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EXTERNAL STABILIZATION OF DISCONTINUOS SYSTEMS

AND NONSMOOTH CONTROL LYAPUNOV-LIKE

FUNCTIONS

Abstract.
The main result of this note is an external stabilizability theorem for discontin-

uous systems affine in the control (with solutions intended in the Filippov’s sense).
In order to get it we first prove a sufficient condition for external stability which
makes use of nonsmooth Lyapunov-like functions.

1. Introduction

In this note we deal with discontinuous time-dependent systems affine in the control:

ẋ = f (t, x) + G(t, x)u = f (t, x) +

m
∑

i=1

ui gi (t, x)(1)

wherex ∈
�n, u ∈

�m, f ∈ L∞
loc(

�n+1;
�n), for all i ∈ {1, . . . , m}, gi ∈ C(

�n+1;
�n) andG

is the matrix whose columns areg1, . . . , gm.

Admissible inputs areu ∈ L∞
loc(

�
;
�m).

Solutions of system (1) (as well as solutions of all the systems considered in the following)
are intended in the Filippov’s sense. In other words, for each admissible inputu(t), (1) is replaced
by the differential inclusion

ẋ ∈ K ( f + Gu)(t, x) =
⋂

δ>0

⋂

µ(N)=0

co{( f + Gu)(t, B(x, δ)\N)} ,

whereB(x, δ) is the ball of centerx and radiusδ, co denotes the convex closure andµ is the
usual Lebesgue measure in

�n .

For the general theory of Filippov’s solutions we refer to [6]. We denote bySt0,x0,u the set
of solutionsϕ(·) of system (1) with the initial conditionϕ(t0) = x0 and the functionu :

�
→

�m

as input.

We are interested in the external behaviour of system (1), inparticular in its uniform bounded
input bounded state (UBIBS) stability.

Roughly speaking a system is said to be UBIBS stable if its trajectories are bounded when-
ever the input is bounded. More precisely we have the following definition.

DEFINITION 1. System (1) is said to beUBIBS stableif for each R> 0 there exists S> 0
such that for each(t0, x0) ∈

�n+1, t0 ≥ 0, and each input u∈ L∞
loc(

�
;
�m) one has

‖x0‖ < R, ‖u‖∞ < R ⇒ ∀ϕ(·) ∈ St0,x0,u ‖ϕ(t)‖ < S ∀t ≥ t0 .
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We associate to system (1) the unforced system

ẋ = f (t, x)(2)

obtained from (1) by settingu = 0. We denoteSt0,x0,0 = St0,x0.

DEFINITION 2. System (2) is said to beuniformly Lagrange stableif for each R> 0 there
exists S> 0 such that for each(t0, x0) ∈

�n+1, t0 ≥ 0, one has

‖x0‖ < R ⇒ ∀ϕ(·) ∈ St0,x0 ‖ϕ(t)‖ < S ∀t ≥ t0 .

If system (1) is UBIBS stable, then system (2) is uniformly Lagrange stable, but the converse
is not true in general. In Section 3 we prove that, if not only system (2) is uniformly Lagrange
stable, but some additional conditions onf andG are satisfied, then there exists an externally
stabilizing feedback law for system (1), in the sense of the following definition.

DEFINITION 3. System (1) is said to beUBIBS stabilizableif there exists a function k∈
L∞

loc(
�n+1;

�m) such that the closed loop system

ẋ = f (t, x) + G(t, x)k(t, x) + G(t, x)v(3)

(with v as input) is UBIBS stable.

The same problem has been previously treated in [1, 2, 4, 9]. We give our result (Theorem
2) and discuss the differences with the results obtained in the mentioned papers in Section 3.

In order to achieve Theorem 2 we need a preliminary theorem (Theorem 1 in Section 2).
It is a different version of Theorem 1 in [13] and Theorem 6.2 in [4]. It provides a sufficient
condition for UBIBS stability of system (1) by means of a nonsmooth control Lyapunov-like
function. Finally the proof of the main result is given in Section 4.

2. UBIBS Stability

In this section we give a sufficient condition for UBIBS stability of system (1) by means of a
nonsmooth control Lyapunov-like function. (See [11, 12] for control Lyapunov functions).

The following Theorem 1 (and also its proof) is analogous to Theorem 1 in [13] and Theo-
rem 6.2 in [4]. It differs from both for the fact that it involves a control Lyapunov-like function
which is not of classC1, but just locally Lipschitz continuous and regular in the sense of Clarke
(see [5], page 39).

DEFINITION 4. We say that a function V:
�n+1 →

�
is regularat (t, x) ∈

�n+1 if

(i ) for all v ∈
�n there exists the usual right directional derivative V′

+((t, x), (1, v)),

(i i ) for all v ∈
�n , V′

+((t, x), (1, v)) = lim sup(s,y)→(t,x) h↓0
V(s+h,y+hv)−V(s,y)

h .

The fact that the control Lyapunov-like function for system(1) is regular allows us to char-
acterize it by means of its set-valued derivative with respect to the system instead of by means
of Dini derivatives.

Let us recall the definition of set-valued derivative of a function with respect to a system
introduced in [10] and then used (with some modifications) in[3]. Let us denote by∂V(t, x)

Clarke generalized gradient ofV at (t, x) (see [5], page 27).
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DEFINITION 5. Let t > 0, x ∈
�n, u ∈

�m be fixed, V:
�n+1 →

�
. We callset-valued

derivative ofV with respect to system (1)the set

V̇
(1)

(t, x, u) = {a ∈
�

: ∃v ∈ K ( f (t, x) + G(t, x)u) such that∀p ∈ ∂V(t, x) p · (1, v) = a} .

Analagously, if t> 0, x ∈
�n , u ∈ L∞

loc(
�

,
�m) are fixed, we set

V̇
(1)

u(·)(t, x) = {a ∈
�

: ∃v ∈ K ( f (t, x) + G(t, x)u(t)) such that∀p ∈ ∂V(t, x) p · (1, v) = a}

and, if t > 0 and x∈
�n are fixed, we define

V̇
(2)

(t, x) = {a ∈
�

: ∃v ∈ K f (t, x) such that∀p ∈ ∂V(t, x) p · (1, v) = a} .

Let us remark thaṫV
(1)

(t, x, u) is a closed and bounded interval, possibly empty and

maxV̇
(1)

(t, x, u) ≤ max
v∈K ( f (t,x)+G(t,x)u)

D+V((t, x), (1, v)) ,

whereD+V((t, x), (1, v)) is the Dini derivative ofV at (t, x) in the direction of(1, v).

LEMMA 1. Letϕ(·) be a solution of the differential inclusion (1) corresponding to the input
u(·) and let V :

�n+1 →
�

be a locally Lipschitz continuous and regular function. Then
d
dt V(t, ϕ(t)) exists almost everywhere andddt V(t, ϕ(t)) ∈ V̇

(1)

u(·)(t, ϕ(t)) almost everywhere.

We omit the proof of the previous lemma since it is completelyanalogous to the proofs of
Theorem 2.2 in [10] (which involves a slightly different kind of set-valued derivative with respect
to the system) and of Lemma 1 in [3] (which is given for autonomous differential inclusions and
V not depending on time).

We can now state the main theorem of this section.

THEOREM 1. Let V :
�n+1 →

�
be such that there exists L> 0 such that

(V0) there exist two continuous, strictly increasing, positivefunctions a, b :
�

→
�

such that
limr→+∞ a(r ) = +∞ and for all t > 0 and for all x

‖x‖ > L ⇒ a(‖x‖) ≤ V(t, x) ≤ b(‖x‖)

(V1) V is locally Lipschitz continuous and regular in
�+ × {x ∈

�n : ‖x‖ > L}.

If

(fG) for all R > 0 there existsρ > L such that for all x∈
�n and for all u ∈

�m the following
holds:

‖x‖ > ρ, ‖u‖ < R ⇒ maxV̇
(1)

(t, x, u) ≤ 0 for a.e. t≥ 0

then system (1) is UBIBS stable.

Proof. We prove the statement by contradiction, by assuming that there existsR such that for all
S > 0 there existx0 andu : [0, +∞) →

�m such that‖x0‖ < R, ‖u‖∞ < R and there exist
ϕ(·) ∈ St0,x0,u, andt > 0 such that‖ϕ(t)‖ ≥ S.
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Let us chooseρ corresponding toR as in (fG). Without loss of generality we can suppose
thatρ > R. Because of (V0), there existsSM > 0 such that if‖x‖ > SM , thenV(t, x) > M =

b(ρ) ≥ max{V(t, x), ‖x‖ = ρ, t ≥ 0} for all t .

Let us considerS > ρ, SM . There existt1, t2 > 0 such thatt ∈ [t1, t2], ‖ϕ(t1)‖ = ρ,
‖ϕ(t)‖ ≥ ρ in [t1, t2], ‖ϕ(t2)‖ ≥ S. Then

V(t2, ϕ(t2)) > M ≥ V(t1, ϕ(t1)) .(4)

On the other hand, by Lemma 1,d
dt V(t, ϕ(t)) ∈ V̇

(1)

u(·)(t, ϕ(t)) a.e. It is clear thaṫV
(1)

u(·)(t, ϕ(t))

⊆ V̇
(1)

(t, ϕ(t),u(t)). Since|u(t)| < R a.e. and‖ϕ(t)‖ > ρ for all t ∈ [t1, t2], by virtue of (fG)
we have d

dt V(t, ϕ(t)) ≤ 0 for a.e.t ∈ [t1, t2]. By [7] (page 207) we get thatV ◦ ϕ is decreasing
in [t1, t2], then

V(t2, ϕ(t2)) ≤ V(t1, ϕ(t1))

that contradicts (4).

REMARK 1. In order to get a sufficient condition for system (2) to be uniformly Lagrange
stable, one can state Theorem 1 in the caseu = 0. In this case the control Lyapunov-like function
simply becomes a Lyapunov-like function.

REMARK 2. For sake of simplicity we have given the definition of UBIBSstability and
stated Theorem 1 for systems affine in the control. Let us remark that exactly analogous defini-
tion, theorem and proof hold for more general systems of the form

ẋ = f (t, x, u)

where f :
�m+n+1 →

�n is locally bounded and measurable with respect to the variablest and
x and continuous with respect tou.

REMARK 3. If system (1) is autonomous it is possible to state a theorem analogous to
Theorem 1 for a control Lyapunov-like functionV not depending on time.

3. The Main Result

The main result of this note is the following Theorem 2. It essentially recalls Theorem 6.2 in [4]
and Theorem 5 in [9], with the difference that the control Lyapunov-like function involved is not
smooth.

We don’t give a unique condition for system (1) to be externally stabilizable, but some
alternative conditions which, combined together, give theexternal stabilizability of the system.
Before stating the theorem we list these conditions. Note that the variablex is not yet quantified.
Since its role depend on different situations, it is convenient to specify it later.

(f1) maxV̇
(2)

(t, x) ≤ 0;

(f2) for all z ∈ K f (t, x) there existsp ∈ ∂V(t, x) such thatp · (1, z) ≤ 0;

(f3) for all z ∈ K f (t, x) and for allp ∈ ∂V(t, x), p · (1, z) ≤ 0;

(G1) for eachi ∈ {1, . . . , m} there existsci
t,x ∈

�
such that for allp ∈ ∂V(t, x), p ·

(1, gi (t, x)) = ci
t,x;
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(G2) for eachi ∈ {1, . . . , m} only one of the following mutually exclusive conditions holds:

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) = 0;

(G3) there existsı ∈ {1, . . . , m} such that for eachi ∈ {1, . . . , m}\{ı} only one of the following
mutually exclusive conditions holds:

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0,

– for all p ∈ ∂V(t, x) p · (1, gi (t, x)) = 0;

Let us remark that (f3)⇒ (f2) ⇒ (f1) and (G1)⇒ (G2)⇒ (G3).

THEOREM 2. Let V :
�n+1 →

�
be such that there exists L> 0 such that(V0) and (V1)

hold.

If for all x ∈
�n with ‖x‖ > L one of the following couples of conditions holds for a.e.

t ≥ 0:

(i ) (f1) and(G1), (i i ) (f2) and(G2), (i i i ) (f3) and(G3),

then system (1) is UBIBS stabilizable.

Let us make some remarks.

If for all x ∈
�n with ‖x‖ > L assumption (f1) (or (f2) or (f3)) holds for a.e.t ≥ 0, then, by

Theorem 1 in Section 2, system (2) is uniformly Lagrange stable. Actually in [4] the authors
introduce the concept of robust uniform Lagrange stabilityand prove that it is equivalent to the
existence of a locally Lipschitz continuous Lyapunov-likefunction. Then assumption (f1) (or
(f2) or (f3)) implies more than uniform Lagrange stability of system (2). In [9], the author has
also proved that, under mild additional assumptions onf , robust Lagrange stability implies the
existence of aC∞ Lyapunov-like function, but the proof of this result is not actually constructive.
Then we could still have to deal with nonsmooth Lyapunov-like functions even if we know that
there exist smooth ones.

Moreover Theorem 2 can be restated for autonomous systems with the functionV not de-
pending on time. In this case the feedback law is autonomous and it is possible to deal with a
situation in which the results in [9] don’t help.

Finally let us remark that iff is locally Lipschitz continuous, then, by [14] (page 105),
the Lagrange stability of system (2) implies the existence of a time-dependent Lyapunov-like
function of classC∞. In this case, in order to get UBIBS stabilizability of system (1), the
regularity assumption onG can be weakened toG ∈ L∞

loc(
�n+1;

�m) (as in [2]).

4. Proof of Theorem 2

We first state and prove a lemma.

LEMMA 2. Let V :
�n+1 →

�
be such that there exists L> 0 such that(V0) and (V1)

hold. If (t, x), with ‖x‖ > L, is such that, for all p∈ ∂V(t, x) p · (1, gi (t, x)) > 0, then there
existsδx > 0 such that, for all x∈ B(x, δx), for all p ∈ ∂V(t, x), p · (1, gi (t, x)) > 0.
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Analagously if(t, x), with ‖x‖ > L, is such that for all p∈ ∂V(t, x), p · (1, gi (t, x)) < 0,
then there existsδx > 0 such that, for all x∈ B(x, δx), for all p ∈ ∂V(t, x), p·(1, gi (t, x)) < 0.

Proof. Let γ > 0 be such that‖x‖ > L + γ , and letLx > 0 be the Lipschitz constant ofV in
the set{t} × B(x, γ ). For all(t, x) ∈ {t} × B(x, γ ) and for allp ∈ ∂V(t, x) ‖p‖ ≤ Lx (see [5],
page 27).

Sincegi is continuous there existη andM such that‖(1, gi (t, x))‖ ≤ M in {t} × B(x, η).

Let d = min{p · (1, gi (t, x)), p ∈ ∂V(t, x)}. By assumptiond > 0.

Let us considerε < d
2(Lx+M)

.

By the continuity ofgi , there existsδi such that, if‖x − x‖ < δi , then‖(1, gi (t, x)) −

(1, gi (t, x))‖ < ε.

By the upper semi-continuity of∂V (see [5], page 29), there existsδV > 0 such that, if
‖x − x‖ < δV , then∂V(t, x) ⊆ ∂V(t, x) + εB(0,1), i.e. for all p ∈ ∂V(t, x) there exists
p ∈ ∂V(t, x) such that‖p − p‖ < ε.

Let δx = min{γ, η, δi , δV }, x be such that‖x − x‖ < δx and p ∈ ∂V(t, x), p ∈ ∂V(t, x)

be such that‖p − p‖ < ε.

It is easy to see that|p · (1, gi (t, x)) − p · (1, gi (t, x))| < d
2 , hencep · (1, gi (t, x)) >

p · (1, gi (t, x)) − d
2 = d

2 > 0.

The second part of the lemma can be proved in a perfectly analogous way.

Proof of Theorem 2.For eachx ∈
�n , let Nx be the zero-measure subset of

�+ in which no
one of the couples of conditions(i ), (i i ) and (i i i ) holds. Letk :

�n+1 →
�m, k(t, x) =

(k1(t, x), . . . , km(t, x)), be defined by

ki (t, x) =















−‖x‖ if ∀p ∈ ∂V(t, x) p · (1, gi (t, x)) > 0
0 if ∀p ∈ ∂V(t, x) p · gi (t, x) = 0 ,

or (f3) and (G3) hold andi = ı , or t ∈ Nx
‖x‖ if ∀p ∈ ∂V(t, x) p · (1, gi (t, x)) < 0 .

It is clear thatk ∈ L∞
loc(

�n+1,
�m).

By Theorem 1 it is sufficient to prove that for allR > 0 there existsρ > L , R such that for
all x ∈

�n andv ∈
�m the following holds:

‖x‖ > ρ, ‖v‖ < R ⇒ maxV̇
(3)

(t, x) ≤ 0 for all t ∈
�+\Nx

whereV̇
(3)

(t, x) = {a ∈
�

: ∃w ∈ K ( f (t, x) + G(t, x)k(t, x) + G(t, x)v) such that∀p ∈

∂V(t, x) p · (1, w) = a}.

Let x be fixed andt ∈
�+\Nx . Let a ∈ V̇

(3)
(t, x), w ∈ K ( f (t, x) + G(t, x)k(t, x) +

G(t, x)v) be such that for allp ∈ ∂V(t, x) p · w = a.

By Theorem 1 in [8] we have that
K ( f (t, x) + G(t, x))(k(t, x) + v)(x) ⊆ K f (t, x) +

∑m
i=1 gi (t, x)K (ki (t, x) + vi ), then there

existsz ∈ K f (t, x), zi ∈ K (ki (t, x) + vi ), i ∈ {1, . . . , m}, such thatw = z +
∑m

i=1 gi (t, x)zi .

Let us show thata ≤ 0. We distinguish the three cases(i ), (i i ), (i i i ).

(i ) b = p · (1, z) = a −
∑m

i=1 ci
t,xzi does not depend onp, thenb ∈ V̇

(2)
(t, x) and, by (f1),

b ≤ 0.
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Let us now show that for eachi ∈ {1, . . . , m} ci
t,xzi ≤ 0. If i is such thatci

t,x = 0,

obviouslyci
t,xzi ≤ 0. If i is such thatci

t,x > 0 then, by Lemma 1, there existsδx such
thatki (t, y) = −‖y‖ in {t} × B(x, δx), thenki is continuous atx with respect toy. This
implies thatK (ki (t, x)+vi ) = −‖x‖+vi , i.e. zi = −‖x‖+vi andci

t,xzi ≤ 0, provided
that‖v‖ > ρ ≥ max{L , R}.

The case in whichi is such thatci
t,x < 0 can be treated analogously. We finally get that

a = b +
∑m

i=1 ci
t,xzi ≤ 0.

(i i ) By (f2) there existsp ∈ ∂V(t, x) such thatp · (1, z) ≤ 0. a = p · (1, z) +
∑m

i=1 p ·

(1, gi (t, x))zi . The fact that for eachi ∈ {1, . . . , m} we havep · (1, gi (t, x))zi ≤ 0 can
be proved as in(i ) we have proved that for eachi ∈ {1, . . . , m} ci

t,xzi ≤ 0. We finally
get thata ≤ 0.

(i i i ) Let us remark that if (G2) is not verified, i.e. we are not in thecase(i i ), there exists
p ∈ ∂V(t, x) corresponding toı such thatp · (1, gı (t, x)) = 0. Indeed, because of the
convexity of∂V(t, x), for all v ∈

�n, if there existp1, p2 ∈ ∂V(t, x) such thatp1 ·v > 0
and p2 · v < 0, then there also existsp3 ∈ ∂V(t, x) such thatp3 · v = 0.

Let p ∈ ∂V(t, x) be such thatp·(1, gı (t, x)) = 0. For all p ∈ ∂V(t, x) a = p·(1, w). In
particular we havea = p·(1, w) = p·(1, z)+

∑

i 6=ı p·(1, gi (t, x))zi + p·(1, gı (t, x))zı .
By (f3), p · (1, z) ≤ 0. If i 6= ı the proof thatp · (1, gi (t, x))zi ≤ 0 is the same as in(i i ).
If i = ı , because of the choice ofp, p · (1, gı (t, x)) = 0. Also in this case we can then
conclude thata ≤ 0.
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