σ3
√
n

.
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Clearly

(1 + x)
3
E |X |3 1 {|X | ≤ σ

√
n/ (1 + x)}

σ3
√
n

≤ (1 + x)
3
E |X |3

σ3
√
n

.

Note that by Hölder’s inequality

E |X |2 1
{
|X | > σ

√
n/ (1 + x)

}
≤
(
E |X |3

)2/3 (
P
{
|X | > σ

√
n/ (1 + x)

})1/3
,

which by Markov’s inequality is

≤ (1 + x)E |X |3
σ
√
n

.

Thus
(1 + x)

2
E |X |2 1 {|X | > σ

√
n/ (1 + x)}

σ2
≤ (1 + x)

3
E |X |3

σ3
√
n

.

Hence

∆n,x ≤ 2 (1 + x)
3
E |X |3

σ3
√
n

≤ 8
(
1 + x3

)
E |X |3

σ3
√
n

.

Therefore by (48), conditions (10), (11), (12) and (13) hold for a suitable K > 0
and all n ≥ n0 for some integer n0 ≥ 1 and with ε = 1. Hence by Theorem 1 the
quantile inequality (15) holds whenever n ≥ n0 ∨

(
64K2

)
and (14) is satisfied

with η = 1 ∧ (1/ (8K)).

Now since (obviously) Yn = Op (1), we can apply Theorem 2.5 of Giné, Goetze
and Mason [20] to show that for suitable constants b > 0 and c > 0, for all z ≥ 0
and n ≥ 1

P {|Yn| ≥ z} ≤ c exp
(
−bz2

)
. (49)

Thus we conclude by Corollary 1 that (24) with p = 2 holds in this example.
Recall in Prob-example 1 that for inequality (24) with p = 2 to hold for

an unself-normalized sum σ−1Sn we required that X have a finite moment
generating function in a neighborhood of zero. Prob-example 2 shows that self-
normalizing dramatically reduces the assumptions needed for (24) with p = 2
to be valid.

Prob-example 3 (Finite sampling without replacement) Let

{a1,m, . . . , am,m, m ≥ 1}

be a triangular array of constants. For each integer m ≥ 1 let

µm =
a1,m + · · ·+ am,m

m
, σ2

m =
1

m

m∑

i=1

(ai,m − µm)
2



454 D. M. Mason and H. H. Zhou

and

β3,m =
1

m

m∑

i=1

|ai,m − µm|3 /σ3
m.

For each m ≥ 1 choose 1 ≤ nm ≤ m and set

pm =
nm

m
, qm = 1− nm

m
and ω2

m = mpmqm.

Assume that for all m ≥ m0 for some integer m0 ≥ 1,

0 < α1 ≤Mm := max
1≤i≤m

|ai,m − µm| ≤ α2 <∞, for 0 < α1 ≤ α2 <∞; (50)

0 < β1 ≤ β3,m ≤ β2 <∞, for 0 < β1 ≤ β2 <∞; (51)

0 < τ1 ≤ σm ≤ τ2 <∞, for 0 < τ1 ≤ τ2 <∞; (52)

and
0 < ρ1m ≤ mpmqm ≤ ρ2m, for 0 < ρ1 ≤ ρ2 <∞. (53)

For each integer m ≥ 1 let Sm denote the sum of X1, . . . , Xnm
taken by simple

random sampling without replacement from {a1,m, . . . , am,m}. Let

Ym =d
Sm − µm

σmωm
.

Assumptions (50), (51), (52) and (53) permit us to apply Theorem 1.1 of Hu,
Robinson and Wang [28] to get for a suitable constant K > 0 and ε > 0 that
(10), (11), (12) and (13) hold for all m ≥ m0. (For an earlier version of their
result where m = 2n and nm = n, n ≥ 1, refer to Lemma 3 of KMT [32].)
Therefore we can apply Theorem 1 (note we replace n by m) to show that the
quantile inequality (15) is valid whenever m ≥ m0∨

(
64K2

)
and (14) is satisfied

with η = 1 ∧ (1/ (8K)).

Notice that for all m ≥ m0 for some λ > 0

Mm

σmωm
≤ 1

λ
√
m
.

This bound combined with the Hoeffding [27] inequality for simple random
sampling from a finite population without replacement gives for all z ≥ 0 and
m ≥ m0

P {|Ym| ≥ z} ≤ 2 exp

(
−λ

2z2

2

)
. (54)

This allows us to apply Corollary 1 to conclude that (24) with p = 2 holds for
all m ≥ m0.

A more carefully analysis leads to an inequality of the form: For all z ≥ 0
and m ≥ m0,

P
{√

m |Ym − Z| > z
}
≤ Cm exp (−λmz) , (55)
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where Cm and λm are positive constants depending on m, ωm, σm, Mm and
β3,m. For a closely related result in the special case when ai,m ∈ {−1, 1} for
i = 1, . . . ,m, m ≥ 1, refer to Theorem 3.2 of Chatterjee [10].

Prob-example 4 LetX1, X2, . . . , be a stationary sequence of random variables
defined on a probability space (Ω,F , P ), satisfying EX1 = 0, V arX1 = 1. Set
Sn = X1 + · · ·+Xn and B2

n = V ar (Sn). Assume that for some σ2
0 > 0 we have

B2
n ≥ σ2

0n for all n ≥ 1. Set Yn =d Sn/Bn.

Let {F t
s : 1 ≤ s ≤ t <∞} be a family of σ−algebras such that (i) F t

s ⊂ F
for all 1 ≤ s ≤ t < ∞, (ii) F t1

s1 ⊂ F t2
s2 for all 1 ≤ s2 ≤ s1 ≤ t1 ≤ t2 < ∞, (iii)

σ {Xu, 1 ≤ s ≤ u ≤ t <∞} ⊂ F t
s.

Define the α−mixing, ϕ−mixing and ψ−mixing functions

α (s, t) = sup
A∈Fs

1
,B∈F∞

t

|P (A ∩B)− P (A)P (B)| ,

ϕ (s, t) = sup
A∈Fs

1
,B∈F∞

t

∣∣∣∣
P (A ∩B)− P (A)P (B)

P (A)

∣∣∣∣ ,

ψ (s, t) = sup
A∈Fs

1
,B∈F∞

t

∣∣∣∣
P (A ∩B)− P (A)P (B)

P (A)P (B)

∣∣∣∣ .

In these last two expressions it is understood that 0/0 := 0, whenever its occurs.
Introduce the mixing rates: For some M > 0 and µ > 0

(M.1) α (s, t) ≤ Me−µ(t−s), (M.2) ϕ (s, t) ≤ Me−µ(t−s), (M.3) ψ (s, t) ≤
Me−µ(t−s),

and the bounding conditions:

(B.1) |X1| ≤ C for some 0 < C <∞, (B.2) Eeθ|X1| <∞ for some θ > 0.

Applying results in Statulevičius and Jakimavičius [54] we get that inequalities
(23) and (24) hold for suitable positive constants and with p as indicated:

Under conditions (M.1) and (B.1), p = 6;
under conditions (M.1) and (B.2), p = 10;
under m−dependence and (B.1), p = 2;
under m−dependence and (B.2), p = 6;
under conditions (M.2) and (B.1), p = 2;
under conditions (M.2) and (B.2), p = 6;
under conditions (M.3) and (B.2), p = 2.

In the last three cases we assume that the random variables Xt are connected
by a Markov chain.

Prob-example 5 (Sample median) Let {Yn}n≥1 be a sequence of random vari-
ables of the form

Yn = 2
√
2n

{
Vn − 1

2

}
, (56)
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where Vn is a Beta (n, n) random variable. A long but elementary analysis based
on Stirling’s formula shows that this sequence satisfies the assumptions of The-
orem 1. For more about this example see Exp-example 2 in subsection 3.2.
Furthermore, since Vn is equal in distribution to the nth order statistic of 2n−1
independent Uniform (0, 1) random variable, i.e. the sample median, we get
using identity (11) on page 86 of Shorack and Wellner [53] that for any z ≥ 0

P {|Yn| > z} ≤ P

{
sup

0≤t≤1
|α2n−1 (t)| >

z

2

√
2n− 1√
2n

}
,

where α2n−1 (t) is defined as in (7), which by the Dvoretzky-Kiefer-Wolfowitz
inequality (see Massart [39]) is

≤ 2 exp
(
−z2 (2n− 1) / (4n)

)
≤ 2 exp

(
−z2/4

)
.

Thus we can apply Corollary 1 to get that inequality (24) with p = 2 is satisfied
for all n ≥ 1. Hence we can conclude that for positive constants C and λ, for all
z ≥ 0 and n ≥ 1,

P
{
n1/2 |Yn − Z| > z

}
≤ C exp (−λz) , (57)

where Yn is defined as in (56) and (4).

The coupling (57) can be used to give a fairly direct proof of Theorem [PS]
in the special case when X1, X2, . . . , are i.i.d. ω−1, where ω is exponential with
mean 1. This exponential special case is important in constructing a Brownian
bridge approximation to the uniform quantile process. For details refer to M.
Csörgő and Révész [12] and M. Csörgő, S. Csörgő, Horváth and Mason [13].

We conclude this subsection with a remark about probability spaces.

Remark 6. Using Proposition 1 one can construct a probability space on which
sit a square integrable martingale difference sequence (ξi,Fi)i=0,...,n satisfying
the conditions of Corollary 2 and a sequence of standard normal random vari-
ables {Zn}n≥1 such that for each n ≥ 1, (30) holds with Yn =

∑n
i=1 ξi/

√
n and

with Z replaced by Zn. Analogous statements are true for Prob-examples 1, 2
and 4. By the way, the probability space of Theorem [EP] is constructed in this
way.

3.2. Applications to asymptotic equivalence of experiments

Since Donoho and Johnstone [15], a Besov smoothness constraint has been stan-
dard in the study of the asymptotic optimally of nonparametric estimation pro-
cedures. More recently, under a sharp Besov smoothness assumption and via the
Carter and Pollard [9] improved Tusnády inequality, Brown, Carter, Low and
Zhang [BCLZ] [7] extended the asymptotic equivalence result of Nussbaum [41]
for density estimation. BCLZ [7] is considered to be an important paper in this
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area. We point out that the Tusnády inequality given in Proposition [T] may
not be strong enough to establish their results.

Quantile coupling inequalities of the kind we are discussing in this survey have
led to extensions of the asymptotic equivalence theory for density estimation in
Nussbaum [41] to general nonparametric estimation models (see Grama and
Nussbaum [23, 24, 25]). Among these is the important case of the asymptotic
equivalence of Gaussian variance regression to Gaussian white noise.

Zhou [57] and Golubev, Nussbaum and Zhou [21] obtained equivalence re-
sults for spectral density estimation. One of their crucial tools is a sharp quan-
tile coupling bound between a standardized Beta random variable and a stan-
dard normal random variable to obtain an asymptotic equivalence theory for
the Gaussian variance regression. This was the key to establish the asymptotic
equivalence of spectral density estimation and Gaussian white noise experiments
under a Besov smoothness constraint. One of its interesting applications is a cou-
pling of a sample median statistic with a standard normal random variable. It
improves upon the classical quantile coupling bounds with a rate 1/

√
n, under

certain smoothness conditions on the underlying distribution function and it
includes the Cauchy distribution as a special case. It is likely that this coupling
will be of independent interest because of the fundamental role played by the
sample median in statistics.

Here are some more detailed descriptions of these applications.

Exp-example 1 (Asymptotic equivalence of density estimation and Gaussian
white noise) Consider the two sequences of experiments:

En : y(1), . . . , y(n), i.i.d. with density f on [0, 1]

Fn : dyt = f1/2 (t) dt+
1

2
n−1/2dWt,

where Wt is a standard Wiener process on [0, 1]. The asymptotic equivalence
of these two sequences was established in BLCZ [7] under a Besov smoothness
constraint. The basic approach in their paper is the utilization of the classical
KMT [31] construction. To do this they needed the following coupling of a
standardized Binomial random variable and a standard normal random variable
Z. Let X1, X2, . . . , Xn be i.i.d. Bernoulli(1/2). Our Corollary 5 tells us that for
every n ≥ 1 there is a random variable Yn with

Yn =d
2 (X1 + · · ·+Xn − n/2)√

n

such that

|Yn − Z| ≤ C√
n
+
C

n
|Z|3

for |Z| ≤ ε
√
n , where C, ε > 0 do not depend on n (see also Carter and

Pollard [9]). This result was applied in combination with the KMT construction
to establish the asymptotic equivalence under a Besov smoothness condition and

a compactness in the Besov balls B
1/2
2,2 and B

1/2
4,4 assumption. If instead, one
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uses the classical Tusnády inequality, a stronger smoothness condition would be
needed to establish the asymptotic equivalence.

Exp-example 2 (Asymptotic equivalence of spectral density estimation and
Gaussian white noise) Consider the two sequences of experiments:

En : y(1), . . . , y(n), a stationary centered Gaussian sequence

with spectral density f

Fn : dyt = log f (t) dt+ 2π1/2n−1/2dWt,

where f has support in [−π, π]. The asymptotic equivalence between the se-
quence of Gaussian spectral density experiments En and the sequence of regres-
sion Gaussian white noise experiments Fn was established in Golubev, Nuss-
baum and Zhou [21] under a Besov smoothness constraint. In that paper, they
used a modification of the dyadic KMT [31]-type construction. Instead of ap-
plying a complicated KMT [31] type conditional quantile coupling for higher
resolutions, Golubev et al [21] found that in their setup it was easier to use a
construction based on the fact that if two X and Y are two independent χ2

n

random variables X and Y then for any y > 0,

(X |X + Y = y) =d yBn,

where Bn is a Beta (n/2, n/2) random variable. This permitted them to avoid
conditional quantile coupling by considering a coupling for a Beta random vari-
able, obtaining the following coupling inequality, which we get here by an appli-
cation of Corollary 4. Let Z be a standard normal random variable. For every
n, there is a mapping Tn : R 7→ R such that the random variable Bn = Tn(Z)
has the Beta (n/2, n/2) law and

∣∣∣∣n (Bn − 1/2)− n1/2

2
Z

∣∣∣∣ ≤
C√
n
+

C√
n
|Z|3 (58)

for |Z| ≤ εn, where C, ε > 0 do not depend on n (cf. Zhou [57]).

Exp-example 3 (Quantile coupling of Median statistics) Let X1, X2, . . . , Xn

be i.i.d. with density f and let X(1) ≤ · · · ≤ X(n) denote their order statistics.
For simplicity, we only consider odd integers n = 2k + 1 with k ≥ 0. Thus, in
this notation, the sample median Xmed = X(k+1). Assume that

f (0) > 0, f́ (0) = 0, and f ∈ C3

and there is an ǫ > 0 such that
∫

|x|ǫ f (x) dx <∞. (59)

Let Z be a standard normal random variable. Cai and Zhou [8] show that for
every n ≥ 1, there is a mapping Tn : R 7→ R such that Tn(Z) =d Xmed and

∣∣∣
√
4nf (0)Xmed − Z

∣∣∣ ≤ C
1

n

(
1 + |Z|3

)
, whenever |Z| ≤ ε

√
n,
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where C, ε > 0 do not depend on n. For the details of proof and for more gen-
eral discussions consult Cai and Zhou [8]. It can be shown that our Corollary 4
gives this result. They use this quantile inequality to study the nonparametric
location model with Cauchy noise and as well as wavelet regression. Donoho
and Yu [16] treated a similar problem, however it is not clear that the mini-
max property holds for their procedure. In the wavelet regression setting, Hall
and Patil [26] studied nonparametric location models and achieved the optimal
minimax rate, but under the more restrictive assumption of the existence of a
finite fourth moment. Cai and Zhou [8] need only to impose the existence of a
finite ǫ−moment (59). The noise can be general and unknown, but yet achieve
an optimal minimax rate of convergence. Without the assumptions f́ (0) = 0
or f ∈ C3, we can still obtain coupling bounds, but they may not be as tight
as the above bound. The tightness of the upper bound affects the underlying
smoothness condition that they require in deriving their asymptotic results.

4. Proofs

4.1. The underlying approach to our quantile inequalities

Underlying our quantile inequalites is the following simple observation. Let Y
be a random variable with cdf F and as usual let Φ be the cdf of the standard
normal random variable Z. Observe trivially that for some y and u (y) > 0

Φ (y − u (y)) ≤ F (y−) ≤ F (y) ≤ Φ (y + u (y)) (60)

if and only if

y − u (y) ≤ Φ−1 (F (y−)) ≤ Φ−1 (F (y)) ≤ y + u (y) . (61)

Thus if there is a z such that y = F−1 (Φ (z)) we get from (61) and the fact
that for all s ∈ (0, 1)

F
(
F−1 (s)−

)
≤ s ≤ F

(
F−1 (s)

)

that with y = F−1 (Φ (z)) and s = Φ(z),

F−1 (Φ (z))− u
(
F−1 (Φ (z))

)
≤ z ≤ F−1 (Φ (z)) + u

(
F−1 (Φ (z))

)
. (62)

Now let C be the set of y such that inequality (60) holds and define Y =
F−1 (Φ (Z)). Clearly whenever Y ∈ C, we have

|Y − Z| ≤ u (Y ) .

All of our quantile inequalities will follow this approach. For instance, Theorem
1 provides conditions under which (60) holds with y = Yn = F−1

n (Φ (Z)) and

u (Yn) =
2KnY

2

n√
n

+ 2Kn√
n
. For more about this approach see Sakhanenko [49].
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4.2. Proofs for the KMT quantile inequality section

4.2.1. Proof of Theorem 1

We shall infer Theorem 1 from the following technical result.

Proposition 3. Assume there exist a sequence Kn > 0, a sequence 0 < εn < 1
and an integer n0 ≥ 1 such that for all n ≥ n0 and 0 < z ≤ εn

√
n inequalities

(10), (11), (12) and (13) hold. Then whenever n ≥ n0 ∨
(
64K2

n

)
and |x| ≤

ηn = εn ∧ (1/ (8Kn)) we have

Φ(
√
nx+ u) ≥ Fn(

√
nx) ≥ Fn(

√
nx−) ≥ Φ(

√
nx− u), (63)

where

u = 2Kn

√
nx2 +

2Kn√
n
. (64)

To see how our theorem follows from this proposition, set Yn =
√
nx into the

(63) and (64). Therefore whenever n ≥ n0 ∨
(
64K2

n

)
and

|Yn| ≤ ηn
√
n, (65)

we have
Φ(Yn + u) ≥ Fn(Yn) ≥ Fn(Yn−) ≥ Φ(Yn − u),

where

u =
2KnY

2
n√

n
+

2Kn√
n
.

As pointed out in subsection 4.1, this inequality implies

−2KnY
2
n√

n
− 2Kn√

n
≤ Yn − Z ≤ 2KnY

2
n√

n
+

2Kn√
n
.

Thus (15) holds. Hence the theorem will be proved as soon as we have established
the proposition.

4.2.2. Proof of Proposition 3

The proof will follow from a number of lemmas.

Lemma 1. For any x > 0

1

x

(
1− 1

x2

)
≤ 1− Φ(x)

φ(x)
≤ 1

x
. (66)

(This is the classic Mill’s ratio. Refer, for instance, to Shorack and Wellner
[53].) We can readily infer from (66) and some simple bounds that for some
c > 1 and all x ≥ 0,

1

c (1 + x)
≤ 1− Φ(x)

φ(x)
≤ c

1 + x
. (67)
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Lemma 2. The function

Ψ1(x) :=
φ(x)

1− Φ(x)
is increasing (68)

and the function

Ψ2(x) :=
φ(x)

Φ(x)
is decreasing. (69)

Proof. First consider (69). We see that

Ψ′
2(x) =

φ′(x)Φ(x) − φ2(x)

Φ2(x)
.

Now
φ′(x)Φ(x) − φ2(x) = (2π)−1 exp(−x2)g(x),

where

g(x) = −x exp(x2/2)
∫ x

−∞
exp(−t2/2)dt− 1.

When x ≥ 0, obviously g(x) < 0, and when x < 0, (66) implies that g(x) ≤
0. Thus we have (69). Assertion (68) follows from the fact that Ψ1(x) :=
φ(−x)/Φ(−x) = Ψ2(−x).

Notice that (66) and (68) imply that for x > 0, we have

φ(x)

1− Φ(x)
> max

{
x,

2√
2π

}
≥ 1

2

(
x+

2√
2π

)
. (70)

The following lemma can be inferred from Lemma (A.8) in Einmahl [18] with
the 8 there replaced by an unspecified constant. To keep the presentation self-
contained we provide here a direct proof. In any case, we need this lemma with
its present constants in order to establish Theorem 1 as it is stated.

Lemma 3. For all 0 < A <∞, n ≥ 64A2 and 0 ≤ x ≤ 1/ (8A) we have

log

(
Φ(−√

nx+ u)

Φ(−√
nx)

)
= log

(
1− Φ(

√
nx− u)

1− Φ(
√
nx)

)
≥ A(nx3 + n−1/2) (71)

and

log

(
Φ(−√

nx− u)

Φ(−√
nx)

)
= log

(
1− Φ(

√
nx+ u)

1− Φ(
√
nx)

)
≤ −A(nx3 + n−1/2), (72)

where u = 2A(
√
nx2 + n−1/2).

Proof. We shall treat (71) first. Notice that by the mean value theorem

log

(
1− Φ(

√
nx− u)

1− Φ(
√
nx)

)
=

uφ(ξ)

1− Φ(ξ)
, (73)

where ξ ∈ [
√
nx− u,

√
nx].
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Choose any A > 0.

(i) First assume that 0 ≤ x ≤ n−1/2.

Obviously we have ξ ∈ [−4A/
√
n, 1]. Thus by (68)

uφ(ξ)

1− Φ(ξ)
≥ uφ(−4A/

√
n)

1− Φ(−4A/
√
n)

= 2A(
√
nx2 + n−1/2)Ψ1(−4A/

√
n),

which since
√
nx ≤ 1 is

≥ 2A(nx3 + n−1/2)Ψ1(−4A/
√
n). (74)

(ii) Now assume that (8A)−1 ≥ x > n−1/2. Since x2n > 1, we have

√
nx− u =

√
nx− 2A(

√
nx2 + n−1/2) ≥

√
nx[1 − 4Ax] ≥

√
nx/2 > 0, (75)

so we can apply (66) to get

φ(
√
nx− u)

1− Φ(
√
nx− u)

≥
√
nx− u.

This combined with (68), (73) and (75) gives

log

(
1− Φ(

√
nx− u)

1− Φ(
√
nx)

)
≥ u(

√
nx− u)

≥ u
√
nx/2 = A(nx3 + x) ≥ A(nx3 + n−1/2). (76)

Choose any integer n such that −4A/
√
n ≥ −1/2. Notice that for such n we

also have
Ψ1(−4A/

√
n) ≥ Ψ1(−1/2) = .5091 > .5. (77)

Hence by inequalities (74), (76) and (77) we see that for all n ≥ 64A2 and
0 ≤ x ≤ 1/ (8A) (see (i) and (ii)) inequality (71) holds.

Next consider (72). Choose n ≥ 64A2 and 0 ≤ x ≤ 1/ (8A) . We need only
show that

log

(
1− Φ(

√
nx)

1− Φ(
√
nx+ u)

)
≥ log

(
1− Φ(

√
nx− u)

1− Φ(
√
nx)

)
. (78)

Now

log

(
1− Φ(

√
nx− u)

1− Φ(
√
nx)

)
=

uφ(ξ1)

1− Φ(ξ1)
,

where ξ1 ∈ [
√
nx− u,

√
nx] and

log

(
1− Φ(

√
nx)

1− Φ(
√
nx+ u)

)
=

uφ(ξ2)

1− Φ(ξ2)
,

where ξ2 ∈ [
√
nx,

√
nx+ u].

Since ξ1 ≤ ξ2, (78) follows from (68). Assertion (72) follows from (71).
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We are now ready to complete the proof of Proposition 3. Suppose n ≥
n0∨

(
64K2

n

)
. By assumptions (10), (11), (12), (13) and Lemma 3 we can choose

A = Kn, and ηn = εn ∧ (1/ (8Kn)) such that for all 0 ≤ x ≤ ηn we have

Fn(−
√
nx) ≥ Φ(−

√
nx) exp(−Kn(nx

3 + n−1/2)), (79)

Fn(−
√
nx) ≤ Φ(−

√
nx) exp(Kn(nx

3 + n−1/2)), (80)

1− Fn(
√
nx) ≥ (1 − Φ(

√
nx)) exp(−Kn(nx

3 + n−1/2)), (81)

1− Fn(
√
nx) ≤ (1− Φ(

√
nx)) exp(Kn(nx

3 + n−1/2)), (82)

and (71) and (72) hold, which imply that for all 0 ≤ x ≤ ηn

Φ(−
√
nx+ u) ≥ Fn(−

√
nx) ≥ Fn(−

√
nx−) ≥ Φ(−

√
nx− u) (83)

and

1− Φ(
√
nx− u) ≥ 1− Fn(

√
nx−) ≥ 1− Fn(

√
nx) ≥ 1− Φ(

√
nx+ u). (84)

In other words, for all |x| ≤ ηn, we have

Φ(
√
nx+ u) ≥ Fn(

√
nx) ≥ Fn(

√
nx−) ≥ Φ(

√
nx− u),

where u = 2Kn
√
nx2 + 2Kn√

n
. This completes the proof of the proposition.

4.2.3. Proof of Corollary 1

We know by Theorem 2 that there exist an 0 < L < ∞, an 0 < η < ∞ and an
integer n0 ≥ 1 such that for all integers n ≥ n0 ∨

(
64L2n1−2/p

)
, whenever (21)

holds, we have
n1/p |Yn − Z| ≤ 2LY 2

n + 2L. (85)

We require a number of lemmas.

Lemma 4. For every A > 0 there exist C1 > 0 and λ1 > 0 such that for all
n ≥ 1 and 0 ≤ z ≤ An2/p we have

P
{
Y 2
n > z

}
≤ C1e

−λ1z. (86)

Proof. By (23) we have

P
{
Y 2
n > z

}
= P

{
|Yn| > z1/2

}

≤ c exp

(
−bz

(
1 + a

(
n−1/p

√
z
)2p/(p+2)

)−1
)

≤ c exp

(
−bz

(
1 + aAp/(p+2)

)−1
)
.

Set C1 = c and λ1 = b
(
1 + aAp/(p+2)

)−1
.
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Lemma 5. For every A > 0 there exist positive numbers C2 > 0 and λ2 > 0
such that for all n ≥ 1, k ≥ 1 and 0 ≤ z ≤ An2/p we have

P
{
|Yn| > ηn1/p

}
≤ C2 exp (−zλ2) . (87)

Proof. Applying (23), we see that

P
{
|Yn| > ηn1/p

}
≤ c exp

(
− bη2n2/p

1 + aη2p/(p+2)

)
,

which for C2 = c, λ2 = A−1bη2
(
1 + aη2p/(p+2)

)−1
and any 0 < z ≤ An2/p and

all n ≥ 1 is
≤ C2 exp (−λ2z) .

Combining Lemmas 4 and 5 with inequality (22) we readily infer the following
lemma:

Lemma 6. For every A > 0 there exist positive numbers C3 > 0 and λ3 > 0
such that for all n ≥ n0 ∨

(
64K2

)
and 0 ≤ z ≤ An2/p we have

P
{
n1/p |Yn − Z| > z

}
≤ C3 exp(−λ3z). (88)

We shall need two more lemmas.

Lemma 7. For every A > 0 there exist positive numbers C4 > 0 and λ4 > 0
such that for all n ≥ 1, and z > An2/p we have

P
{∣∣∣n1/pYn

∣∣∣ > z
}
≤ C4 exp(−λ4z4/(p+2)). (89)

Proof. The proof is an easy consequence of inequality (23), which gives

P
{
|Yn| > z/n1/p

}
≤ c exp

(
− bz2/n2/p

1 + a
(
n−2/pz

)2p/(p+2)

)

≤ c exp

(
−bz

2/n2/p

2

)
+ c exp

(
− bz2−2p/(p+2)

2an−4/(p+2)+2/p

)

which since z ≥ An2/p is

≤ c exp

(
−bzA

2

)
+ c exp

(
−bz

4/(p+2)
(
n2/p

)(p−2)/(p+2)

2a

)
,

which, in turn, since p ≥ 2 is

≤ c exp

(
−bzA

2

)
+ c exp

(
−bz

4/(p+2)

2a

)
.
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Lemma 8. For every A > 0 there exist positive numbers C5 > 0 and λ5 > 0
such that for all n ≥ 1, and z > An2/p we have

P
{∣∣∣n1/pZ

∣∣∣ > z
}
≤ C5 exp(−λ5z). (90)

Proof. Inequality (90) is readily inferred from the elementary bound

P
{∣∣∣n1/pZ

∣∣∣ > z
}
≤ 2 exp

(
−z2/

(
2n2/p

))
, for all z ≥ 0.

The proof of inequality (24) for n ≥ n0 is now completed by using some
routine bounds on the probability in (24) and then applying Lemmas 6, 7 and 8.
For the case 1 ≤ n < n0, (should it be that n0 > 1), we establish that (24) holds
uniformly in 1 ≤ n < n0 by using the elementary inequality

P
{
n1/p |Yn − Z| > z

}
≤ P

{
n
1/p
0 |Yn| > z/2

}
+ P

{
n
1/p
0 |Z| > z/2

}
.

Remark 7. Actually the proof shows that for suitable constants C > 0 and
λ > 0,

P
{
n1/p |Yn − Z| > z

}

≤ C

(
exp (−λz) ∨ exp

(
−λz4/(p+2)

(
n2/p

)(p−2)/(p+2)
))

.

4.2.4. Proof of Corollary 2

Assumptions (25) and (26) allow us to apply the results in Grama and Haeusler
[22] to get the following large-deviation result: For x in the range 1 ≤ x ≤ α+n

1/4

(for α+ > 0 sufficiently small), one has

P{Yn > x}
1− Φ (x)

= exp

(
O

(
x3√
n

)){
1 +O

(
(M + L)x log n√

n

)}
.

This implies that for some constant D1 > 0, all large enough n and 1 ≤ x ≤
α+n

1/4

exp

(
−D1 logn

(
x3 + 1√

n

))
≤ P{Yn > x}

1− Φ (x)
≤ exp

(
D1 logn

(
x3 + 1√

n

))
.

Furthermore assumptions (25), (26) and (27) permit us to apply the corollary
in Bolthausen [5] to infer that for some constant D2 > 0 for all n ≥ 2

sup
x∈R

|P{Yn > x} − (1− Φ (x))| ≤ D2 logn√
n

.
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This implies that for some D3 > 0 for all 0 ≤ x ≤ 1

exp

(−D3 logn√
n

)
≤ P{Yn > x}

1− Φ (x)
≤ exp

(
D3 logn√

n

)
.

Thus for some D+ > 0, all large enough n and 0 ≤ x ≤ α+n
1/4

exp

(
−D+ logn

(
x3 + 1√

n

))
≤ P{Yn > x}

1− Φ (x)
≤ exp

(
D+ logn

(
x3 + 1√

n

))
.

Similarly we get for some α− > 0, D− > 0, all large enough n and 0 ≤ x ≤
α−n1/4

exp

(
−D− logn

(
x3 + 1√

n

))
≤ P{Yn < −x}

Φ (−x) ≤ exp

(
D− logn

(
x3 + 1√

n

))
.

Thus (10), (11), (12) and (13) are satisfied with Kn = D logn for some D > 0
and with εn = α/ 4

√
n for some α > 0, and for all n ≥ n0 for some integer n0 ≥ 2.

Applying Theorem 1, whenever n ≥ n0 ∨ (64D2 (logn)
2
), we get (29), namely,

|Yn − Z| ≤ 2D logn
(
Y 2
n + 1

)
/
√
n,

whenever |Yn| ≤ ηn
√
n = α 4

√
n with ηn = α/ 4

√
n. Furthermore, note that n ≥

n0 ∨ (64D2 (logn)2) for all n ≥ n1 for some n1 ≥ 2.
Next consider (30). Notice that for n ≥ 2

4
√
n |Yn − Z| ≤

√
n |Yn − Z| / logn,

which for |Yn| ≤ α 4
√
n and n ≥ n1 is

≤ 2D
(
Y 2
n + 1

)
.

Also
P
{
Y 2
n > z

}
= P

{
|Yn| >

√
z
}
,

which by Azuma’s inequality is

≤ 2 exp
(
−z/

(
2L2

))
.

Applying Azuma’s inequality again we have

P
{√

n |Yn| >
√
nα 4

√
n
}
≤ 2 exp

(
−α2

√
n/
(
2L2

))
, (91)

which for 0 ≤ z ≤ √
n is

≤ C exp
(
−α2z/

(
2L2

))
.

Once more using Azuma’s inequality we get for z >
√
n

P
{

4
√
n |Yn| > z/2

}
≤ 2 exp

(
−z2/

(
8L2

√
n
))

≤ 2 exp
(
−z/

(
8L2

))

and an elementary bound gives for z >
√
n

P
{

4
√
n |Z| > z/2

}
≤ 2 exp

(
−z2/

(
4
√
n
))

≤ 2 exp (−z/4) .
It is now easy to conclude from these inequalities that (30) holds for appropriate
C > 0 and λ > 0.
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4.3. Proofs for the refined quantile inequalities section

4.3.1. Proof of Theorem 4

The following is a detailed proof of Theorem 4. It is a modification of the proof
for the classical case, which was sketched in Komlós, Major, and Tusnády [31].

Recall the definition of Yn as in (4). Without loss of generality, we assume
that 0 ≤ Yn ≤ ε

√
n, because the derivation for −ε√n ≤ Yn ≤ 0 is similar.

Equation (39) is equivalent to

−C1
1

n

(
1 + |Yn|3

)
≤ Yn − Z ≤ C1

1

n

(
1 + |Yn|3

)
,

i.e.

Φ

(
Yn − C1

1

n

(
1 + |Yn|3

))
≤ Φ (Z) ≤ Φ

(
Yn + C1

1

n

(
1 + |Yn|3

))
.

Define Fn (x−) = P (Yn < x). From the definition of Yn in (4) we have Fn (Yn−) ≤
Φ (Z) ≤ Fn (Yn). Thus we need only to show

Φ

(
Yn − C1

1

n

(
1 + |Yn|3

))
(92)

≤ Fn (Yn−) ≤ Fn (Yn) ≤ Φ

(
Yn + C1

1

n

(
1 + |Yn|3

))
,

i.e.

log

(
1− Φ

(
x− C1

1
n

(
1 + x3

))

1− Φ (x)

)

≥ log
1− Fn (x−)

1− Φ (x)
≥ log

1− Fn (x)

1− Φ (x)

≥ log

(
1− Φ

(
x+ C1

1
n

(
1 + x3

))

1− Φ (x)

)
,

whenever 0 ≤ x ≤ ε
√
n.

Lemma 9 shows that Equation (92) holds when n ≤ n0 for any fixed integer
n0 ≥ 1. It is then enough to consider the n sufficiently large case. From the
assumptions of Theorem 4, we know that for 0 ≤ x ≤ ε

√
n,

max

{∣∣∣∣log
1− Fn (x)

1− Φ (x)

∣∣∣∣ ,
∣∣∣∣log

1− Fn (x−)

1− Φ (x)

∣∣∣∣
}

≤ C
(
n−1x4 + n−1

)

for some C > 0. Thus it suffices to show there is a C1 > 0 and a small enough
ε1 > 0 such that uniformly in 0 ≤ x ≤ ε1

√
n,

log

(
1− Φ

(
x− C1

1
n

(
1 + x3

))

1− Φ (x)

)
≥ C

(
n−1x4 + n−1

)
(93)
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and

−C
(
n−1x4 + n−1

)
≥ log

(
1− Φ

(
x+ C1

1
n

(
1 + x3

))

1− Φ (x)

)
.

We shall only show the first part of the inequality above due to the symmetry
of the equation. (See the proof of inequality (72) in Lemma 3.)

We shall first verify that the first part of the equation above is satisfied
under the condition x−C1

1
2n

(
1 + x3

)
≤ 0 and 0 ≤ x ≤ ε1

√
n (we will see later

the value of C1 can be specified as 18
√
2πC). It implies x ≤ C1/n ≤ 1 for n

sufficiently large under the assumption that C1ε
2
1 ≤ 1, which holds by choosing

ε1 > 0 sufficiently small. Then for 0 ≤ x ≤ C1/n ≤ 1 and n sufficiently large,
we have

log

(
1− Φ

(
x− C1

1
n

(
1 + x3

))

1− Φ (x)

)
≥ log

(
1− Φ

(
x− C1

1
n

(
1 + x3

))

1− Φ (0)

)

= log

(
1 +

[
1− 2Φ

(
x− C1

1

n

(
1 + x3

))])

≥ 1

2
− Φ

(
x− C1

1

n

(
1 + x3

))
,

where the last inequality follows from the fact log (1 + y) ≥ y/2 for 0 ≤ y ≤ 1.
Write

1

2
− Φ

(
x− C1

1

n

(
1 + x3

))
= Φ

(
C1

1

n

(
1 + x3

)
− x

)
− Φ (0) .

Since 0 ≤ C1
1
n

(
1 + x3

)
≤ 2 and φ (u) ≥ 1

9
√
2π

for 0 ≤ u ≤ 2, and keeping in

mind that we are assuming that x−C1
1
2n

(
1 + x3

)
≤ 0, the mean value theorem

implies

Φ

(
C1

1

n

(
1 + x3

)
− x

)
− Φ (0) ≥ 1

9
√
2π

(
C1

1

n

(
1 + x3

)
− x

)

≥ 1

9
√
2π

· C1

2n

(
1 + x3

)
≥ C1

18
√
2π

(
n−1x4 + n−1

)
,

which is more than C
(
n−1x4 + n−1

)
whenever C1 ≥ 18

√
2πC. Thus equation

(93) is established in the case of x− C1
1
2n

(
1 + x3

)
≤ 0.

Now we consider the case x − C1
1
2n

(
1 + x3

)
≥ 0. The mean value theorem

tells us there is a number ξ between x and x− C1

4n

(
1 + x3

)
such that

log

(
1− Φ

(
x− C1

1
n

(
1 + x3

))

1− Φ (x)

)

≥ log

(
1− Φ

(
x− C1

4n

(
1 + x3

))

1− Φ (x)

)

=
C1

4

1

n

(
1 + x3

) φ (ξ)

1− Φ (ξ)
.
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From (70) and (68) we have

log

(
1− Φ

(
x− C1

4n

(
1 + x3

))

1− Φ (x)

)

≥ C1

4n

(
1 + x3

)
· 1
2

(
x− C1

4n

(
1 + x3

)
+

2√
2π

)

≥ C1

4

1

n

(
1 + x3

)
· 1
2

(
x

2
+

2√
2π

)
≥ C

n
x4 +

C

n
,

whenever C1 ≥ 16C.
Putting everything together, we establish that (93) holds for all large enough

n ≥ 1. To complete the proof recall that we assume (37), which allows us to
apply Lemma 9 in the appendix to conclude that (93) holds for all 1 ≤ n ≤ n0

for any fixed n0 ≥ 1. This finishes the proof of the theorem.

4.3.2. Proof of Corollary 4

Set Yn (z) = Hn(Φ(z)). Let us rewrite (39) as

|Yn (z)− z| ≤ C1

n
+
C1

n
|Yn (z)|3 , (94)

whenever |Yn (z)| ≤ ε1
√
n. Obviously inequality (94) still holds, whenever for

0 < ε2 ≤ ε1, |Yn (z)| ≤ ε2
√
n. Let us choose ε2 small enough such that C1ε

2
2 <

1/2. When |Yn (z)| ≤ ε2
√
n, we have from (94)

|Yn (z)− z| ≤ C1

n
+

1

2
|Yn (z)| ,

which implies by the triangle inequality

|Yn (z)| − |z| ≤ C1

n
+

1

2
|Yn (z)| ,

i.e.,

|Yn (z)| ≤ 2C1

n
+ 2 |z| , (95)

so we have for some C2 > 0,

|Yn (z)− z| ≤ C1

n
+
C1

n

(
2C1

n
+ 2 |z|

)3

≤ C2

n

(
1 + |z|3

)
.

Suppose Yn (zn) = εn (zn)
√
n > 0 with 0 < εn (zn) ≤ ε2. We know that zn ≥ 0

from the definition of the quantile coupling Yn (z) = Hn(Φ(z)), and from (95)
we have

zn ≥ εn (zn)

2

√
n− C1

n
.
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We also see that since Yn (z) is an increasing function of z, we have Yn (z) ≤
εn (zn)

√
n ≤ ε2

√
n, whenever z ≤ εn(zn)

2

√
n − C1

n . Similarly we may show

Yn (z) ≥ −εn (zn)
√
n ≥ −ε2

√
n, whenever z ≥ − εn(zn)

2

√
n+ C1

n . Thus

|Yn (z)| ≤ ε2
√
n, whenever |z| ≤ εn (zn)

2

√
n− C1

n
. (96)

Since Yn →d N (0, 1) we know that for all n ≥ n0 for some n0 ≥ 1 we can choose
ε2 ≥ εn (zn) ≥ ε3 = ε2/2. Hence

|Yn (z)| ≤ ε2
√
n, whenever |z| ≤ ε3

2

√
n− C1

n
. (97)

Let ε4 = ε3/4. We have ε4
√
n < ε3

2

√
n− C1

n for n ≥ n1 = n0 ∨
(
4C1

ε3

)2/3
. Thus

{
|z| ≤ ε4

√
n
}
⊂
{
|z| ≤ ε3

2

√
n− C1

n

}
⊂
{
|Yn (z)| ≤ ε2

√
n
}
,

so we have

|Yn (z)− z| ≤ C2

n

(
1 + |z|3

)
, whenever |z| ≤ ε4

√
n and n ≥ n1.

When |z| ≤ ε4
√
n and n ≤ n1, we can infer from (95) that

|Yn (z)| ≤ 2C1

n
+ 2 |z| ≤ 2C1

n
+ 2ε4

√
n ≤ C3/n

with C3 = 2C + 2ε4 (n1)
3/2

. Thus we get

|Yn (z)− z| ≤ C3

n

(
1 + |z|3

)
, whenever |z| ≤ ε4

√
n.

Setting C = C1 ∨ C2 and ε = ε4 completes the proof.

4.3.3. Proof of Theorem 5

The proof of Theorem 5 follows the same lines as that of Theorem 4. Repeating

the first part of the proof of Theorem 4 with 1
n + |Yn|3

n replaced by 1√
n
+ |Yn|3

n

and 1
n+

|x|3
n by 1√

n
+ |x|3

n and using the fact that by the assumptions of Theorem

5 for some C > 0, uniformly in n ≥ 1 and for all x ∈ [0, ε
√
n] ∩ Cn

max

∣∣∣∣log
1− Fn (x−)

1− Φ (x)
, log

1− Fn (x)

1− Φ (x)

∣∣∣∣ ≤ C
(
n−1x4 + n−1/2

)
,

we see that to complete the proof it is enough to show there is C1 > 0 such
uniformly in x ∈ [0, ε1

√
n], for a small enough ε1 > 0 all large enough n

log



1− Φ

(
x− C1

(
1√
n
+ x3

n

))

1− Φ (x)


 ≥ C

(
n−1x4 + n−1/2

)
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and

−C
(
n−1x4 + n−1/2

)
≥ log




1− Φ

(
x+ C1

(
1√
n
+ x3

n

))

1− Φ (x)



 .

The remainder of the proof is then nearly identical to that of Theorem 4. Replace

everywhere in this part of the proof of Theorem 4, C1

(
1
n + x3

n

)
by C1

(
1√
n
+ x3

n

)

and note that now when x − C1

2

(
1√
n
+ x3

n

)
≤ 0, 0 ≤ x ≤ ε1

√
n and C1ε

2
1 ≤ 1,

then 0 ≤ x ≤ C1/
√
n ≤ 1 for n sufficiently large. The rest of the details are the

same.

Appendix A

This result is an extension of Lemma 1.2.1 of Mason [37], where Binomial dis-
tributions were considered.

Lemma 9. Under condition (37), for any fixed n0 ≥ 1 there exist 0 < ε < ∞
and 0 < C <∞ such that for all x ∈

[
−ε√n0, ε

√
n0

]
and 1 ≤ n ≤ n0 we have

Φ

(
x− C

1

n

(
1 + |x|3

))
≤ Fn (x−) ≤ Fn (x) ≤ Φ

(
x+ C

1

n

(
1 + |x|3

))
, (98)

exp
(
−C

(
x4 + 1

)
/n
)
≤ 1− Fn (x)

1− Φ (x)
≤ exp

(
C
(
x4 + 1

)
/n
)

(99)

and

exp
(
−C

(
x4 + 1

)
/n
)
≤ Fn (x−)

Φ (x−)
≤ exp

(
C
(
x4 + 1

)
/n
)
. (100)

Proof. By (37) for any 1 ≤ n ≤ n0 we can choose an εn > 0 such that

0 < Fn (−εn−) ≤ Fn (εn) < 1.

Define ε = 1√
n0

(
1
2 ∧minn≤n0

εn
)
. Then for all x ∈

[
−ε√n0, ε

√
n0

]
and 1 ≤ n ≤

n0 we have

0 < min
n≤n0

Fn (−εn−) ≤ Fn (−εn−) ≤ Fn (x−)

≤ Fn (x) ≤ Fn (εn) ≤ max
n≤n0

Fn (εn) < 1.

Choose C sufficiently large such that

Φ

(
1

2
− C

n0

)
< min

n≤n0

Fn (−εn−) ≤ max
n≤n0

Fn (εn) < Φ

(
−1

2
+
C

n0

)
,

exp (−C/n0) <
1−maxn≤n0

Fn (εn)

1− Φ
(
− 1

2

) ≤ 1−minn≤n0
Fn (−εn−)

1− Φ
(
1
2

) < exp (C/n0)
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and

exp (−C/n0) <
minn≤n0

Fn (−εn−)

Φ
(
1
2

) ≤ maxn≤n0
Fn (εn)

Φ
(
− 1

2

) < exp (C/n0) .

Since for any x ∈
[
−ε√n0, ε

√
n0

]
and 1 ≤ n ≤ n0,

x− C
1

n

(
1 + |x|3

)
≤ 1

2
− C

n0
, and x+ C

1

n

(
1 + |x|3

)
≥ −1

2
+
C

n0
,

we have established (98). Similarly from the fact

−C
(
x4 + 1

)
/n ≤ −C/n0, i.e., C

(
x4 + 1

)
/n > C/n0,

we get (99) and (100).

Remark 8. It is easy to see from the proof that Lemma 9 can be general-
ized with Φ

(
x + C 1

n (1 + |x|3)
)
in (98) replaced by Φ

(
xa1 ± C 1

na2
(1 + |x|a3)

)

and exp
(
C
(
x4 + 1

)
/n
)
in (99) and (100) replaced by exp (±C (|x|a4 + 1) /na5),

where constants ai > 0, 1 ≤ i ≤ 5, which implies the requirement “n ≥ n0” in
most of statements of this paper can be replaced by “n ≥ 1” as long as (37)
holds.

Appendix B

In this subsection we prove the equivalence of (45) and (46). We shall assume
that X satisfies EX = 0, 0 < V arX = 1 <∞, and for some γ ≥ 0 and K ≥ 1,

E |X |m ≤ (m!)
1+γ

Km−2, for m ≥ 3. (101)

Notice that (101) implies that for t > 0,

tm

m!
E |X |m/(1+γ) ≤ tm

m!
(E |X |m)

1/(1+γ) ≤ tm
(
K1/(1+γ)

)m−2

.

Thus there exists a 0 < δ < 1 such that

E exp
(
δ |X |1/(1+γ)

)
=: C (δ) <∞. (102)

Next we shall prove that (102) holding for some 0 < δ < 1 implies (101) for
some K > 0. (The argument is similar to the proof of Lemma 3 in Amosova
[1].) Towards showing this, note that for any m ≥ 2

E |X |m ≤
(
E |X |⌈m(1+γ)⌉/(1+γ)

)m(1+γ)/⌈m(1+γ)⌉
, (103)

which since E |X |⌈m(1+γ)⌉/(1+γ) ≥ 1 is

≤ E |X |⌈m(1+γ)⌉/(1+γ)
, (104)
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which, in turn, with k = ⌈m (1 + γ)⌉ is

≤ k!δ−⌈m(1+γ)⌉C (δ) ≤ k!δ−mγ−m−1C (δ) . (105)

Now by Stirling’s formula

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n
e.

Thus

k! ≤
√
2πk

(
k

e

)k

e.

Now for m ≥ 3, 3 ≤ m (1 + γ) ≤ k ≤ m (1 + γ) + 1. Hence

√
2πk

(
k

e

)k

e ≤
√
2πm (1 + γ) + 1

(
m (1 + γ) + 1

e

)m(1+γ)+1

e,

which is

≤
√
4πm (1 + γ)

(
2m (1 + γ)

e

)m(1+γ)

e.

Here we used the inequality (x+ 1)
x+1 ≤ (2x)

x
e for x ≥ 1. This last expression

is

≤
√
2πm

(m
e

)m(1+γ)

e
√
2 (1 + γ) (2 (1 + γ))m(1+γ)

≤
(√

2πm
(m
e

)m)(1+γ)

e
√
2 (1 + γ) (2 (1 + γ))

m(1+γ)
.

Now √
2πm

(m
e

)m
≤ m!.

Hence by keeping (103), (104) and (105) in mind, we get

E |X |m ≤

k!δ−mγ−m−1C (δ) ≤ (m!)
(1+γ)

(e
δ

)√
2 (1 + γ) (2 (1 + γ) /δ)

m(1+γ)
C (δ) .

Clearly for a sufficiently large K inequality (101) holds for all m ≥ 3.
Now assume that (102) holds for a 0 < δ < 1, then for all x ≥ 0

P {|X | ≥ x} = P
{
exp

(
δ |X |1/(1+γ)

)
≥ exp

(
δ |x|1/(1+γ)

)}

≤ C (δ) exp
(
−δ |x|1/(1+γ)

)
.

Going the other way, suppose that for some γ ≥ 0, C > 0 and d > 0,

P {|X | ≥ x} ≤ C exp
(
−d |x|1/(1+γ)

)
.
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Then for any 0 < δ < 1

E exp
(
δ |X |1/(1+γ)

)
=

∫ ∞

0

P
{
exp

(
δ |X |1/(1+γ)

)
≥ x

}
dx

=

∫ ∞

0

P
{
|X |1/(1+γ) ≥ δ−1 log x

}
dx

≤ e +

∫ ∞

e

P
{
|X |1/(1+γ) ≥ δ−1 log x

}
dx

= e +

∫ ∞

e

P
{
|X | ≥

(
δ−1 log x

)1+γ
}
dx

≤ e + C

∫ ∞

e

exp
(
−dδ−1 log x

)
dx,

which is finite for a small enough 0 < δ < 1. From these considerations we can
readily establish the equivalence of (45) and (46).

Appendix C

Wolf [56] extended results of Saulis [50] under a more general moment condition.
In the following propositions X,X1, X2, . . . , Xn are i.i.d. random variables with
EX = 0, EX2 = 1. As above, we use the notation Yn =d

∑n
i=1Xi/

√
n and

Yn = Hn(Φ(Z)), where Hn is the inverse distribution of Fn (the distribution of
Yn), Z is a standard normal random variable and Φ is its distribution function.

Let g be a continuous increasing function on [0,∞) such that g (x)x−1 strictly
decreases on (0,∞). Also assume that there exist 0 < α < 1 and a constant
C (g) > 0 depending on g such that for all x ∈ (0,∞) and some increasing
function ρ (x) on (0,∞) satisfying limx→∞ ρ (x) = ∞, the following inequality
holds

ρ (x) lnx ≤ g (x) ≤ Cxα.

Further assume that

E exp {g (|X |)} <∞. (106)

Choose any k > 1 and let Λ (n) denote the solution to the equation

kx2 = g
(√
nx
)
. (107)

For example, when g (x) = dxα for some α ∈ (0, 1) and d > 0

Λ (n) =

(
d

k

)1/(2−α)

n
α

4−2α . (108)

An argument based on Theorem 6.3 (Wolf [56]) in Saulis and Statulevičius [51]
and following the lines of the proofs in subsection 4.3 we get the following refined
quantile inequality.
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Proposition 4. Let X,X1, X2, . . . , Xn be i.i.d. random variables for which
EX = 0, EX2 = 1 and lim sup

|t|→∞
|E exp (itX)| < 1. Assume that the moment

condition (106) holds. Then there exists a positive constant ε such that

P {Yn < −x} = Φ(−x) exp
(
O
(
n−1/2 |x|3 + n−1/2

))
,

1− P {Yn < −x} = Φ(x) exp
(
O
(
n−1/2 |x|3 + n−1/2

))

in the interval 0 ≤ x ≤ εΛ (n). Moreover, there exist C > 0, η > 0 and an
integer n0 ≥ 1 such that for every n ≥ n0, whenever

|Yn| ≤ ηΛ (n) ,

we have

|Yn − Z| ≤ C√
n
+

C√
n
|Yn|2 . (109)

Similarly, an argument based on Corollary 6.1 (Wolf [56]) in Saulis and Stat-
ulevičius [51] gives the following further refined quantile inequality.

Proposition 5. Let X,X1, X2, . . . , Xn be i.i.d. random variables for which
EX = 0, EX2 = 1 and lim sup

|t|→∞
|E exp (itX)| < 1. Assume that the moment

condition (106) holds, and additionally EX3 = 0. Then there exists a positive
constant ε such that

P {Yn < −x} = Φ(−x) exp
(
O
(
n−1x4 + n−1

))
,

1− P {Yn < x} = Φ(x) exp
(
O
(
n−1x4 + n−1

))
,

in the interval 0 ≤ x ≤ εΛ (n). Moreover, there exist C, η > 0 and an integer
n0 ≥ 1 such that for every n ≥ n0, whenever

|Yn| ≤ ηΛ (n) ,

we have

|Yn − Z| ≤ C

n
+
C

n
|Yn|3 . (110)

Notice that specializing to g (x) = dxα with α = 4/(p+ 2) and d > 0, we get

Λ (n) =

(
d

k

)(p+2)/(2p)

n1/p =: d0n
1/p. (111)

Now keeping the discussion in Appendix B in mind, we see that when (106)
holds with g (x) = dx4/(p+2) that the assumptions of Theorem 3.1 in Saulis and
Statulevičius [51] are fulfilled. Therefore we can conclude that Yn satisfies the
Bernstein type inequality (23). Thus under the assumptions of Proposition 4,
using the quantile inequality (109), we can readily modify the proof of Corollary
1 to conclude that for positive constants C and λ, for all z ≥ 0 and n ≥ 1,

P
{
n1/2 |Yn − Z| > z

}
≤ C exp

(
−λz4/(p+2)

)
. (112)
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Prozess gehörenden Verteilungsfunktion aus den mit Fehlern behafteten
Daten einer einzigen Realisation. Studia Sci. Math. Hungar 1 161–168.
MR0215377

[4] Berkes, I. and Philipp, W. (1979). Approximation theorems for inde-
pendent and weakly dependent random vectors. Ann. Probab. 7 29–54.
MR0515811

[5] Bolthausen, E. (1982). Exact convergence rates in some martingale cen-
tral limit theorems. Ann. Probab. 10 672–688. MR0659537

[6] Bretagnolle, J. and Massart, P. (1989). Hungarian constructions
from the nonasymptotic view point. Ann. Probab. 17 239–256. MR0972783

[7] Brown, L.D., Carter, A.V., Low, M.G. and Zhang, C.-H. (2004).
Equivalence theory for density estimation, Poisson processes and Gaussian
white noise with drift. Ann. Statist. 32 2074–2097. MR2102503

[8] Cai, T. T. and Zhou, H. H. (2009). Asymptotic Equivalence and Adap-
tive Estimation for Robust Nonparametric Regression. Ann. Statist. 37
3204–3235. MR2549558

[9] Carter, A. V. and Pollard, D. (2004). Tusnády’s inequality revisited.
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