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1. Introduction

Positional numeral systems have long been used in the history of human civ-
ilizations, and the sum-of-digits function of an integer, which equals the sum
of all its digits in some given base, appeared naturally in multitudinous appli-
cations such as divisibility check or check-sum algorithms. Early publications
dealing with divisibility of integers using digit sums date back to at least Blaise
Pascal’s Œuvres1 in the mid-1650’s; see Glaser’s interesting account [56]. Nu-
merous properties of the sum-of-digits function have been extensively studied
in the literature since then; see Chapter XX of Dickson’s History of Number
Theory [34], which contains a detailed annotated bibliography for publications
up to the early 20th century dealing with the digits of an integer, and properties
discussed include relations between the digit structures between n and n2, iter-
ated sum-of-digits function, general numeral bases, etc. Modern reviews on dig-
ital sums and number systems can be found in Stolarsky’s paper [131], and the
books by Knuth [78, §4.1], Ifrah [69], Allouche and Shallit [3, Ch. 3], Sándor and
Crstici [118, § 4.3], Berthé and Rigo [12]. See also the two papers by Barat and
Grabner [4] and by Mauduit and Rivat [99] for more useful pointers to several
directions relevant to the sum-of-digits function. We are concerned in this paper
with the distributional aspect of the sum-of-digits function of random integers.
Many other types of results have been investigated in the literature and will not
be reviewed here; most of these results deal with dynamical properties, exponen-
tial sums, Dirichlet series, block occurrences, Thue-Morse sequence, congruential
properties, connections to other structures, additivity, uniform distribution and
discrepancy, sum-of-digits under special subsequences, etc.

More precisely, let q > 2 be a fixed integer and n =
∑

06j6λ εjq
j , where

εj ∈ {0, . . . , q − 1} and λ =
⌊

logq n
⌋

. Then the sum-of-digits function νq(n) of
n in base q is defined as

∑

06j6λ εj . When q = 2, we write ν(n) = ν2(n), which

is the number of ones in the binary representation of n.

Since the distribution of νq(n) is irregular in the sense that its values can vary
between (q−1)

⌊

logq n
⌋

and 1 (see Figure 1 for q = 2), we consider Xn = Xn(q),
which denotes the random variable equal to νq(Un), where Un assumes each of
the values {0, . . . , n−1} with equal probability 1/n. The behavior of Xn is then
more smooth.

Obviously, when n = qk − 1, the distribution of Xn is exactly multinomial
with parameters k and q identical probabilities 1/q. The general difficulty then
lies in estimating the closeness between the distribution of Xn and a suitably
chosen multinomial distribution. Periodicities are then ubiquitous in the study
of most asymptotic problems involved.

We will mainly review known results for the mean, the variance, the higher
moments and the limit distribution of Xn, as well as related asymptotic approxi-
mations. It turns out that many of such results have been derived independently
in the literature, and rediscoveries are not uncommon. As Stolarsky [131] puts it

1Pascal’s Œuvres is freely available on Wikisource.
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Fig 1. ν2(n), n = 1, . . . , 256.

“Whatever its mathematical virtues, the literature on sums of digital
sums reflects a lack of communication between researchers.”

In view of the large number of independent discoveries it is likely that we missed
some papers in our attempt to give a more complete collection of relevant known
results.

In addition to reviewing known stochastic properties of Xn, we will present
new approximations to the distribution of Xn. For simplicity, we focus on the
binary case q = 2, leaving the straightforward extension to other numeration
systems to the interested reader. In particular, our results imply that the to-
tal variation distance between the distribution of Xn and a binomial random
variable Yλ of parameters λ := ⌊log2 n⌋ and 1

2 is asymptotic to (see Figure 2)

dTV(L (Xn),L (Yλ)) =
1

2

∑

k>0

∣

∣

∣

∣

P(Xn = k)− 2−λ

(

λ

k

)∣

∣

∣

∣

=

√
2 |F (log2 n)|√

πλ
+ O

(

λ−1
)

, (1)

where, interestingly,

F (log2 n) = E(Xn)−
λ

2
.

The function F is a bounded, periodic function (namely, F (x) = F (x+1)) with
discontinuities at integers; see (19) for the definition of F for arbitrary x, and
Figure 3 for a graphical rendering.

We see that, up to an error of order (log2 n)
−1/2, the total variation distance

is essentially asymptotic to the absolute difference between the mean and λ/2.
Finer approximations will also be derived.

Four different proofs will be given for clarifying the total variation distance,
and each has its own generality; these include an elementary probability ap-
proach, Stein’s method, Fourier analysis, and a new Krawtchouk-Parseval ap-
proach. Indeed, these approaches easily extend to the consideration of more
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Fig 3. |F (x)|.

general frameworks, a simple one being briefly considered that applies in par-
ticular to the number of ones in the binary-reflected Gray codes.

1.1. First moment of Xn

The mean of Xn is essentially the partial sum of νq(j)

Sq(n) := nE(Xn) =
∑

06j<n

νq(j),

which, by the relation νq(qj+r) = νq(j)+r for 0 6 r < q, satisfies the following
recurrence

Sq(n) =
∑

16r6q

Sq

(⌊

n+ r − 1

q

⌋)

+
∑

16r6q

(q − r)

⌊

n+ r − 1

q

⌋

(n > 2),

with Sq(n) = 0 for n 6 1. In particular, when q = 2, this recurrence has the
form

S2(n) = S2

(⌊n

2

⌋)

+ S2

(⌈n

2

⌉)

+
⌊n

2

⌋

.

For many other recurrences for S2(n), see [100]. Interestingly, the quantity S2(n)
appeared naturally in a large number of concrete applications and is given as
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A000788 in Sloane’s Encyclopedia of Integer Sequences. A partial list when q = 2
is given as follows.

• The number of bisecting strategies in certain games [53];
• Linear forms in number theory [87];
• Determinant of some matrix of order n [23]; see also [71] for an extension
to q > 2;

• Bounds for the number of edges in certain class of graphs [60, 63, 101];
• The solution to the recurrence f(n) = maxk{f(k) + f(n − k) + min{k,
n − k}} with f(1) = 0 is exactly S2(n); concrete instances where this
recurrence arise can be found in [61, §2.2.1] and [63,100]; see also [1,101];

• The number of comparators used by Batcher’s bitonic sorting network [68];
• External left length of some binary trees [86];
• The minimum number of comparisons used by

– top-down recursive mergesort [46];

– bottom-up mergesort [111];

– queue-mergesort [21];

• The number of runs for the output sequence or recursive mergesort with
high erroneous comparisons; see [62].

This list of concrete examples, albeit nonrandom in nature, shows the richness
and diversity of the sum-of-digits function.

Legendre, in his Théorie des nombres whose first edition was published in
1798, derived the relation

νq(n) = n− (q − 1)
∑

j>1

⌊

n

qj

⌋

;

see [85, Tome I, p. 12]. This relation has proved useful in establishing many
properties connected to νq(n), including notably the identity (5) below. On the
other hand, since

∑

j>1⌊n/qj⌋ equals the q-adic valuation of n! (namely, the
largest power of q that divides n!), the above relation has also been widely
used in the q-adic valuations of many famous numbers. For an extension of the
right-hand side, see [112].

About nine decades later, d’Ocagne [35] proved in 1886 an identity for Sq(n)
for q = 10 (see also [34, p. 457]); his identity easily extends to any base q > 2
and can be rewritten as follows. Write n =

∑

06j6k εjq
j , where εj = εj(n) ∈

{0, 1, . . . , q − 1}. Then d’Ocagne’s expression is identical to

∑

06j<n

νq(j) =
∑

06j6k

εjq
j





εj − 1 + (q − 1)j

2
+
∑

j<ℓ6k

εℓ



 . (2)

In particular, when q = 2, we can write n =
∑

16j6s 2
λj , where λ1 > · · · > λs > 0,

and (2) has the alternative form

∑

06j<n

ν2(j) =
∑

16j6s

2λj

(

λj

2
+ j − 1

)

, (3)

http://oeis.org/A000788
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Fig 4. 1
2
log2 n− E(Xn).

where s = ν2(n). An extension of this expression can be found in [114,138]. Since
the proof of d’Ocagne’s expression is very simple (summing over all coefficients
block by block), it has remained almost unnoticed in the literature. Similar
expressions appeared and used in several later publications; see, for example,
[11, 22, 49, 62, 83, 86, 123, 138].

The first asymptotic result for E(Xn) was derived by Bush [15] about half a
century after d’Ocagne’s 1886 paper [35], and he proved that

E(Xn) ∼
q − 1

2
logq n,

as n → ∞, inspired by an expression derived earlier in Bowden’s book [13]2.
Note that, by (2),

E(Xaqk) =
(q − 1)k + a− 1

2
(a = 1, . . . , q − 1).

Bush proved his formula by providing upper and lower bounds for the sum
∑

m<n εj(m) using the periodicity of εj : εj(m + qj+1) = εj(m). In particular,
when q = 2, εj(m) is a sequence starting with a series of 2j zeros followed by 2j

ones. His estimates imply indeed a more precise result (see Figure 4 for q = 2)

E(Xn) =
q − 1

2
logq n+O(1),

where the O-term is optimal. Note that this estimate can also be derived easily
from d’Ocagne’s expression (2) by observing that the sum 1

2 (q−1)
∑

06j6λ εjjq
j

provides the major contribution, the others being of order O(n).
Bellman and Shapiro [11] were primarily concerned with the binary repre-

sentation q = 2 and provided an independent proof of Bush’s result

E(Xn) =
1

2
log2 n+O(log logn).

2We were unable to find a copy of this book.
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They use two different proofs (one by generating functions and Tauberian the-
orems and the other by recurrence) and briefly mention in a footnote that the
remainder can be improved to O(1).

The same paper also initiated a very important notion called “dyadically
additive”, which has later on been fruitfully extended and explored mostly under
the name of q-additivity (and its multiplicative counterpart q-multiplicativity);
see [29,52,124] for the early publications and [97] and the papers cited there for
more recent developments.

Mirsky [102], following [11], proved that

E(Xn) =
q − 1

2
logq n+O(1). (4)

His simple, half-page proof is based on the decompositions

E(Xn) =
1

n

∑

06j<n

νq(j) =
1

n

∑

06j<n

∑

ℓ>0

εℓ(j) =
1

n

∑

06r<q

r
∑

ℓ>1

f(n, ℓ, r),

where f(n, ℓ, r) denotes number of integers 0 6 j < n such that εℓ(j) = r. Then
(4) follows from the simple estimate f(n, ℓ, r) = n/q +O(qℓ).

Mirsky’s result was independently re-derived by Cheo and Yien [22] and
Tang [134] (judged to be virtually identical to [22] in MathSciNet), and referred
to as Cheo and Yien’s theorem in [25, 74]. Cheo and Yien proved additionally
in [22] a theorem for the density of Xn of the form

P
(

Xn = m
)

∼ 1

n
·
(logq n)

m

m!
,

for each finite m > 0.
Drazin and Griffith [37] studied the sum of integer powers of the digits and

derived estimates similar to (4). They also commenced the study of more precise
numerical bounds for the O(1)-term in (4), which was followed later in [23, 45,
49–51, 100, 123, 139]. In particular, no mention is made in [23, 45, 100, 123] of
known results for the O(1)-term in (4), and in particular the bounds derived
in [45] about half a century later are weaker than those in [37].

The next stage of refinement was accomplished by Trollope in 1968 where
he showed that the O(1)-term in (4) is indeed a periodic function when q = 2
for which an explicit expression is also given. His proof is based on d’Ocagne’s
formula (3), which he derived in [138] in a more general setting.

Delange [30] made an important step towards the ultimate understanding
of the underlying periodic function. He extended Trollope’s result to any base
q > 2 and showed, by a very simple, elegant, elementary proof, that (see Figure 4
for q = 2):

E(Xn)−
q − 1

2
logq n = F1(logq n), (5)

where F1(x) = F1(x + 1) is a continuous, periodic, and nowhere differentiable
function (see also [135,137]). His expression for F1 is as follows; see Figure 5 for
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a plot of −F1(x) and its first few approximations by 1
2 log2 n− E(Xn).

F1(x) =
q − 1

2
(1− {x}) + q1−{x}g(q−1+{x}),

where {x} denotes the fractional part of x and g(x) is a Takagi function [64,84]

g(x) =
∑

j>0

q−jh(qjx),

with the 1-periodic function h defined by (see Figure 6)

h(x) =

∫ x

0

(

q{t} − {qt} − q − 1

2

)

dt.

Furthermore, the Fourier series expansion of F is also computed; see also [47]
for a systematic approach by analytic means. Delange’s proof is based on the
simple observation that

εj(n) =

⌊

n

qj

⌋

− q

⌊

n

qj+1

⌋

=

∫ n+1

n

(⌊

t

qj

⌋

− q

⌊

t

qj+1

⌋)

dt. (6)
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Fig 7. (Kolmogorov dist.)
√
logn.

His paper [30] has since become a classic and has stimulated much recent re-
search on various themes related to digital sums and different numeration sys-
tems; also different asymptotic tools have been developed.

In particular, the Trollope-Delange formula (5) for E(Xn), which is not only
an asymptotic expansion but also an identity for all n > 1, is not exceptional
but a distinguishing feature of many digital sums; see below and [47,58,135] for
more examples.

1.2. Beyond the mean: Variance, higher moments and limit

distribution of Xn

The first paper dealing with the distribution of Xn beyond the mean value is
by Kátai and Mogyoródi [73] in 1968. They derived the asymptotic normality
of Xn with a rate of the form

sup
x

∣

∣

∣

∣

∣

∣

P





Xn − 1
2 (q − 1) logq n

√

1
12 (q

2 − 1) logq n
< x



− Φ(x)

∣

∣

∣

∣

∣

∣

= O

(

log logn√
logn

)

, (7)

where Φ denotes the standard normal distribution function and the variance is
implicit in their proof, namely,

V(Xn) ∼
q2 − 1

12
logq n.

Their approach consists in decomposing Xn into sums of suitable number of
independent random variables, each assuming the values {0, 1, . . . , q − 1} with
equal probability. See (30) below for the binary case.



Distribution of the sum-of-digits function 187

0.2 0.4 0.6 0.8 1
−0.05

0.05

0.10

0.15

0.20

0.25

0.30

Fig 8. −F2(x).

About a decade later, Diaconis [31] obtained, by Stein’s method, an optimal
Berry-Esseen bound for q = 2 of the form

sup
x

∣

∣

∣

∣

∣

∣

P





Xn − 1
2 log2 n

√

1
4 log2 n

< x



− Φ(x)

∣

∣

∣

∣

∣

∣

= O

(

1√
logn

)

; (8)

(see Figure 7) he also proved that (q = 2)

V(Xn) =
log2 n

4
+O

(

√

logn
)

.

Moments of Xn. Stolarsky [131], in addition to giving a wide list of refer-
ences, carried out a systematic study of the asymptotics of the moments of Xn

when q = 2; in particular, he proved that

E(Xm
n ) =

1

n

∑

06j<n

ν2(j)
m =

(

log2 n

2

)m

+O(logm−1
2 n), (9)

for any positive integer m. The O-term is however too weak to obtain a more
precise asymptotic approximation to the central moments of Xn of order > 2.

Later Coquet [26] in 1986 improved Stolarsky’s result by providing a formula
of the Trollope-Delange type (q = 2)

E(Xn)
m =

(

log2 n

2

)m

+
∑

06j<m

(log2 n)
jFm,j(log2 n); (10)

here Fm,j are bounded, continuous, 1-periodic functions. Coquet’s method of
proof starts from defining

S
[m]
2 (n) :=

∑

06j<n

ν2(j)
m,
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and shows that the quantity S
[m]
2 (2n) − 2S

[m]
2 (n) is expressible in terms of a

sum of S
[j]
2 (n) with j < m; then an induction is used. In particular, his result

for the second moment implies the identity

V(Xn) =
log2 n

4
+ F2(log2 n),

where F2 is bounded, continuous and periodic of period 1; see Figure 8. Co-
quet [26] mentioned that the function F2 is nowhere differentiable and his proofs
extend to any q-ary base. An independent proof of the above identity à la De-
lange was given later by Kirschenhofer [75]; see also Osbaldestin [110] for an
interesting discussion of several digital sums, as well as an alternative expres-
sion for F2.

On the other hand, Coquet’s expressions for the Fm,j ’s (except for F2) are
nonconstructive; see [59] for the third moment. Dumont and Thomas [42] studied
the moments ofXn in a general framework and derived more explicit expressions
for Fm,j , as well as properties such as continuity and nowhere differentiability.
Their approach relies on substitutions on finite alphabet and matrix analysis;
see [41]. In addition to the moments, they also considered in the same paper [42]
the moments of Xn − 1

2 (q − 1) logq n and showed that

E

(

Xn − q − 1

2
logq n

)m

=
1 + (−1)m

2
· m!

(m/2)!2m/2

(

q2 − 1

12
logq n

)m/2

+
∑

06j<m/2

(logq n)
jF̃m,j(logq n) + o(1),

(11)

where the F̃m,j ’s are continuous, 1-periodic, and nowhere differentiable func-
tions. These estimates imply of course the asymptotic normality of Xn by the
method of moments, which Dumont and Thomas later established in [43] (in a
more general framework).

Other constructive expressions, together with interesting functional proper-
ties, are derived by Okada et al. [107], based on binomial measures; see also [104]
and the recent paper [81]. Extensions of the same approach to cover the mo-
ments of Xn for any q > 2 were carried out in [104,105], the required tools being
developed in [109].

Unaware of Stolarsky’s and Coquet’s results, Kennedy and Cooper considered
the cases when q = 10: m = 2 in [74] and any positive integer m in [24] but with
a non-optimal error term in the corresponding expression of (9) for q = 10; see
also [14]. The optimal error term follows indeed from Dumont and Thomas’s
result in [42] (see also [104]) and was later re-proved by Yu in [142] (see also [16]
for an extension).

A general procedure, based on the classical approach of Dirichlet series and
Mellin-Perron integral formula (fully discussed in [47]), was developed in [58] and
leads to absolutely convergent Fourier series expansions for Gm,j . The approach
there can be easily extended to q-ary case.
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Probability generating function of Xn. By definition, the probability gen-
erating function of Xn is given by

E
(

yXn
)

=
1

n

∑

06j<n

yνq(j).

The special cases when q = y = 2 appeared as the total number of odd numbers
of
(

j
i

)

for 0 6 i 6 j < n, a result derived by Glaisher [55] in 1899; earlier results of
similar character can be found in the papers by Kummer [82] and by Lucas [89].
For another interesting occurrence in cellular automata, see [44, 140, 141].

The distribution of Xn is closely connected to the notion of q-additive and q-
multiplicative functions, first introduced by Bellman and Shapiro [11], and later
systematically investigated by Gel’fond [52] and Delange [29]; see also [4,97] and
the references cited there. We did not find a more complete survey on q-additive
or q-multiplicative functions but a simple search on MathSciNet resulted in more
than 152 papers (as of July 1, 2014); see [12, Ch. 9] and [4].

A function f : N → C is said to be q-multiplicative if

f (aqr + b) = f(aqr)f(b),

for 1 6 a 6 q − 1 and 0 6 b < qr, r > 1. This implies that f(0) = 1. Similarly,
one defines q-additive functions by f (aqr + b) = f(aqr) + f(b). By definition,
one then obtains, for a q-multiplicative function f (see [29, 52])

∑

06j<n

f(j) =
∑

06j6λ

(

∏

06r<j

(

1 +
∑

16ℓ<q

f(ℓqr)

))(

∏

j<r6λ

f(εrq
r)

)

∑

06ℓ<εj

f(ℓqj),

where n =
∑

06j6λ εjq
j . Now taking f(n) = yνq(n), which is obviously a q-

multiplicative function, we obtain, by re-grouping nonzero summands,

E
(

yXn
)

=
1

n

∑

16j6s

yc1+···+cj−1
(

1 + y + · · ·+ ycj−1
) (

1 + y + · · ·+ yq−1
)λj

,

(12)

where

n = c1q
λ1 + c2q

λ2 + · · ·+ csq
λs ,

with λ1 > · · · > λs > 0 and cj ∈ {1, . . . , q− 1}. The closed-form expression (12)
was later derived and stated explicitly by Stein [127].

Special cases of (12) appeared in Roberts [116] for q = y = 2 (later re-derived
in [131]), and in Stein [126] for q = 2, which has the form

E(yXn) =
1

n

∑

16j6s

yj−1(1 + y)λj , (13)

when n = 2λ1 + 2λ2 + · · ·+ 2λs , where λ1 > λ2 > · · · > λs.
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In the same paper [127], Stein also obtained many bounds for the exponential
sum (12); in particular, the function

G(logq n; y) :=
E(yXn)

nlogq(1+y+···+yq−1)
(y > 0)

is bounded and periodic (G(x; y) = G(x + 1; y)).
Okada et al. [104, 108] later gave more explicit expressions for the periodic

function G by multinomial measures. A different approach was provided in [81].
A Fourier expansion for q = 2 was given in [58], which is absolutely convergent
when

√
2− 1 < y <

√
2 + 1.

The closed-form expression (12) contains much information; for example, the
d’Ocagne’s formula (2) follows from (12) by taking derivative with respect to
y = 1 and then substituting y = 1. We will see later that (12) is also helpful in
proving effective approximations for distances between Xn and some binomials.

For other approaches to q-additive and q-multiplicative functions, see [2, 38,
57, 93, 95, 96, 106].

1.3. Asymptotic distribution of sum-of-digits function

We mentioned Kátai and Mogyoródi’s [73] and Diaconis’s [31] Berry-Esseen
bounds for Xn. We group here known results concerning limit and approxima-
tion theorems for Xn according to the major approach used, focusing mostly on
the case q = 2 for simplicity of presentation and comparison. See Table 1 for a
summary.

Table 1

A summary of known approaches leading to the asymptotic normality of Xn; here CLT
denotes “central limit theorem” and LLT “local limit theorem”

Authors & Papers Year Results Approach Notes

Kátai & Mogyoródi [73] 1968 CLT+rate Elementary q-ary
Diaconis [31] 1977 CLT+rate Stein’s method binary
Schmidt [121] 1983 Multivariate CLT Probabilistic binary

Schmid [120] 1984
Multivariate LLT

+rate
Matrix GF

Markov chain
binary

Stein [129] 1986
Binomial

approximation
Stein’s method binary

Dumont & Thomas [42] 1992 CLT Method of moments general

Loh [88] 1992
Multinomial

approximation
Stein’s method q-ary

Barbour & Chen [7] 1992
Approximation
by a mixture
of binomial

Stein’s method binary

Grabner [57] 1993 (implicit) Mellin transform q-additive
Bassily & Kátai [9] 1995 CLT Method of moments q-additive
Manstavičius [93] 1997 Functional CLT Probabilistic q-additive

Dumont & Thomas [43] 1997 LLT+rate Markov chain general
Drmota & Gajdosik [40] 1998 LLT+ rate Generating function general

Drmota et al. [39] 2003 Functional CLT Probabilistic q-ary
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1.3.1. Classical probabilistic approach

Kátai and Mogyoródi’s approach uses elementary probability tools and relies
their Berry-Esseen bound (7) on the following decomposition (for q = 2)

P
(

Xn = ℓ
)

=
1

n

∑

16j6s

2λjP(Yλj = ℓ− j + 1), (14)

which follows immediately from (13). Here Yj denotes the sum of j independent
Bernoulli indicators, each assuming 0 and 1 with equal probability 1/2. The
identity (14) implies that the random variable Xn is itself a mixture of indepen-
dent binomial distributions. The remaining proof then proceeds along standard
classical lines (by using estimates for sums of independent random variables).

Heppner [65] later proved, in the same spirit, a simple Chernoff-type inequal-
ity for Xn when q = 2 (λ = ⌊log2 n⌋)

P(|Xn − (λ+ 1)/2| > C) 6 2P
(

|Yλ+1 − (λ+ 1)/2| > C
)

;

since the right-hand side of this inequality decreases exponentially as C grows,
one concludes that ν2(m) is close to (λ+1)/2 for most m < n. This observation
is useful in establishing precise estimates for sums of the form

∑

m∈Bn
ν2(m),

where Bn is an arbitrary subset of nonnegative integers< n. For results concern-
ing the distribution of νq(n) for given subsequences of integers (such as prime
numbers and squares), see [98,99] and the references therein. Similar estimates
will be used below.

A central limit theorem for the distribution of the values assumed by the se-
quence ν2(3n)− ν2(n) was derived by Kátai [72], while the corresponding local
limit theorem was given independently by Stolarsky [132]. The proof of Sto-
larsky’s local limit theorem starts from matrix generating functions, obtaining
a closed-form expression, and then applies the saddle-point method for the corre-
sponding sum. Schmidt [121] then proved, motivated by Stolarsky’s [132] result,
a multidimensional central limit theorem (the joint distribution of the values
of ν2(K1n), . . . , ν2(Kdn) for odd numbers K1, . . . ,Kd) using tools from Markov
chains. The intuition behind such a limit law is that the two events ν2(K1Un)
and ν2(K2Un) are more or less independent, where Un ∼ Uniform[0, n− 1] and
K1,K2 are odd numbers.

Dumont and Thomas [43] use again Markov chains and large deviations to
characterize the asymptotic distribution of a class of digital sums (covering in
particular Xn) associated with substitutions, a Berry-Esseen bound being also
derived.

1.3.2. q-multiplicative functions

Since νq(n) is q-additive, the function eitνq(n) is q-multiplicative. The distri-
bution of the values of q-additive functions has been widely studied in the
number-theoretic literature. We mention briefly an early result. Delange [29]
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showed that

1

n

∑

06m<n

f(m) =
∏

16r6⌊logq n⌋

1 + f(qr) + · · ·+ f((q − 1)qr)

q
+ o(1),

for any q-multiplicative function f with |f | 6 1 and (see [94])

lim
k→∞

∏

r06r6k

∣

∣

∣

∣

1 + f(qr) + · · ·+ f((q − 1)qr)

q

∣

∣

∣

∣

> 0.

This result roughly says that the mean value of q-multiplicative functions with
bounded modulus is close to some multinomial distribution.

In particular, if one applies formally this result to f(n) = eitνq(n), then the
left-hand side corresponds to the characteristic function of Xn, while the dom-
inant term on the right-hand side to a multinomial distribution. We cannot
however conclude directly from this result that Xn is asymptotically multino-
mially distributed due to lack of uniformity in t. For asymptotic normality and
related results for q-additive functions, see [9, 10, 93, 130] and [12, Ch. 9].

1.3.3. Stein’s method

Stein’s method is a method of probability approximation invented by Charles
Stein in 1972 [128]. It does not involve Fourier analysis but hinges on the solution
of a functional equation. In a nutshell, Stein’s method can be described as
follows. Let W and Z be random variables. In approximating the distribution
L (W ) of W by the distribution L (Z) of Z, the difference between E(h(W ))
and E(h(Z)) for a class of functions h is expressed as

E(h(W ))− E(h(Z)) = E (L[fh](W )) ,

where L is a linear operator and fh a bounded solution of the equation

L[f ] = h− E(h(Z)).

The error E(L[fh](W )) is then bounded by studying the solution fh and ex-
ploiting the probabilistic properties of W . The operator L has the property
that E(L[f ](Z)) = 0 for a sufficiently large class of f and therefore charac-
terizes L (Z). Examples of L are (i) L[f ](w) = f ′(w) − wf(w) for normal
approximation, that is, if Z is the standard normal distribution [128], and
(ii) L[f ](w) = λf(w + 1) − wf(w) for Poisson approximation, that is, if Z
has the Poisson distribution with mean λ [17]. The operator L is not unique.
It can be chosen to be the generator of a Markov process whose stationary dis-
tribution is the approximating distribution L (Z). This generator approach to
Stein’s method is due to Barbour [5, 6].

Using Stein’s method with L[f ](w) = f ′(w) − wf(w), Diaconis [31] proved
that

sup
x

∣

∣

∣

∣

∣

P

(

Xn+1 − (λ+ 1)/2
√

(λ+ 1)/4
6 x

)

− Φ(x)

∣

∣

∣

∣

∣

6
c1√
λ
,
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Fig 9. The histogram of X31415926535897932384 , where the black smooth curve represents the
density with the same mean and the same variance.

which implies (8) since λ = ⌊log2 n⌋. Chen and Shao [19] refined Diaconis’s proof
to obtain

sup
x

∣

∣

∣

∣

∣

P

(

Xn − λ0/2
√

λ0/4
6 x

)

− Φ(x)

∣

∣

∣

∣

∣

6
6.2√
λ0

,

where λ0 := ⌈log2 n⌉.
In his book [129], Stein considered binomial approximation for Xn, and using

the equation

L[f ](w) = (k − w)f(w) − wf(w − 1) (15)

for f defined on {0, 1, . . . , k}, he obtained

max
ℓ

∣

∣

∣

∣

P
(

Xn = ℓ
)

− 1

2λ

(

λ

ℓ

)∣

∣

∣

∣

6
4

λ
;

see also [67]. By using the generator approach, Loh [88] extended the binary
expansion for Xn to q-ary expansion for any base q > 2, and proved that

dTV(L (Xn),L (Z)) 6
3.3q3/2(q − 1)
√

⌈logq n⌉
,

where Xn denotes the q-dimensional random vector whose i-th component is
the number of the i-th digit in the q-ary expansion and

Z ∼ Multinomial(⌈logq n⌉, 1/q, . . . , 1/q).

Barbour and Chen [7] also used the generator approach to improve the error
bound in the binary expansion case to 1/λ if the approximating binomial dis-
tribution Yλ0 is replaced by Binom(2e(n), 1

2 ), where e(n) is the mean of Xn or
by a mixture of Yλ0−1 with either Yλ0 or Yλ0−2 chosen to have mean e(n).
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1.3.4. Generating functions and analytic approach

Schmid [120] derived, improving earlier results by Stolarsky [132] and by Schmidt
[121], a very precise multidimensional local limit theorem of the form

1

n
# {m : 0 6 m < n, ν2(Kjm) = kj , j = 1, . . . , d}

=
exp

(

− 1
2 log2 n

(

k− 1
2 log2 n

)

V−1
(

k− 1
2 log2 n

)tr
)

(2π log2 n)
d/2 det(V)1/2

+O
(

(logn)−(d+1)/2
)

,

(16)

where d > 1, the Kj’s are odd integers > 1, k = (k1, . . . , kd) and V is the
positive-definite d× d matrix with entries

vj,ℓ :=
gcd(Kj,Kℓ)

2

4KjKℓ
(1 6 j, ℓ 6 d).

His proof builds on matrix generating functions and uses tools from Markov
chains, following Stolarsky and Schmidt. In addition to providing optimal con-
vergence rate for the corresponding multidimensional central limit theorem
(derived in [121]), his result implies very tight estimates for the distribution
of ν2(kn)− ν2(n), a problem receiving much attention in the literature; see the
recent paper [27], the Ph.D. Dissertation [130] and the references therein.

In particular, (16) also leads to a local limit theorem for Xn with optimal
rate when q = 2.

Drmota and Gajdosik [40] use generating functions and complex-analytic
method to prove a local limit theorem for the sum-of-digits function in more
general numeration systems; see the paper by Madritsch [92] and the references
cited there for more recent developments.

1.3.5. Other approaches

We mentioned the result (11) by Dumont and Thomas [42] for the central mo-
ments of Xn, which implies the asymptotic normality of Xn by the Frechet-
Shohat moment convergence theorem.

The same method of moments was later applied by Bassily and Kátai [9] to
derive the asymptotic normality of q-additive functionals; see also [54, 91, 92].

Manstavičius [93], Drmota et al. [39] obtained a functional limit theorem
for νq(n).

2. New results

We will derive a few approximation theorems for the distribution ofXn; different
approaches will be developed, each having its own advantages and constraints.
In particular, an expansion for a refined version of the total variation distance
will be given, which will cover (1) as a special case.
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Here and throughout this paper, we consider only the case q = 2 for simplicity.
The following notations will be consistently used. Let λ = λ1 = ⌊log2 n⌋. We
then write n =

∑

16j6s 2
λj with λ1 > · · · > λs > 0. Let Yλ ∼ Binom(λ, 1/2).

Let Hm(x) denote the Hermite polynomials

Hm(x) = (−1)mex
2/2 dm

dxm
e−x2/2 (m = 0, 1, . . . ).

Define a sequence {hm} by

hm :=
2m/2

√
2π

∫ ∞

−∞
|Hm(x)| e−x2/2 dx (m = 0, 1, . . . ). (17)

Theorem 2.1. Let Xn denote the number of 1s in the binary representation
of a random integer, where each of the integers {0, 1, . . . , n− 1} is chosen with
equal probability P(Xn = m) = 1/n. Then

∑

06k6λ

∣

∣

∣

∣

∣

∣

P
(

Xn = k
)

−
∑

06r<m

(−1)rar(n)2
−λ∆r

(

λ

k

)

∣

∣

∣

∣

∣

∣

=
hm|am(n)|
(log2 n)

m/2
+O

(

(logn)−(m+1)/2
)

,

for m = 1, 2, . . . , where the sequence ar(n) = ar(2n) is defined by (see (13))

E(yXn)

(

1 + y

2

)−λ

=
1

n

∑

16j6s

2λjyj−1

(

1 + y

2

)λj−λ

=
∑

r>0

ar(n)(y − 1)r,

(18)

and ∆ denotes the difference operator

∆r

(

λ

k

)

=
∑

06ℓ6r

(

r

ℓ

)

(−1)ℓ
(

λ

k − ℓ

)

(r = 0, 1, . . . ).

Two explicit expressions for ar(n) are as follows.

ar(n) =
∑

06ℓ6r

(

λ+ r − ℓ− 1

r − ℓ

)

(−1)r−ℓ

ℓ!2r−ℓ
E(Xn · · · (Xn − ℓ+ 1))

=
2λ

n

∑

16j6s

2−(λ−λj)
∑

06ℓ6r

(

λ− λj + ℓ − 1

ℓ

)(

j − 1

r − ℓ

)

(−1)ℓ2−ℓ,

for r = 0, 1, . . . .

Taking m = 1 and dividing the left-hand side by 2, we obtain an asymptotic
approximation to the total variation distance; see [20, 125] for similar results.
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Corollary 2.2. The total variation distance between the distribution of Xn and
that of the binomial random variable Yλ satisfies

dTV(L (Xn),L (Yλ)) =

√
2 |F (log2 n)|
√

π log2 n
+O

(

(log n)−1
)

,

where the bounded periodic function F is defined by

F (x) = 2−x
∑

j>0

2−dj

(

j − 1− dj
2

)

, (19)

for x ∈ (0, 1], when writing 2x =
∑

j>0 2
−dj ∈ (1, 2] with 0 = d0 < d1 < · · · ,

and F (x+ 1) = F (x) for other values of x.

Proof. Observe first that a0(n) = 1 and by the definition of F

F (log2 n) = a1(n) = E(Xn)−
λ

2
,

which has the form

F (log2 n) =
2λ

n

∑

16j6s

2−(λ−λj)

(

j − 1− λ− λj

2

)

. (20)

On the other hand, since H1(x) = x, we then get h1 =
√

2/π. By considering
the values of

2x =
∑

06j6k

2−dj =
∑

06j<k

2−dj +
∑

j>dk

2−j ,

we see that F is continuous except at the end points (integers).

By (20), we see that if λj = λ− 2(j− 1) for j = 1, . . . , s, then F (log2 n) = 0.
This yields the sequence {log2(

∑

06j6k 4
−j)}k=0,1,... for the locations of the

zeros of |F (x)|; see Figure 10.
Taking m = 2, we obtain a refined estimate with smaller errors.

Corollary 2.3.

∑

06k6λ

∣

∣

∣

∣

P
(

Xn = k
)

− 2−λ

(

λ

k

)

+

(

E(Xn)−
λ

2

)

2−λ

(

λ

k

)

λ+ 1− 2k

λ+ 1− k

∣

∣

∣

∣

=
16|F2(log2 n)|√

2πe log2 n
+O

(

(logn)−3/2
)

,

(21)

where F2(x) is defined for x ∈ (0, 1] by

F2(x) = 2−x
∑

j>0

2−dj

(

dj(dj + 5)

8
− jdj

2
+

j(j − 3)

2
+ 1

)

,

by writing 2x =
∑

j>0 2
−dj as above, and F2(x + 1) = F2(x) for other values

of x (see Figure 11 for a plot).
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Fig 10. The fractal nature of the function |F (x)|.

The two functions F (x) and F2(x) may assume the value zero when x is not
an integer; see Figures 10 and 11. This means that in such cases the error term
is of a smaller order, and the right-hand side of our result gives simply an O-
estimate. One naturally wonders if there are other simple uniform approximants
for the total variation distance. We propose a simple one in the following.

Theorem 2.4. The total variation distance between the distribution of Xn and
the binomial distribution of Yλ satisfies
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Fig 11. |F2(x)|.

dTV(L (Xn),L (Yλ)) ≍
1

2λ−λ2
min

{

1,
λ− λ2√

λ

}

,

whenever λ− λ2 > c, where c > 0 is sufficiently large.

This result is similar to the estimate proved by Soon [125] (see also [20]),
where he considered the distance dTV(L (Xn),L (Yλ+1)) instead of dTV(L (Xn),
L (Yλ)) by using Stein’s method.

We see roughly that the wider the gap between λ and λ2, the smaller the
total variation distance is.

On the other hand, the theorem fails when c = 2. In this case, n = 2λ+2λ−2

and by (21) or by a direct calculation,

dTV(L (Xn),L (Yλ)) ≍ λ−1. (22)

More generally, if

n = 2λ + 2λ−2 + · · ·+ 2λ−2d + n0,

where d > 1 and n0 = O(n/λ3/2), then F (log2 n) = O(λ−1/2), and (22) holds.
All these results can be extended to νq(n). The major difference is to use

generating function (12) instead of (13).

3. Proofs

We first prove Theorem 2.1 by a direct analytic approach based on Fourier anal-
ysis. A closely connected semigroup approach (first developed by Deheuvels and
Pfeifer for Poisson distribution; see [28]), but relies on more algebraic formula-
tions and manipulations, can also be used for the same purpose; see [117]. Then
Theorem 2.4 is proved by two different approaches: one by Stein’s method, and
the other by a standard probability argument, which starts from decomposing
the distribution of Xn into a sum of binomial distributions. Our adaptation
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Table 2

A summary of approaches used and results proved in this section

Approach Result Section

Analytic Thm 2.1 (for extended dTV) 3.1
Elementary Probability Thm 2.4 (for dTV) 3.2

Stein’s method Thm 2.4 (for dTV) 3.3
Krawtchouk-Parseval χ2-distance 3.4

of Stein’s method indeed leads to a refinement of Theorem 2.4, which will be
given in Section 3.3. For more methodological interests, we also include another
approach using the Krawtchouk polynomials and the Parseval identity, which
is the binomial analogue of the Charlier-Parseval approach developed earlier in
detail in [143].

3.1. Analytic approach: Proof of Theorem 2.1

We now prove Theorem 2.1 and write the proof in a more general way that
can be readily amended for dealing with other cases such as Gray codes; see
Section 4.2 below.

3.1.1. Probability generating function

Let

Pn(y) := E
(

yXn
)

=
1

n

∑

06j<n

yν2(j). (23)

Then

P2n(y) =
1 + y

2
Pn(y), (24)

and P2k(y) = (1 + y)k/2k. Note that ν2(n) 6 λ+ 1.
For convenience, let

Qn(y) = nPn(y).

In terms of Qn, the relation (24) has the form

Q2n(y) = (1 + y)Qn(y).

For odd numbers, we have

Q2n+1(y) = (1 + y)Qn(y) + yν2(n).

These two recurrences can be written as

Qn(y) = (1 + y)Q⌊n/2⌋(y) + δny
ν2(⌊n/2⌋),
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for all n > 0, where

δn =
1− (−1)n

2
.

By iteration, we then get

Qn(y) =
∑

06j6λ

δ⌊n/2j⌋y
ν2(⌊n/2j+1⌋)(1 + y)j

= (1 + y)λ
∑

06j6λ

δ⌊2{log2 n}+j⌋
yν2(⌊2{log2 n}+j−1⌋)

(1 + y)j
,

(25)

for any n > 1; compare (13). This means that Pn has the form

Pn(y) =

(

1 + y

2

)λ

φn(y),

where

φn(y) =
2λ

n

∑

06j6λ

δj
yρj

(1 + y)j
,

and ρj are nonnegative integers such that ρj 6 j and |δj | 6 1.

3.1.2. Local expansion of φn(y)

The approach we use here relies on the intuition that if φn is sufficiently “smooth”
then Xn is close to the binomial distribution Yλ. More precisely, let

φn(y) =
∑

j>0

aj(n)(y − 1)j ;

cf. (18).

Lemma 3.1. For each m > 1, we have
∣

∣

∣

∣

∣

∣

φn(y)−
∑

06r<m

ar(n)(y − 1)r

∣

∣

∣

∣

∣

∣

6
3

2
· 2λ(2|y − 1|)m
n(1− 2|y − 1|) , (26)

if |y − 1| 6 1/2− ε, ε > 0 being an arbitrarily small number.

Proof. We indeed prove a stronger estimate

n

2λ
|ar(n)| 6 3 · 2r−1,

for all r > 1, which then implies (26).
Let [yr]f(y) denote the coefficient of yr in the Taylor expansion of f . Since

ρj 6 j, we have, for r > 1,

n

2λ
|ar(n)| =

∣

∣

∣

∣

∣

∣

[wr ]
∑

06j6λ

δj
(1 + w)ρj

(2 + w)j

∣

∣

∣

∣

∣

∣
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6 [wr ]
∑

j>1

(

1 + w

2− w

)j

= [wr ]
1 + w

1− 2w

= 3 · 2r−1,

as required.

3.1.3. An asymptotic expansion for P(Xn = k)

Proposition 3.2. For all integer 0 6 r 6 λ and each m > 1, we have

P(Xn = k) =
1

2λ

∑

06r<m

(−1)rar(n)∆
r

(

λ

k

)

+O

(

23m/2Γ((m+ 1)/2)

λ(m+1)/2

)

,

uniformly in k.

Proof. By Cauchy’s integral formula for the coefficient of an analytic function,
we have

P(Xn = k) =
1

2πi

∮

|y|=1

y−n−1Pn(y) dy

=
1

2π

(

∫ 1/2

−1/2

+

∫

1/26|t|6π

)

e−kit

(

1 + eit

2

)λ

φn(e
it) dt

=: I1 + I2.

Since ei/2 lies inside the circle |y − 1| = 1/2, we evaluate I1 by applying
Lemma 3.1 and obtain

I1 =
1

2π

∫ 1/2

−1/2

(

1 + eit

2

)λ
∑

06r<m

ar(n)e
−kit(eit − 1)r dt

+O

(

∫ 1/2

−1/2

∣

∣

∣

∣

1 + eit

2

∣

∣

∣

∣

λ

|1− eit|m dt

)

.

The integral in the O-term is then estimated as follows.

∫ 1/2

−1/2

∣

∣

∣

∣

1 + eit

2

∣

∣

∣

∣

λ

|1− eit|m dt = 2m
∫ 1/2

−1/2

(

cos t
2

)λ ∣
∣sin t

2

∣

∣

m
dt

6 2m+1

∫ 1

0

(1− t)(λ−1)/2t(m−1)/2 dt

= O

(

23m/2Γ((m+ 1)/2)

λ(m+1)/2

)

.

(27)
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Now substituting this estimate into the expression of I1 and using the relation

∆r

(

λ

k

)

=
1

2π

∫ π

−π

e−kit(1 + eit)λ(1− eit)r dt, (28)

we obtain

I1 =
∑

06r<m

ar(n)

2π

∫ 1/2

−1/2

(

1 + eit

2

)λ

(eit − 1)re−kit dt

+O

(

23m/2Γ((m+ 1)/2)

λ(m+1)/2

)

=
1

2λ

∑

06r<m

(−1)rar(n)∆
r

(

λ

k

)

+
∑

06r<k

|ar(n)|
2π

∫

1/26|t|6π

∣

∣

∣

∣

1 + eit

2

∣

∣

∣

∣

λ

|eit − 1|r dt

+O

(

23m/2Γ((m+ 1)/2)

λ(m+1)/2

)

=
1

2λ

∑

06r<m

(−1)rar(n)∆
r

(

λ

k

)

+O
(

4m
(

cos 1
4

)λ
)

+O

(

23mΓ((m+ 1)/2)

λ(m+1)/2

)

.

On the other hand, since (by (13))

max
1/26|t|6π

|Pn(e
it)| 6 1

n

∑

16j6s

∣

∣

∣1 + ei/2
∣

∣

∣

λj

6
1

n

∑

16j6s

2λj exp

(

− λj

8π2

)

6
1

n

∑

λj>c0λ

2λj exp

(

− c0λ

8π2

)

+
1

n

∑

λj<c0λ

2c0λ

= O

(

exp

(

− c0λ

8π2

)

+ λ2−(1−c0)λ

)

.

Choosing

c0 =
log 2

log 2 + 1/(8π2)
,

so as to balance the two terms in the O-symbol, we obtain

max
1/26|t|6π

|Pn(e
it)| = O

(

λe−c′0λ
)

,
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where

c′0 =
log 2

1 + 8π2 log 2
.

Thus

I2 = O
(

λe−c′0λ
)

.

This proves the proposition.

3.1.4. Estimates for the differences of binomial coefficients

Lemma 3.3. For r > 0, we have

2−λ max
06k6λ

∣

∣

∣

∣

∆r

(

λ

k

)∣

∣

∣

∣

= O

(

23r/2Γ((r + 1)/2)

λ(r+1)/2

)

,

2−λ
∑

06k6λ

∣

∣

∣

∣

∆r

(

λ

k

)∣

∣

∣

∣

=
hr

λr/2

(

1 +O
(

λ−1
))

, (29)

where hr is defined in (17).

Proof. By (28) and an analysis similar to that used in (27), we obtain

max
06k6λ

∣

∣

∣

∣

∆r

(

λ

k

)∣

∣

∣

∣

6
2λ+r

2π

∫ π

−π

(

cos t
2

)λ ∣
∣sin t

2

∣

∣

r
dt,

=
2λ+r

π

∫ 1

0

(1− t)(λ−1)/2t(r−1)/2 dt

= O

(

2λ+3r/2Γ((r + 1)/2)

λ(r+1)/2

)

.

For the proof of (29), we apply the standard saddle-point method and obtain

2−λ
∑

06k6λ

∣

∣

∣

∣

∆r

(

λ

k

)∣

∣

∣

∣

=
∑

06k6λ

∣

∣

∣

∣

∣

1

2π

∫ π

−π

(

1 + eit

2

)λ

(1− eit)re−kit dt

∣

∣

∣

∣

∣

=
∑

k=λ/2+x
√
λ/2

x=o(λ1/6)

∣

∣

∣

∣

2r+1

2πλ(r+1)/2

∫ ∞

−∞
(−it)re−t2/2−xit dt

∣

∣

∣

∣

(

1 +O
(

λ−1
))

=
2r/2√
2π λr/2

∫ ∞

−∞
|Hr(x)| e−x2/2 dx

(

1 +O
(

λ−1
))

,

proving (29) by (17).
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Note that when r = 1, we have the closed form expression

∑

06k6λ

∣

∣

∣

∣

(

λ

k

)

−
(

λ

k − 1

)∣

∣

∣

∣

= 2

(

λ

⌊λ/2⌋

)

− 1.

For higher values of r, a closed-form expression can be derived for
∑

06k6λ |∆r
(

λ
k

)

| in terms of the zeros of Krawtchouk polynomials; see [117]
for r = 2.

3.1.5. Proof of Theorem 2.1

Proof. Applying Proposition 3.2, we get

∑

06k6λ

∣

∣

∣

∣

∣

P(Xn = k)− 2−λ
∑

06r6m+1

(−1)rar(n)∆r

(

λ

k

)

∣

∣

∣

∣

∣

= O

(

2mΓ((m+ 3)/2)

λ(m+1)/2

)

.

Note that the sum over all k for the terms corresponding to r = m + 1 is of
order λ−(m+1)/2. Theorem 2.1 then follows from (29).

We will later formulate a simple framework of numeration systems for which
the same type of results as Xn hold, using the same method of proofs.

3.2. Elementary probability approach: Proof of Theorem 2.4

A crucial observation that will be elaborated here is the fact that Xn is itself
a mixture of binomial distributions. More precisely, by the decomposition of
Kátai and Mogyoródi (14),

P
(

Xn = k
)

=
1

n

∑

16j6s

2λjP(Yλj = k − j + 1). (30)

A direct probabilistic proof of the above relation is as follows. Suppose Un is
a uniformly distributed of [0, n− 1], then by definition Xn = ν2(Un). First, we
have the relation

X2k
d
= Yk (k = 1, 2, . . . ).

On the other hand, since ν2(2
r + j) = 1 + ν2(j) if 0 6 j < 2r, we also have

j +X2λj+1

d
= j + Yλj+1 (0 6 j < s).

We can now split the interval {0, 1, . . . , n − 1} =
⋃s−1

j=0 As, where A0 = [0, 2λ)
and

Aj =





∑

16r6j

2λr ,
∑

16r6j+1

2λr



 , (31)

for 1 6 j 6 s− 1. Clearly, P(Un ∈ Aj) = 2λj+1/n. We then obtain (30).
We group in the following lemma a few simple properties of the total variation

distances involving Yk, which will be needed later.
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Lemma 3.4. Let Yk be a binomial random variable with mean parameters k
and 1/2. Then

dTV(L (Yk),L (Yk + 1)) = O
(

k−1/2
)

,

dTV(L (Yk),L (Yk+1)) =
1
2dTV(L (Yk),L (Yk + 1)) = O

(

k−1/2
)

,

dTV(L (Yk),L (Yk+j + ℓ)) = O
(

(j + ℓ)k−1/2
)

.

Proof. Since P(Yk = j) increases monotonically in the interval from
[

0, ⌊k/2⌋
)

and decreases monotonically in the interval
(

⌊k/2⌋, k
]

, we have

dTV(L (Yk),L (Yk + 1)) = 2P
(

Yk = ⌊k/2⌋
)

= O
(

k−1/2
)

.

In a similar way, since P(Yk+1 = j) = P(Yk + I = j) =
(

P(Yk = j − 1) +

P(Yk = j)
)

/2, where I is Bernoulli with parameter 1/2, we get

dTV(L (Yk),L (Yk+1)) =
1
4

∑

j>0

∣

∣P(Yk = j)− P(Yk = j − 1)
∣

∣

= 1
2dTV(L (Yk),L (Yk + 1)).

This proves the lemma.

3.2.1. Proof of Theorem 2.4 when λ− λ2 6
√
λ

Consider first the case when λ− λ2 6
√
λ. By (30) and Lemma 3.4, we have

dTV(L (Xn),L (Yλ))

=
1

2n

∑

ℓ>0

∣

∣

∣

∣

∣

∣

∑

16j6s

2λj
(

P(Yλj = ℓ− j + 1)− P(Yλ = ℓ)
)

∣

∣

∣

∣

∣

∣

(32)

6
1

n

∑

26j6s

2λjdTV(L (Yλj + j − 1),L (Yλ))

6 2
∑

26j6s

λ− λj

2λ−λj
√

λj

6 2
∑

λ−λ26k6λ−λs

k

2k
√
λ− k

= O

(

λ− λ2

2λ−λ2
√
λ2

)

,

giving an upper bound for the total variation distance.
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To obtain a lower bound, we apply again (32) and Lemma 3.4.

dTV(L (Xn),L (Yλ)) >
n− 2λ

2n
dTV(L (Yλ2 + 1),L (Yλ))

− 1

2n

∑

36j6s

2λjdTV(L (Yλj+j−1),L (Yλ2+1))

>
n− 2λ

2n
dTV(L (Yλ2 + 1),L (Yλ))

+O





1

n

∑

36j6s

2λj

√

λj

(λ2 − λj + j)





>
n− 2λ

2n
dTV(L (Yλ2 + 1),L (Yλ))

+O

(

2λ3(λ2 − λ3)

2λ
√
λ3

)

.

Now, by Lemma 3.4,

dTV(L (Yλ2 + 1),L (Yλ)) = dTV(L (Yλ2),L (Yλ)) +O(λ−1/2).

3.2.2. Proof of Theorem 2.4 when c 6 λ− λ2 6
√
λ

For c 6 λ− λ2 6
√
λ, where c > 0 is sufficiently large, we have

dTV(L (Yλ2 ),L (Yλ)) > P

(

Yλ2 6
√

λλ2/2
)

− P

(

Yλ 6
√

λλ2/2
)

= Φ

(√
λλ2/2− λ2/2√

λ2/2

)

− Φ

(√
λλ2/2− λ/2√

λ/2

)

+O(λ−1/2)

= Φ
(√

λ−
√

λ2

)

− Φ
(

√

λ2 −
√
λ
)

+O
(

λ−1/2
)

> ε
λ− λ2√

λ
,

for ε > 0, by the central limit theorem of the binomial distribution (with rate).
Combining the upper- and the lower-bounds, we get

dTV(L (Xn),L (Yλ)) ≍
λ− λ2

2λ−λ2

√
λ
,

if c 6 λ− λ2 6
√
λ and c is sufficiently large.

3.2.3. Proof of Theorem 2.4 when (λ − λ2)/
√
λ → ∞

The lower bound becomes less precise if (λ−λ2)/
√
λ → ∞. In this case, we first

observe that the total variation does not exceed 1; thus

dTV(L (Xn),L (Yλ)) 6
n− 2λ

n
6

2

2λ−λ2
.
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Take C = (λ− λ2)/
√
λ. We have

dTV(L (Yλ2 + 1),L (Yλ))

> P

(

Yλ >
λ

2
− C

4

√
λ

)

− P

(

Yλ2 + 1 >
λ

2
− C

4

√
λ

)

> P

(∣

∣

∣

∣

Yλ − λ

2

∣

∣

∣

∣

6
C

4

√
λ

)

− P

(∣

∣

∣

∣

Yλ2 −
λ2

2

∣

∣

∣

∣

>
λ− λ2

2
− 1− C

4

√
λ

)

= P

(∣

∣

∣

∣

Yλ − λ

2

∣

∣

∣

∣

6
C

4

√
λ

)

− P

(∣

∣

∣

∣

Yλ2 −
λ2

2

∣

∣

∣

∣

>
C

4

√
λ− 1

)

.

Applying Chebyshev’s inequality, we get

1 > dTV(L (Yλ2 + 1),L (Yλ)) > 1 +O
(

C−1
)

,

if C > 8.
When λ3 < λ2 − 1, we have the lower bound

dTV(L (Xn),L (Yλ)) >
2λ2dTV(L (Yλ2 + 1),L (Yλ))− 2λ3 − · · · − 2λs

n

>
dTV(L (Yλ2 + 1),L (Yλ))− 1/2

2λ−λ2

>
1

2λ−λ2+1

(

1 +O
(

C−1
))

.

On the other hand, when λ3 = λ2 − 1, we use (32) and get

2dTV(L (Xn),L (Yλ))

>
1

n

∑

ℓ>0

∣

∣2λ2
(

P(Yλ2 = ℓ− 1)− P(Yλ = ℓ)
)

+ 2λ3
(

P(Yλ3 = ℓ− 2)− P(Yλ = ℓ)
)∣

∣− 2λ4 + · · ·+ 2λs

n

>
1

n

∑

ℓ>0

∣

∣(2λ2 + 2λ3)
(

P(Yλ2 = ℓ− 1)− P(Yλ = ℓ)
)

+ 2λ3
(

P(Yλ3 = ℓ− 2)− P(Yλ2 = ℓ− 1)
)∣

∣− 2λ4+1

n

>
1

n

(

(2λ2 + 2λ3)dTV(L (Yλ2 + 1),L (Yλ))− 2λ3+1
)

>
1

2λ−λ2+1

(

1 +O
(

C−1
))

.

This completes the proof of Theorem 2.4.

3.3. Stein’s method: An alternative proof of Theorem 2.4

The sum-of-digits function was among one of the first instances used to demon-
strate the effectiveness of Stein’s method (see [31,129]) with an optimal approx-
imation rate. This method centers on exploiting an equation that characterizes
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the limiting measure, which, in the case of binomial distribution, is given by
(15) and can be derived in the following way.

3.3.1. Stein’s equation for binomial distribution

Since Yk is binomially distributed with parameters k and p ∈ (0, 1), we see that
the probabilities P(Yk = j) satisfy the difference equation

q
(

(j + 1)P(Yk = j + 1)− jP(Yk = j)
)

= (p(k − j)− jq)P(Yk = j). (33)

Following Stein’s idea [128] for deriving the characteristic equation for the nor-
mal distribution

E (f ′(N )) = E (Nf(N )) (f ∈ C1(R)),

by using integration by parts, we consider the average

qE
(

g(Yk)− g(Yk − 1)
)

Yk = q
∑

06j6k

(

g(j)− g(j − 1)
)

P(Yk = j),

and apply summation by parts, which yields, by (33),

qE
(

g(Yk)− g(Yk − 1)
)

Yk

= q
∑

06j6k

g(j)q
(

jP(Yk = j)− (j + 1)P(Yk = j)
)

=
∑

06j6k

g(j)P(Yk = j)(jq − p(k − j))P(Yk = j)

= qE (Ykg(Yk))− pE ((k − Yk)g(Yk)) .

Thus the identity

qE (Ykg(Yk − 1)) = pE ((k − Yk)g(Yk)) (34)

holds for any function g : {0, 1, 2, . . . , k} → R.
A simpler proof of (34) starts with the relation

q(j + 1)P(Yk = j + 1) = p(k − j)P(Yk = j) (0 6 j < k), (35)

multiply both sides by g(j), and sum over all indices j, giving rise to

q
∑

06j6k

(j + 1)g(j)P(Yk = j + 1) = p
∑

06j6k

(k − j)g(j)P(Yk = j),

which is nothing but (34).
Conversely, if for some discrete random variable Z the identity

E
(

qZg(Z − 1) + p(Z − k)g(Z)
)

= 0

holds for any function g(j), then the probabilities P(Z = j) satisfy the equation
(35) as P(Yk = j). Thus

P(Z = j) = P(Yk = j).
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3.3.2. Binomial approximation

In the special case when p = q = 1/2, we have

E
(

(Yk − k)g(Yk) + Ykg(Yk − 1)
)

= 0. (36)

Thus we expect that the above quantity will be small for any random variable
whose distribution is close to Binom(k, 1/2). Assume h : {0, 1, . . . , λ} → C is an
arbitrary function. Let g be a solution to the recurrence relation

(x− λ)g(x) + xg(x− 1) = h(x) − E(h(Yλ)). (37)

Then we can represent the difference of means as

E(h(Xn))− E(h(Yλ)) = E
(

(Xn − λ)g(Xn) +Xng(Xn − 1)
)

.

By Stein’s equation (37), the expectation on the right-hand side of the above
identity will be zero if Xn were distributed according to binomial distribution
B(λ, 1/2). Thus we expect that this quantity will be small if the distribution of
Xn is close to B(λ, 1/2).

Recalling that Aj is defined in (31), we see that P(Xn < x|Un ∈ Aj) =
P(Yλj + j − 1 < x). It follows that

E
(

h
(

Xn

))

− E(h(Yλ))

= E
(

(Xn − λ)g(Xn) +Xng(Xn − 1)
)

=
∑

06j<s

P(Un ∈ Aj)E
(

(Xn − λ)g(Xn) +Xng(Xn − 1)|Un ∈ Aj

)

=
∑

16j6s

2λj

n
E
(

(Yλj + j − 1)− λ)g(Yλj + j − 1)

+ (Yλj + j − 1)g(Yλj + j − 2)
)

.

The term with j = 1 in the last sum is zero since Yλ is binomially distributed.
Hence, with gj(x) := g(x+ j − 1), we then obtain

E
(

h
(

Xn

))

− E(h(Yλ))

=
∑

26j6s

2λj

n
E
(

(λj − λ+ j − 1)gj(Yλj ) + (j − 1)gj(Yλj − 1)
)

+
∑

26j6s

2λj

n
E
(

(Yλj − λj)gj(Yλj ) + Yλjgj(Yλj − 1)
)

.

But the second sum is identically zero by (36). It follows that

E
(

h(Xn)
)

− E(h(Yλ))

=
∑

26j6s

2λj

n
E
(

(λj − λ+ j − 1)g(Yλj + j − 1) + (j − 1)g(Yλj + j − 2)
)

,
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which can be alternatively rewritten as

E
(

h(Xn)
)

− E(h(Yλ)) = E
(

Q1g(Xn)
)

+ E
(

Q2g(Xn − 1)
)

, (38)

where Q1 is a random variable taking value λj − λ + j − 1 if Un ∈ Aj and Q2

takes value j − 1 if Un ∈ Aj for 1 6 j 6 s. Note that

E(Q1) =
∑

16j6s

P(Un ∈ Aj)(λj − λ+ j − 1)

=
∑

16j6s

2λj

n
(λ− λj + j − 1)

= O

(

λ− λ2

2λ−λj

)

,

and, similarly, E(Q2) = O
(

1/2λ−λj
)

.

3.3.3. Solving the equation (x − λ)g(x) + xg(x − 1) = h(x)− E(h(Yλ))

Solving the equation (37) is equivalent to finding the solution xm of the difference
equation

(k −m)xm −mxm−1 = δm,

for 1 6 m 6 k (note that x−1 and xn do not affect the solution of this equation
and therefore can be assumed to be equal to zero), where the δm’s are given and
satisfy the condition

δ0

(

k

0

)

+ δ1

(

k

1

)

+ · · ·+ δk

(

k

k

)

= 0.

The solution is obtained by introducing new variables zm = (k −m)
(

k
m

)

xm for
which our difference equation takes form

zm − zm−1 =

(

k

m

)

δm,

Iterating this, we obtain the following solution to Stein’s equation (37).

Lemma 3.5 ([129]). Let Yλ ∼ Binom(λ, 1/2). Define the function g : {0, 1, . . . ,
λ− 1} → C by

g(m) =
1

(λ −m)
(

λ
m

)

∑

06r6m

(

λ

r

)

(

h(r)− E(h(Yλ))
)

.

Then g is the solution to the recurrence equation

(x− λ)g(x) + xg(x− 1) = h(x)− E(h(Yλ)),

for all x ∈ {1, . . . , λ− 1}.
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Note that

g(m) = − 1

(λ−m)
(

λ
m

)

∑

m<r6λ

(

λ

r

)

(

h(r)− E(h(Yλ))
)

.

Lemma 3.6. The sequence

ym :=
1
(

λ
m

)

∑

06r6m

(

λ

r

)

is monotonically increasing in m.

Proof. By induction using the recurrence relation

ym+1 =
m+ 1

λ−m
ym + 1,

and the monotonicity of m+1
λ−m .

Lemma 3.7 ([88], [125]). If 0 6 h(m) 6 1, then the solution of Stein’s equation
provided by Lemma 3.5 satisfies the uniform estimate

|g(m)| = O
(

λ−1/2
)

(m = 0, 1, . . . ).

Proof. If m 6 λ/2, then, by the monotonicity of the sequence ym, we obtain

|g(m)| 6 1

(λ−m)
(

λ
m

)

∑

06r6m

(

λ

r

)

=
ym

λ−m
6

y⌊λ/2⌋
λ− ⌊λ/2⌋

=
1

(λ− ⌊λ/2⌋)
(

λ
⌊λ/2⌋

)

∑

06r6⌊λ/2⌋

(

λ

r

)

6
2λ

⌊λ/2⌋
(

λ
⌊λ/2⌋

) = O
(

λ−1/2
)

.

The case when m > ⌊λ/2⌋ is treated similarly. Indeed, if m > ⌊λ/2⌋, then, using
the identity

(k −m)

(

k

m

)

= (m+ 1)

(

k

k −m− 1

)

,

we have

|g(m)| 6 1

(λ−m)
(

λ
m

)

∑

m<r6λ

(

λ

r

)

=
1

(m+ 1)
(

λ
λ−m−1

)

∑

06r<λ−m

(

λ

r

)

=
yλ−m−1

m+ 1
6

yλ−⌊λ/2⌋
m+ 1

6
2λ

⌊λ/2⌋
(

k
⌊λ/2⌋

) = O
(

λ−1/2
)

.



212 L. H. Y. Chen et al.

3.3.4. Proof of Theorem 2.4 by Stein’s method

Assume now that A ⊂ R is an arbitrary set. Define

h(m) := IA(m) =

{

1, if m ∈ A;
0, if m 6∈ A.

Then

P
(

Xn ∈ A
)

− P
(

Yλ ∈ A
)

= E
(

Q1g(Xn)
)

+ E
(

Q2g(Xn − 1)
)

= O

(

E(Q1) + E(Q2)√
λ

)

= O

(

λ− λ2

2λ−λ2

√
λ

)

.

Thus

dTV(L (Xn),L (Yλ)) = O

(

λ− λ2

2λ−λ2

√
λ

)

.

3.3.5. A refinement of Theorem 2.4

A finer result can be obtained by using the following lemma.

Lemma 3.8 ([8]). If 0 6 h(x) 6 1 and g is defined in (3.5), then

max
16j6λ−1

|g(j)− g(j − 1)| 6 2min

{

1

j
,

1

λ− j

}

6
4

λ
.

Proof. If m 6 λ/2, then

g(m)− g(m− 1)

=

(

1

(λ−m)
(

λ
m

) − 1

(λ −m+ 1)
(

λ
m−1

)

)

∑

06r<m

(

λ

r

)

(

h(r) − E(h(Yλ))
)

+
h(m)− E(h(Yλ))

λ−m
.

By the elementary inequality
(

λ

m− r

)

6

(

m

λ−m+ 1

)r (
λ

m

)

,

we see that

|g(m)− g(m− 1)| 6
(

1

m
− 1

λ−m

)

∑

06r6m−1

(

λ
r

)

(

λ
m

) +
1

λ−m

6
λ− 2m

m(λ−m)

∑

16r6m

(

m

λ−m+ 1

)r

+
1

λ−m
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6
λ− 2m

m(λ−m)
·

m
λ−m+1

1− m
λ−m+1

+
1

λ−m

=
λ− 2m

(λ−m)(λ− 2m+ 1)
+

1

λ−m

6
2

λ−m
.

In a similar way we obtain the estimate

|g(m)− g(m− 1)| 6 2

m
,

in the case when m > λ/2.

The following result is similar in nature to that obtained by Soon [125] for
unbounded function h(x) that he later applied to derive several large and mod-
erate deviations results for Xn.

Proposition 3.9. Assume h is any real function such that 0 6 h(x) 6 1. Then

E(h(Xn))− E(h(Yλ)) = 4a1(n)E

(

h(Yλ)
λ/2− Yλ

λ

)

+O

(

(λ− λ2)
2

2λ−λ2λ

)

,

where a1(n) = F (log2 n) is defined in (20).

Proof. The lemma implies that g(x + j − 1) = g(x) + O(j/k). Since Yk+s has
the same distribution as Yk + Ws, where Ws is independently and binomially
distributed Ws ∼ B(s, 1/2), we can replace the mean E(g(Yk+s)) by E(g(Yk +
Ws)), the error so introduced being bounded above by

E(g(Yk+s))− E(g(Yk)) = E
(

g(Yk +Ws)− E(g(Yk))
)

= O
( s

k

)

,

where we used the estimate |Ws| 6 s. Thus

E(h(Xn))− E(h(Yλ))

=
∑

26j6s

2λj

n
E
(

(λj − λ+ j − 1)g(Yλj + j − 1)

+ (j − 1)g(Yλj + j − 2)
)

=
∑

26j6s

2λj

n

(

λj − λ+ 2(j − 1)
)

E
(

g(Yλj + j − 1)
)

+O

(

1

2λ−λ2λ

)

= E(g(Yλ))
∑

26j6s

2λj

n

(

λj − λ+ 2(j − 1)
)

+O

(

(λ− λ2)
2

2λ−λ2λ

)

= 2a1(n)E(g(Yλ)) +O

(

(λ− λ2)
2

2λ−λ2λ

)

.
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We now evaluate the quantity E(g(Yλ)) appearing in the last expression

E(g(Yλ)) =
1

2λ

∑

06m<λ

(

λ

m

)

1

(λ −m)
(

λ
m

)

∑

06r6m

(

λ

r

)

(

h(r)− E(h(Yλ))
)

=
1

2λ

∑

06r<λ

(

λ

r

)

(

h(r)− E(h(Yλ))
)

∑

r6m<λ

1

λ−m

= E

(

(

h(Yλ)− E(h(Yλ))
)

∑

Yλ6m<λ

1

λ−m

)

= E

(

(

h(Yλ)− E(h(Yλ))
)

(

∑

Yλ6m<λ

1

λ−m
−

∑

λ/26m<λ

1

λ−m

))

,

since E
(

h(Yλ) − Eh(Yλ)
)

= 0 and the sum
∑

λ/26m<λ(λ −m)−1 is a constant
independent of Yλ. Then

E(g(Yλ)) = −
∑

06r<λ

P(Yλ = r)
(

h(r) − E(h(Yλ))
)

r
∑

m=λ/2

1

λ−m
,

where we use the convention that
∑b

m=a = −
∑a

m=b. We then split the sum
into two parts and obtain

E(g(Yλ)) = −
∑

|r−λ/2|6λ3/4

P(Yλ = r)
(

h(r)− E(h(Yλ))
)

r
∑

m=λ/2

1

λ−m

+O(P(|Yλ − λ/2| > λ3/4)).

If λ/2 6 r 6 λ/2 + λ3/4, then

r
∑

m=λ/2

1

λ−m
=

r
∑

m=λ/2

(

1

λ−m
− 1

λ/2

)

+
r − ⌈λ/2⌉+ 1

λ/2

=
r − λ/2

λ/2
+

r
∑

m=λ/2

m− λ/2

(λ−m)λ/2
+O(λ−1)

=
r − λ/2

λ/2
+O

(

(r − λ/2)2

λ2
+ λ−1

)

.

The same estimate holds when r lies in the range λ/2− λ3/4 6 r 6 λ/2. Thus

E(g(Yλ)) = 2E

(

(

h(Yλ)− E(h(Yλ))
)λ/2− Yλ

λ

)

+O

(

1

λ2
E
∣

∣h(Yλ)− E(h(Yλ))
∣

∣(Yλ − λ/2)2
)

+O
(

λ−1 + P(|Yλ − λ/2| > λ3/4)
)
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= 2E

(

(

h(Yλ)− E(h(Yλ))
)λ/2− Yλ

λ

)

+O

(

1

λ2
E(Yλ − λ/2)2

)

+O(λ−1)

= 2E

(

(

h(Yλ)− E(h(Yλ))
)λ/2− Yλ

λ

)

+O(λ−1)

= 2E

(

h(Yλ)
λ/2− Yλ

λ

)

+O(λ−1),

since E (λ/2− Yλ) = 0. This proves the proposition.

3.3.6. Corollaries of Proposition 3.9

Corollary 3.10. We have

dTV(L (Xn),L (Yλ)) = |a1(n)|E
∣

∣

∣

∣

Yλ − λ/2

λ/2

∣

∣

∣

∣

+O

(

(λ− λ2)
2

2λ−λ2λ

)

. (39)

Proof. By the definition of the total variation distance

dTV(L (Xn),L (Yλ)) = sup
h

∣

∣E(h(Xn))− E(h(Yλ))
∣

∣,

where the supremum is taken over all functions h assuming only binary values
{0, 1}. It is easy to see that the supremum of the average containing h in the
above relation is reached by the function

h(x) =

{

1, if x 6 λ/2,

0, if x > λ/2,

and we thus get, by Proposition 3.9, the estimate

dTV(L (Xn),L (Yλ)) = |a1(n)|E
∣

∣

∣

∣

Yλ − λ/2

λ/2

∣

∣

∣

∣

+O

(

(λ− λ2)
2

2λ−λ2λ

)

.

Corollary 3.11. For all c 6 λ− λ2 with c large enough, we have

dTV(L (Xn),L (Yλ)) =
|a1(n)|√

2πλ

(

1 +O

(

λ− λ2√
λ

))

.

Proof. This follows from the estimate (39) because

E

∣

∣

∣

∣

Yλ − λ/2√
λ/2

∣

∣

∣

∣

=
1√
2π

∫ ∞

−∞
|x|e−x2/2 dx+O(λ−1/2) =

√

2

π
+O(λ−1/2),

and the quantity |a1(n)| can be bounded from bellow by

λ− λ2

2λ−λ2
= O(a1(n)),

if λ− λ2 > c with c > 0 large enough.
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Remark. The Stein method we adopted above for the analysis of sum-of-digits
function differs from the original approach by Stein [129]. First, he used Yλ+1

in lieu of Yλ, as a good approximation to Xn, and derived a uniform bound
for the point probability. Second, instead of exploiting the fact that Xn is a
mixture of binomial distributions his analysis is more subtle and is based on the
construction of an exchangeable pair. By doing so he managed to simplify the
right-hand side of (37) to

E(h(Xn))− E(h(Yλ+1)) = E
(

(Xn − (λ+ 1))gh(Xn) +Xngh(Xn − 1)
)

= E(Qgh(Xn)),
(40)

where Q is a random variable such that 0 6 E(Q) 6 2 and gh is the solution to
the recurrence equation

h(x) − E(h(Yλ+1)) =
(

x− (λ + 1)
)

g(x) + xg(x− 1),

for x ∈ {0, 1, . . . , λ} whose precise expression is given by Lemma 3.5 with k =
λ + 1. The estimate of Lemma 3.7 together with the property 0 6 E(Q) 6 2
now immediately give the estimate of the total variation distance dTV(L (Xn),
L (Yλ+1)) = O(λ−1/2). Further applications of similar ideas will be explored
elsewhere.

3.4. The Krawtchouk-Parseval approach: χ2-distance

We examine in this section yet another approach based on properties of the
Krawtchouk polynomials and the Parseval identity (or more generally Plan-
cherel’s formula). The approach is the binomial analogue of the Charlier-Parseval
approach we developed and explored earlier in [143]. We consider only the sim-
plest case of deriving the χ2-distance, leaving the extension to other distances
to the interested reader, which follows readily from the framework developed
in [143].

3.4.1. Krawtchouk polynomials

Krawtchouk (or Kravchuk) polynomials, introduced in the late 1920s, are poly-
nomials orthogonal with respect to the binomial distribution. Over the years,
they were frequently encountered in a variety of areas, including combinatorics,
number theory, asymptotic analysis, image analysis, coding theory, etc. In prob-
ability theory, their appearance is perhaps even more anticipated than in other
areas due to the prevalence of binomial distribution, and sometimes without
noticing the explicit connection; see Diaconis’s monograph [32] for more in-
formation and applications. See also [70, 90, 122, 136] for more recent update.
Despite the large literature on diverse properties of Krawtchouk polynomials
and the high usefulness of the Parseval identity, we did not find application of
the corresponding Parseval identity similar to ours; see however [33, 103] for a
direct manipulation of Fourier integrals.

We start with reviewing the definition of Krawtchouk polynomials and some
of their well-known properties (see [133, pp. 35–37]).
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Assume that p and q are nonnegative integers such that p+ q = 1.
Introduce the notation

B(N, t) =

(

N

t

)

ptqN−t.

The Krawtchouk polynomials Kn(t) = Kn(N, t) are defined by

∑

06j6N

Kj(t)w
j =

(

1 + qw

1− pw

)t

(1− pw)N . (41)

Multiplying both sides by B(N, t)zt and summing over all t from 0 to N , we
obtain
∑

06t6N

B(N, t)zt
∑

06j6N

Kj(x)w
j =

(

pz(1 + qw) + q(1− pw)
)N

=
(

pz + q + wpq(z − 1)
)N

=
∑

06j6N

(

N

j

)

wj(pq)j(z − 1)j(pz + q)N−j .

Taking the coefficients of wn on both sides, we get

∑

06t6N

B(N, t)Kn(t)z
t =

(

N

n

)

(pq)n(z − 1)n(pz + q)N−n.

On the other hand, by (41), we have

∑

06n,m6N





∑

06t6N

B(N, t)Kn(t)Km(t)



wnzn

=
∑

06t6N

B(N, t)
(

(1 + qw)(1 + qz)
)t(

(1− pw)(1 − pw)
)N−x

=
(

p(1 + qw)(1 + qz) + q(1 − pw)(1 − pw)
)N

= (1 + pqzw)N .

Accordingly, we obtain the orthogonality relation

∑

06t6N

B(N, t)Kn(t)Km(t) = δm,n

(

N

n

)

(pq)n.

3.4.2. The Parseval identity for Krawtchouk polynomials

Let F (z) be a polynomial of degree not greater than N . Thus

f(z) =
∑

06t6N

ftz
t,
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and we have the expansion

ft
B(N, t)

=
∑

06j6N

bjKj(t). (42)

Taking square of the above identity, multiplying it by B(N, t) and summing the
resulting identity with respect to t, we obtain

∑

06t6N

∣

∣

∣

∣

ft
B(N, t)

∣

∣

∣

∣

2

B(N, t) =
∑

06j6N

|bj |2
(

N

j

)

(pq)j . (43)

By the definition (41), we deduce that

(1− pw)Nf

(

1 + qw

1− pw

)

=
N
∑

j=0

bj

(

N

j

)

(pq)jwj .

Comparing this identity with (43), we conclude that

∑

06t6N

∣

∣

∣

∣

ft
B(N, t)

∣

∣

∣

∣

2

B(N, t) =
∑

06j6N

|cj |2
(

N
j

)

(pq)j
,

where cj is defined by

(1− pw)Nf

(

1 + qw

1− pw

)

=
∑

06j6N

cjw
j .

Now by the Parseval identity

J(f,N ; r) :=
1

2π

∫ π

−π

∣

∣

∣

∣

(1− preit)Nf

(

1 + qreit

1− preit

)∣

∣

∣

∣

2

dt

=
∑

06j6N

|cj |2r2j .
(44)

Comparing (44) with (43), and using the relation

(N + 1)

∫ ∞

0

uj

(1 + u)N+2
=

(

N

j

)−1

,

we obtain the Krawtchouk-Parseval identity

∑

06t6N

∣

∣

∣

∣

ft
B(N, t)

∣

∣

∣

∣

2

B(N, t) = (N + 1)

∫ ∞

0

J
(

f,N ;
√

u
pq

)

(1 + u)N+2
du, (45)

which is crucial for deriving the asymptotics of the χ2-distance.
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3.4.3. The χ2-distance

For any non-negative integer-valued random variables Z and W , the χ2-distance
is defined by

χ2(L (Z),L (W )) =
∑

j>0

(

P(Z = j)

P(W = j)
− 1

)2

P(W = j),

provided that the series on the right-hand side has a meaning. It possesses two
important properties. First, its square root upper-bounds the total variation
distance

dTV(L (Z),L (W )) 6
1

2

√

χ2(L (Z),L (W )).

Second, it also provides an effective upper bound for the Kullback-Leibler di-
vergence (or information divergence)

dKL(L (Z),L (W )) :=
∑

j>0

P(Z = j) log
P(Z = j)

P(W = j)
6 χ2(L (Z),L (W )),

a very useful measure in information theory and related applications.

Theorem 3.12. The χ2-distance between the distribution of Xn and the bino-
mial distribution Yλ satisfies

χ2(L (Xn),L (Yλ)) = O
(

λ−1
)

.

Proof. Let

f(z) := Pn(z)−
(

1 + z

2

)λ

,

where Pn is the probability generating function (23) of Xn. Then, by (13),

(

1− w

2

)λ

f

(

1 + w
2

1− w
2

)

=
1

n

∑

26j6s

2λj

(

(

1 +
w

2

)j−1 (

1− w

2

)λ−λj−j+1

− 1

)

.

We need the elementary inequality

∣

∣(1 + z)a(1− z)b − 1
∣

∣ 6 (1 + |z|)a+b − 1 6 (a+ b)|z|(1 + |z|)a+b−1,

for nonnegative integers a, b with a + b > 1. Applying this inequality, we get,
with p = q = 1/2 and N = λ,

J(f, λ; r) 6
r2

4

∣

∣

∣

∣

∣

∣

∑

26j6s

λ− λj

2λ−λj

(

1 +
r

2

)λ−λj−1

∣

∣

∣

∣

∣

∣

2

.
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Substituting this estimate into the Krawtchouk-Parseval identity (45), we have





∑

06m6λ

∣

∣

∣

∣

∣

P
(

Xn = m
)

1
2λ

(

λ
m

) − 1

∣

∣

∣

∣

∣

2
1

2λ

(

λ

m

)





1/2

6

(

(λ+ 1)

∫ ∞

0

J (f, λ; 2
√
u)

(1 + u)λ+2
du

)1/2

6
∑

26j6s

λ− λj

2λ−λj

(

(λ+ 1)

∫ ∞

0

u2

(1 + u)λj+3
· (1 +

√
u)2(λ−λj−1)

(1 + u)λ−λj−1
du

)1/2

=
∑

26j6s

λ− λj

2λ−λj

(

(λ+ 1)

∫ ∞

0

u2

(1 + u)λj+3

(

1 +
2
√
u

1 + u

)λ−λj−1

du

)1/2

.

Since the function
√
u/(1 + u) reaches the maximum at the point u = 1, we see

that
1 + 2

√
u/(1 + u) 6 2.

It follows that

(

χ2(L (Xn),L (Yλ))
)1/2

6
∑

26j6s

λ− λj

2(λ−λj+1)/2

(

(λ+ 1)

∫ ∞

0

u2

(1 + u)λj+3
du

)1/2

6
∑

26j6s

λ− λj

2(λ−λj+1)/2

(

λ+ 1

(λj + 2)(λj + 1)

)1/2

6
√
λ+ 1

∑

26j6s

λ− λj

2(λ−λj+1)/2(1 + λj)

6
1√
λ+ 1

∑

λ−λ26k6λ−λs

k(λ+ 1)

2k/2(1 + λ− k)
.

It is clear that
∑

λ−λ26k<λ

k(λ+ 1)

2k/2(1 + λ− k)
= O(1).

This proves the theorem.

Finer results can be derived by developing similar techniques as those used
in [143] for Poisson approximation.

4. A general numeration system and applications

The properties we studied above can be readily extended to a more general
framework of numeration system in which we encode each integer by a different
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binary string and impose the sole condition that

Z2n
d
= Zn + I (n > 1), (46)

where Zn denotes the number of 1s in the resulting coding string for a random
integer, assuming that each of the first n nonnegative integers is equally likely,
and I ∼ Bernoulli(1/2). For definiteness, let Z0 = Z1 = 0. This simple scheme
covers in particular the binary coding of Xn above (as can be easily checked)
and binary reflected Gray code, which will be discussed in more detail later. Let
µ(n) denote the number of 1s in the coding of n in such a numeration system.
All our results below roughly say that this numeration system does not differ
much from the binary coding although the codings inside each 2k block can be
rather flexible.

Theorem 4.1 (Local limit theorem). Assume that Zn satisfies (46). Then Zn

is asymptotically normally distributed:

P

(

Zn =

⌊

λ

2
+ x

√
λ

2

⌋)

=

√
2 e−x2/2

√
πλ

(

1 +O

(

1 + |x|3√
λ

))

, (47)

uniformly for x = o(λ1/6), with mean and variance satisfying

E(Zn) =
log2 n

2
+G1(log2 n),

V(Zn) =
log2 n

4
+G2(log2 n).

(48)

Here G1, G2 are bounded periodic functions.

For results related to moderate deviations, see [18]. We can derive more pre-
cise Fourier expansions for the periodic functions G1, G2 when more information
is available.

Theorem 4.2. Assume that Zn satisfies (46). Then

∑

06k6λ

∣

∣

∣

∣

∣

∣

P
(

Zn = k
)

−
∑

06r<m

(−1)rbr(n)2
−λ∆r

(

λ

k

)

∣

∣

∣

∣

∣

∣

=
hm|bm(n)|

λm/2
+O

(

λ−(m+1)/2
)

,

for m = 1, 2, . . . , where the sequence br(n) = br(2n) is defined by (see (13))

E(yZn)

(

1 + y

2

)−λ

=
∑

r>0

br(n)(y − 1)r. (49)

In particular, b0 = 1, b1(n) = E(Zn)− λ/2, and

b2(n) =
E(Z2

n)

2
− λ+ 1

2
E(Zn) +

λ(λ+ 1)

8
.
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Corollary 4.3.

dTV

(

L (Zn),L (Yλ)
)

=

√
2|Ḡ1(log2 n)|
√

π log2 n
+O

(

1

logn

)

, (50)

where Ḡ1(log2 n) = E(Zn)− λ/2 is periodic Ḡ1(x+ 1) = Ḡ1(x) and continuous
on the set R \ N.

The periodic function Ḡ1(x) can be defined as follows. Write 2x =
∑

j>0 ξj2
−j ∈ [1, 2).

Ḡ1(x) = 2−x
∑

j>0

1− (−1)⌊2j+x⌋
2

2−j

(

µ
(⌊

2j−1+x
⌋)

− j

2

)

.

Note that Ḡ1(x) = G1(x) − {x}/2.
Theorem 4.4. Assume, as above, that n = 2λ + 2λ2 + · · ·+ 2λs with λ > λ2 >
· · · > λs > 0. Then

dTV(L (Zn),L (Yλ)) ≍
1

2λ−λ2
min

{

1,
λ− λ2√

λ

}

,

whenever λ− λ2 > c, where c is sufficiently large.

4.1. Sketches of proofs

Most of our analysis is based on the following explicit expression; cf. (13).

Lemma 4.5. If Zn satisfies the condition (46), then the probability generating
function of Zn satisfies

E
(

yZn
)

=
1

n

∑

16j6s

yµ(⌊n/2λk⌋−1)(1 + y)λk , (51)

where n = 2λ + 2λ2 + · · ·+ 2λs with λ > λ2 > · · · > λs > 0.

Proof. Observe that the crucial condition (46) implies the recurrence

E
(

yZ2n
)

=
1 + y

2
E
(

yZn
)

,

the same as (24) for Xn. Consequently, we also have, following the same analysis
there,

E
(

yZn
)

=
1

n

∑

06j6λ

1− (−1)⌊n/2j⌋
2

yµ(⌊n/2j⌋−1)(1 + y)j ,

for n > 1; compare (25). Since 2 divides
⌊

n/2j
⌋

if and only if j 6∈ {λ1, λ2, . . . , λs},
we obtain (51).
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From the expression (51), we easily obtain

E(Zn) =
1

n

∑

16j6s

2λj

(

µ̄j +
λj

2

)

,

E(Z2
n) =

1

n

∑

16j6s

2λj

(

µ̄2
j + λj µ̄j +

λ2
j + λj

4

)

,

where µ̄j := µ(
⌊

n/2λj
⌋

−1). The identity for the mean in (48) then follows with

G1(log2 n) =
2λ

n

∑

16j6s

2−(λ−λj)

(

µ̄j −
λ− λj

2

)

− {log2 n}
2

,

which is periodic and bounded since µ̄j 6 j + 1. Also the definition of G1 here
for log2 n can be readily extended to all reals.

We now prove the identity in (48) for the variance as the proof is very simple.
Let

Z̄n := Zn − λ

2
=

1

n

∑

16j6s

2λj

(

µ̄j −
λ− λj

2

)

.

Then

V(Zn)−
λ

4

= E(Z2
n)−

(

E(Z̄n) +
λ

2

)2

− λ

4

=
1

n

∑

16j6s

2λj

(

µ̄j(1 + λj − λ) +
λj(λj + 1)− λ(λ + 1) + 2λ(λ− λj)

4

)

−
(

E(Z̄n)
)2

,

and we obtain the identity for the variance in (48) with

G2(log2 n) =
2λ

n

∑

16j6s

2−(λ−λj)

(

µ̄2
j − µ̄j (λ− λj) +

(λ− λj)(λ− λj − 1)

4

)

−G1(log2 n)
2 −G1(log2 n){log2 n} −

{log2 n}2 + {log2 n}
4

,

which is also bounded and periodic, and extendible to all x ∈ R.
The local limit theorem (47) is proved in a way similar to the proof of Propo-

sition 3.2.
In terms of probabilities, the identity (51) means that the random variable

Zn can be expressed as a mixture of shifted binomial random variables. Its
distribution can be described in the following way. Let ζn be a random variable
defined by

P(ζn = j) =
2λj

n
(1 6 j 6 s).
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Binary(2k) Gray(2k)

Binary(2k)
Gray(2

k
)

1 1

Translate Reflect

0
1
...
2k

0
1
...
2k

0 0
1 1
2 1 1
3 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

...
...

Fig 12. Constructions of binary code (left) and Gray code (middle), and the Gray code of the
first few integers (right).

Then
P(Zn ∈ A|ζn = j) = P(Yλj + rj ∈ A),

for any A ⊂ R, where rj := µ(
⌊

n/2λj
⌋

− 1) 6 λ − λj + 1 and r0 := 0. By the
same arguments used above, we see that the identity

E
(

h
(

µ(Xn)
))

=
∑

26j6s

2λj

n
E
(

(λj − λ+ rj)g(Yλj + rj) + rjg(Yλj + rj − 1)
)

holds for any function h : R → R, where g is the solution to Stein’s equation (37).
We skip all details of the proofs as they are almost identical to those for Xn.

4.2. Gray code

The Gray code is characterized by the property that the codings of any two
successive integers differ by exactly one bit. It is named after Frank Gray’s 1947
patent, although the same construction had been introduced in telegraphy in the
late nineteenth century by the French engineer Émile Baudot; see Wikipedia’s
page on Gray code for more information. The coding notion with two neighbor-
ing objects differing at one location has turned out to be extremely useful in
many scientific disciplines beyond the original communication motivations such
as experimental designs, job scheduling in computer systems, and combinatorial
generation; see the survey paper [119] and the references therein.

The binary reflected Gray code is constructed by reflecting (or mirroring)
the first 2k codings of the first 2k nonnegative integers and then adding 1 at
the beginning for each coding, resulting in the Gray code for the first 2k+1

nonnegative integers; see Figure 12 for an illustration.
By construction, the Gray code, say G(2k+j) of 2k+j with 0 6 j < 2k is equal

to 10ℓG(2k − 1− j) (string concatenation), where ℓ := k− 1−
⌊

log2(2
k − 1− j)

⌋

and 0ℓ means 0 written ℓ times. For example,

G(19) = 1G(12) = 110G(3) = 11010.
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2 4 8 16 32 64

1

2

3

4

5

6

n

Fig 13. γ(n).

Thus the number of 1s, denoted by γ(n), of n under such a coding system
satisfies the recurrence

γ(2k + j) = 1 + γ(2k − 1− j), (52)

for 0 6 j < 2k and k > 1. Another interesting type of recurrence is (by induc-
tion)

γ(n) = γ (⌊n/2⌋) + 1− (−1)⌈n/2⌉

2
,

for k > 1, in contrast to

ν(n) = ν (⌊n/2⌋) + 1− (−1)n

2
,

for binary coding.
Let now

Rn(z) =
∑

06j<n

zγ(j).

Then, obviously,
R2k(z) = (1 + z)k,

and, by (52),

R2k+j(z) = R2k(z) + z(R2k(z)−R2k−j(z))

= R2k(z)(1 + z)− zR2k−j(z)

= (1 + z)k+1 − zR2k−j(z).
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−0.11

0.07

0.16

0.25

0.34

x
0.2 0.4 0.6 0.8 1

Fig 14. G1(x).

−0.05

0.06

0.12

0.17

0.22

x
0.2 0.4 0.6 0.8 1

Fig 15. G2(x).

From this recurrence relation, we deduce by induction that

R2n(z) = (1 + z)Rn(z),

for all n > 1. Thus the the sum-of-digits function Zn of random integers un-
der the Gray coding satisfies (46), and thus Theorems 47, 4.2 and 4.4 and
Corollary 4.3 all hold. In addition to the mean and the variance, all results are
new. The mean of Zn was first studied by Flajolet and Ramshaw [48] where
more precise characterizations of G1 (including a Fourier series expansion) are
given. A closed-form expression for E(yZn) was derived by Kobayashi et al. [79]
by singular measures, together with exact expressions for all moments (non-
centered).

For other properties related to γ(n) and Zn, see [36,66,76,77,79,80,113,115].

So far, we considered only the goodness of approximations to L (Xn) and
L (Zn) by the binomial distribution Yλ. It is also natural to consider approxi-
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Binary(2k)Binary(2k)

Binary(2k)Binary(2k)

Reflect
Complement

(0 → 1;1 → 0)Translate =

1 1

0
1
...
2k

0
1
...
2k

Fig 16. Two different ways of constructing the same binary code.

mations of L (Zn) by L (Xn), and the result is as follows.

dTV (L (Xn),L (Zn)) =

√
2|F (log2 n)−G1(log2 n)|

√

π log2 n
+O

(

1

log2 n

)

, (53)

where the difference F (x) −G1(x) is a continuous function for all x.

4.3. Beyond binary and Gray codings

We give here another simple binary coding system for integers satisfying the
condition (46). We start with the observation that binary coding can be con-
structed not only in the usual translation way, but also using reflection and
complement (first reflect the whole block of 2k numbers as in Gray code, and
then change every 1 to 0 and every 0 to 1); see Figure 16.

We now consider a coding system using translation and complement. Let
µ(n) denote the number of 1s in the coding of n. Then by construction

µ(2k + j) = k + 1− µ(j),

for 0 6 j < 2k and k > 1. From this recurrence, we see that
∑

06ℓ<2k+j

yµ(ℓ) = (1 + y)k + yk+1
∑

06ℓ<j

y−µ(ℓ),

and it is straightforward to see that (46) holds in such a coding system. Thus
Zn satisfies all properties stated in the beginning of this section.

To obtain other examples for which (46) holds, one may combine more
block operations (such as translation, horizontal or vertical reflection, reversal,
flip, etc.) and string operations (complement, reversal, cyclic rotation, rewrit-
ing, etc.). A simple example is the block translation or reflection followed by
any cyclic rotation of each coding (which does not change the number of 1s).
Such a coding scheme also satisfies (46).
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TransComplm(2k)

TransComplm(2k)

Translate Complement

1

0
1
...
2k

0 0
1 1

1 1 2
1 0 3

1 1 1 4
1 1 0 5
1 0 0 6
1 0 1 7

1 1 1 1 8
1 1 1 0 9
1 1 0 0 10
1 1 0 1 11
1 0 0 0 12
1 0 0 1 13

...

Fig 17. Yet another code.
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