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EXTERNAL STABILIZATION OF DISCONTINUOS SYSTEMS
AND NONSMOOTH CONTROL LYAPUNOV-LIKE
FUNCTIONS

Abstract.

The main result of this note is an external stabilizabilitgarem for discontin-
uous systems affine in the control (with solutions intendetthé Filippov’'s sense).
In order to get it we first prove a sufficient condition for extal stability which
makes use of nonsmooth Lyapunov-like functions.

1. Introduction

In this note we deal with discontinuous time-dependentesystaffine in the control:

m
@ %= f(t.3) + Gt U= f(t.x)+) uigtx

i=1
wherex e R", u e R™, f e L2 R™L;RM), foralli € {1,...,m}, g € CR""L; R") andG
is the matrix whose columns agg, .. ., Om-

Admissible inputs are € L{S (R; R™).
Solutions of system (1) (as well as solutions of all the systeonsidered in the following)
are intended in the Filippov’s sense. In other words, foheatmissible input(t), (1) is replaced

by the differential inclusion

xeK(f+Gutx) =) () Tol(f+Gut Bx §\N)},
§>0u(N)=0
where B(x, §) is the ball of centex and radiuss, To denotes the convex closure gnds the
usual Lebesgue measureRA.

For the general theory of Filippov’s solutions we refer th [8/e denote byg, x,,u the set
of solutionsy(-) of system (1) with the initial conditiop (tg) = Xg and the functiom : R — R™
as input.

We are interested in the external behaviour of system (paiticular in its uniform bounded
input bounded state (UBIBS) stability.

Roughly speaking a system is said to be UBIBS stable if ifedtaries are bounded when-
ever the input is bounded. More precisely we have the foligvdefinition.

DEFINITION 1. System (1) is said to HgBIBS stablef for each R> 0 there exists S- 0
such that for eaclitg, xg) € R™1, t5 > 0, and each input & Lis.(R; R™) one has

Xl <R, ullec < R=Ve() € Soxu le®I<S Vt=to.
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We associate to system (1) the unforced system
) x = f(t,x)
obtained from (1) by setting = 0. We denotex, x, 0 = S, xo-

DEFINITION 2. System (2) is said to heniformly Lagrange stablé for each R> 0 there
exists S> 0 such that for eactity, Xg) € R™1, t5 > 0, one has

Xl < R=Ve() € §,x lle®I <S Vt=1g.

If system (1) is UBIBS stable, then system (2) is uniformlgtange stable, but the converse
is not true in general. In Section 3 we prove that, if not onlgtem (2) is uniformly Lagrange
stable, but some additional conditions érandG are satisfied, then there exists an externally
stabilizing feedback law for system (1), in the sense of tilewing definition.

DEFINITION 3. System (1) is said to HdBIBS stabilizableif there exists a function k
Lo (RM1; RM) such that the closed loop system

?3) x = f(t,x) + G(t, X)k(t, X) + G(t, X)v
(with v as input) is UBIBS stable.

The same problem has been previously treated in [1, 2, 4, 8]giWé our result (Theorem
2) and discuss the differences with the results obtaineddnmrtentioned papers in Section 3.

In order to achieve Theorem 2 we need a preliminary theoreémedfiem 1 in Section 2).
It is a different version of Theorem 1 in [13] and Theorem &34]. It provides a sufficient
condition for UBIBS stability of system (1) by means of a nom®th control Lyapunov-like
function. Finally the proof of the main result is given in 8en 4.

2. UBIBS Stability

In this section we give a sufficient condition for UBIBS stépiof system (1) by means of a
nonsmooth control Lyapunov-like function. (See [11, 13]dontrol Lyapunov functions).

The following Theorem 1 (and also its proof) is analogoushedrem 1 in [13] and Theo-
rem 6.2 in [4]. It differs from both for the fact that it invadg a control Lyapunov-like function
which is not of clas€1, but just locally Lipschitz continuous and regular in theseof Clarke
(see [5], page 39).

DEFINITION 4. We say that a function VR — R isregularat (t, x) € R™1 jf

(i) forall v € R" there exists the usual right directional derivativér(\(t, X), (1, v)),
V(s+h,y+rl:u)fV(s, y) _

(i) forallv e R", VL ((t,x), (1, v)) =lim SURs,y)— (t,x) h|0

The fact that the control Lyapunov-like function for systéhhis regular allows us to char-
acterize it by means of its set-valued derivative with respe the system instead of by means
of Dini derivatives.

Let us recall the definition of set-valued derivative of adtion with respect to a system
introduced in [10] and then used (with some modificationgBin Let us denote byV (t, x)
Clarke generalized gradient bf at (t, x) (see [5], page 27).
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DEFINITION 5. Lett > 0, x € R", u € RM be fixed, V: R™1 — R. We callset-valued
derivative ofV with respect to system (ihe set
~ (1
V( )(t, x,u)={aeR:3ve K(f(t,x)+ G, x)u) suchthatvp e aV(t,x) p- (1,v) =a}.

Analagously, if t> 0, x € R", u € L5 (R, R™) are fixed, we set

—~ (1
ij()_)(t, X) =f{aeR:3Jv e K(f(t,x)+ G(t,x)u(t)) suchthavp e aV(t,x) p- (1, v) = a}

and, ift > 0 and x € R" are fixed, we define

—~ (2
V2 (t,x) = {aeR: 3v e Kf(t,x) suchthap € aV(t,x) p- (L v) = a}.

—~ (1
Let us remark thav( )(t, X, U) is a closed and bounded interval, possibly empty and

—~(1 N
maxV( )(t, X, U) < DTV ((t, x), (1, v)),

max
veK (f (t,X)+G(t,x)u)
whereDTV ((t, X), (1, v)) is the Dini derivative ol at (t, x) in the direction of(1, v).
LEMMA 1. Letg(-) be a solution of the differential inclusion (1) correspamglto the input
u(-) and let V : R"1 — R be a locally Lipschitz continuous and regular function. fihe
~ (1
é’—tV(t, @(t)) exists almost everywhere a@V(t, pt)) e Vﬂ(?) (t, (1)) almost everywhere.
We omit the proof of the previous lemma since it is completglogous to the proofs of
Theorem 2.2 in [10] (which involves a slightly different kilof set-valued derivative with respect

to the system) and of Lemma 1 in [3] (which is given for autooamdifferential inclusions and
V not depending on time).

We can now state the main theorem of this section.
THEOREM1. LetV: R"™1 5 R be such that there exists+ 0 such that

(VO) there exist two continuous, strictly increasing, posifimactions ab : R — R such that
limr - 400 a(r) = +o0 and for all t > 0 and for all x

IXIl > L = adlx|) = V(t, x) < b(ix])

(V1) V is locally Lipschitz continuous and regularRi™ x {x € R" : ||x|| > L}.
If

(fG) forall R > Othere existe > L such that for all xe R" and for all u ¢ R™ the following
holds:

= (1)
IX]| > p, llul < R= maxV( (t,x,u) <0fora.e.t>0
then system (1) is UBIBS stable.
Proof. We prove the statement by contradiction, by assuming tleaétéxistsR such that for all

S > 0 there exisXg andU : [0, +00) — R™ such that|Xp|| < R, [|Ullcc < R and there exist
?(-) € Sy %0 @ndt > 0 such thaflp®| > S.
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Let us choos@ corresponding tdR as in (fG). Without loss of generality we can suppose
thatp > R. Because of (V0), there exis&, > 0 such that if|x|| > Sy, thenV(t,x) > M =
b(p) > maxV(t, x), ||X|| =0, t > 0} for all t.

Let us considelS > p, Sy. There exist,tp > 0 such that € [t1, to], lg(tD)] = P,
le®l =2 in[t1, to], flp(t2)[| = S. Then

4 V(t2, 9(t2) > M = V(tg, v(ty) .

—~ (1 —~ (1
On the other hand, by Lemmag—tV(t, o)) € V(U(),)(t, @(t)) a.e. ltis clear thavé(?) t, 1)

- V(l)a,a(t),ﬁ(t)). Since|t(t)| < Ra.e. andjg(t)| > pforallt € [ty, to], by virtue of (fG)
we havez?—tV(t, @(1)) < 0fora.et € [tg,t2]. By [7] (page 207) we get thaf o g is decreasing
in [ty, to], then
V(t2, o(t2)) < V(t1, 9(t1)
that contradicts (4).
|

REMARK 1. In order to get a sufficient condition for system (2) to b&armly Lagrange
stable, one can state Theorem 1 in the ease0. In this case the control Lyapunov-like function
simply becomes a Lyapunov-like function.

REMARK 2. For sake of simplicity we have given the definition of UBIB&bility and
stated Theorem 1 for systems affine in the control. Let us remhat exactly analogous defini-
tion, theorem and proof hold for more general systems ofdha f

X = f(t,x,u)

wheref : R™N+1 _, RN s |ocally bounded and measurable with respect to the vasatand
x and continuous with respect to

REMARK 3. If system (1) is autonomous it is possible to state a theaiealogous to
Theorem 1 for a control Lyapunov-like functidh not depending on time.

3. The Main Result

The main result of this note is the following Theorem 2. Itezg&lly recalls Theorem 6.2 in [4]
and Theorem 5 in [9], with the difference that the control pyaov-like function involved is not
smooth.

We don't give a unique condition for system (1) to be extdynatabilizable, but some
alternative conditions which, combined together, givedkiernal stabilizability of the system.
Before stating the theorem we list these conditions. Naitttie variable is not yet quantified.
Since its role depend on different situations, it is congahto specify it later.

=(2)
(f1) maxV (t,x) <0;
(f2) forall z e Kf(t, x) there exist® € aV(t, x) such thafp - (1, z) < 0;
(f3) forallze Kf(t,x)and forallp € aV(t,x), p- (1,2 <0;

(G1) for eachi € {1,...,m} there existscit,x € R such that for allp € aV(t,x), p -
1,9 t,x) = C't,x;
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(G2) foreach € {1, ..., m}only one of the following mutually exclusive conditions tsi
— forallpeaV(t,x) p-(1 g, x) >0,
— forallpeaV(t,x) p-(1 g, x) <0,
— forallpeaV(t,x) p-(1 g, x) =0;

(G3) thereexists e {1, ..., m} such that for eache {1, ..., m}\{T} only one of the following
mutually exclusive conditions holds:

— forallpeaV(t,x) p- (1 g, x) >0,
— forallpeaV(t,x) p-(1 g, x) <0,
— forall peaV(t,x) p- (1, g, x) =0;

Let us remark that (f3}» (f2) = (f1) and (G1)= (G2)= (G3).

THEOREMZ2. Let V : R™1 — R be such that there exists £ 0 such that(V0) and (V1)
hold.

If for all x € R™ with ||x|| > L one of the following couples of conditions holds for a.e.
t>0:

(i) (fl) and(G1), (i) (f2) and(G2), (iii) (f3) and(G3),
then system (1) is UBIBS stabilizable.

Let us make some remarks.

If for all x € R" with ||x|| > L assumption (f1) (or (f2) or (f3)) holds for a.&.> 0, then, by
Theorem 1 in Section 2, system (2) is uniformly LagrangelstaBctually in [4] the authors
introduce the concept of robust uniform Lagrange stabditg prove that it is equivalent to the
existence of a locally Lipschitz continuous Lyapunov-likmction. Then assumption (f1) (or
(f2) or (f3)) implies more than uniform Lagrange stabilitysystem (2). In [9], the author has
also proved that, under mild additional assumptionsf probust Lagrange stability implies the
existence of £°° Lyapunov-like function, but the proof of this result is notaally constructive.
Then we could still have to deal with nonsmooth Lyapunoe-fiinctions even if we know that
there exist smooth ones.

Moreover Theorem 2 can be restated for autonomous systetnsgheifunctionV not de-
pending on time. In this case the feedback law is autonompdstas possible to deal with a
situation in which the results in [9] don't help.

Finally let us remark that iff is locally Lipschitz continuous, then, by [14] (page 105),
the Lagrange stability of system (2) implies the existenta tme-dependent Lyapunov-like
function of classC®. In this case, in order to get UBIBS stabilizability of systgl), the

regularity assumption o& can be weakened B € Llogc(R”Jrl; R™M) (asin [2]).

4. Proof of Theorem 2

We first state and prove a lemma.

LEMMA 2. Let V : R™1 — R be such that there exists £ 0 such that(V0) and (V1)
hold. If (t, X), with ||X|| > L, is such that, for all pc 3V (&, X) p- (1, g; (t, X)) > 0, then there
existsdy > 0 such that, for all xe B(X, 8x), forall p € 0V (f, x), p- (1, gi (t, X)) > 0.
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Analagously if(t, X), with ||X|| > L, is such that for all p 9V (t, X), p- (1, gj (t, X)) < 0,
then there exist&; > 0such that, for all xe B(X, 8x), forall p € 0V (1, x), p-(1, g; (t, X)) < O.

Proof. Lety > 0 be such thalX| > L + y, and letLy > 0 be the Lipschitz constant &f in
the sef{t} x B(X, y). Forall(, x) € {t} x B(X, y) and forallp € 9V (1, X) | pll < Lx (see [5],
page 27).

Sinceg; is continuous there exigtandM such that|(1, g; (t, X))|| < M in {T} x B(X, n).

Letd = min{p- (1, g; (t, X)), p € aV (&, X)}. By assumptiord > 0.

Let us considee < m.

By the continuity ofg;, there existss; such that, if|x — X|| < &, then| (1, g, X)) —
L gi@x)l <e.

By the upper semi-continuity afV (see [5], page 29), there existg > 0 such that, if
IIx —X|| < 8y, thenaV(,x) € aV(,X) + ¢B(0,1), i.e. for allp € aV({, x) there exists
P € V&, X) such that|p — Pl < e.

Let 8¢ = min{y, n, &, 8y}, X be such thafjx — X|| < §xyandp € aV(t, x), p € aV({,X)
be such thatp — p|| < e.

It is easy to see thap - (1, gi (I, x)) —p- (L, g {, X)) < %, hencep - (1, gj (t, X)) >
P-LgEx-4=9>o0.

The second part of the lemma can be proved in a perfectly goatoway.

|

Proof of Theorem 2For eachx € R", let Ny be the zero-measure subsetRf in which no
one of the couples of conditiors), (i) and (iii ) holds. Letk : R™*1 — RM Kkt x) =
(kq(t, %), ..., km(t, X)), be defined by

—|Ix]l ifvpeaV(t,x) p-(1 g, x) >0
0 ifvpeadV(t,x) p-git,x) =0,

or (f3) and (G3) hold and =T, ort € Ny
1] ifvpeaVt,x) p- (1 g, x) <0.

ki (t, x) =

Itis clear thak e LS (RN, RM).

By Theorem 1 it is sufficient to prove that for & > 0O there exist® > L, R such that for
all x e R" andv € R™ the following holds:

—~ (3
IXIl > p, vl < R= maxV' )(t,x) <Oforallt e RT\Ny

WhereV(S)(t,x) ={a e R: 3w e K(f(t,x) + G(t, x)k(t, x) + G(t, x)v) such thavp e
Vi, x) p- (1, w) =al.
Let x be fixed and € RT\Nyx. Leta e V(3)(t,x), w e K(f(t,x) + G(t, x)k(t, x) +
G(t, X)v) be such that foralp € aV(t,x) p-w = a.
By Theorem 1 in [8] we have that
K(ft,x)+ G, x) (K, X) + v)(x) € Kf(t,x)+ Zim:l g (t, Xx)K (K (t, X) + vj), then there
existsz € Kf(t,x),z € Kkjt,x)+v),i €{L,..., m}, such thaw = z+ 3", gi (t, X)z.
Let us show thah < 0. We distinguish the three cas@s, (ii ), (iii ).

. = (2
i) b=p-Lzg=a— Zim:l c'[’xzi does not depend op, thenb € V( )(t, x) and, by (f1),
b<0.
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(@it)

(i)

Let us now show that for eadhe {1,..., m} C't,xZi < 0. Ifi is such tha‘c't’x =0,
obviouslyc ,z < 0. Ifi is such thati , > 0 then, by Lemma 1, there existg such
thatk; (t, y) = —|y|l in {T} x B(x, 8x), thenk; is continuous ak with respect toy. This
implies thatK (kj (t, X) +vj) = —||X|| + vj, i..Z; = —||X|| + v andc't,xzi < 0, provided
that||v|| > p > maXL, R}.

The case in which is such that:ityx < 0 can be treated analogously. We finally get that
a=b+Y " ¢,z <0

By (f2) there existsp € aV(t,x) such thatp- (1,2) < 0.a=p - (1,2 + Zi";lb-
(1, gi (t, x))z;. The fact that for each e {1, ..., m} we havep - (1, g (t, x))z; < 0 can
be proved as iri) we have proved that for eache {1,...,m} ¢{ ,z < 0. We finally
get thata < 0. '

Let us remark that if (G2) is not verified, i.e. we are not in tase(ii), there exists
P € aV(t, x) corresponding td@ such thatp - (1, gr(t, x)) = 0. Indeed, because of the
convexity ofaV (t, x), for allv € R", if there existpy, p, € 3V (t, x) such thatp; -v > 0
andpy - v < 0, then there also exis{g € dV (t, X) such thatpz - v = 0.

Letp € 9V (t, x) be such thap- (1, gr(t,x)) = 0. Forallpe aV(t,x)a= p-(1, w). In
particular we havea = - (1, w) = P- (1, 2+ 3 i P- (L, i (t, X))z +P- (L, gr(t, X))z
By (f3), p- (1,2) < 0. Ifi #T7the proofthap- (1, gj(t, X))z < 0isthe same as ii).

If i =T, because of the choice @ P - (1, gr(t, X)) = 0. Also in this case we can then
conclude thaa < 0.

|
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