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ON THE SOLUTIONS
OF THE DISSIPATION INEQUALITY

Abstract.
We present some recent results on the existence of solutidhe Dissipation
Inequality.

1. Introduction

In this review paper we outline recent results on the progexf theDissipation Inequality,
shortly (DI). The(DI) is the following inequality in the unknown operatBr

(D) 2Ne (Ax, P(x 4+ Du)) + F(x + Du,u) > 0.

HereA is the generator of &g-semigroupe™! on a Hilbert spac& andD e £(U, X) whereU
is a second Hilbert spac€(x, u) is a continuous quadratic form ofix U,

F(x,u) = (X, QX) + 2%e(Sx u) + (u, Ru) .

Positivity of F(x, u) is not assumed.

We require thaP = P* ¢ L£(X).

We note that the unknowR appears linearly in théDI), which is also calledLinear Op-
erator Inequality for this reason.

The (DI) has a central role in control theory. We shortly outline thason by noting the
following special cases:

e ThecaseD = 0, S = 0, R = 0. In this case(DI) takes the form of a Lyapunov type
inequality,
20e (Ax, Px) > —(x, Qx) .

e If Q=0andR =0 (butS# 0) and ifB = —AD € L(U, X) we get the problem
1) 2Re (Ax, Px) >0 B*P = —S.

This problem is known atur'e Problemand it is important for example in stability
theory, network theory and operator theory.

e ThecaseéS=0,R =1 andQ = —1 is encountered in scattering theory while the case
S =0, Q > 0 and coerciver corresponds to thstandard regulator problem of control
theory.
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We associate t(Dl) the following quadratic regulator problem “with stabilityve consider
the control system

2) X = AX— Du).

We call a pair(x(-), u(-)) anevolution of system (2) with initial datumyxvhenx(-) is a
(mild) solution to (2) with inputu(-) andx(0) = Xg.
We associate to control system (2) the quadratic cost

+00
(3 J(Xo; ) = / F(x(t), u(t)) dt.
0

The relevant problem is the following one: we want to charaee the conditiorV/ (xg) > —oo
for eachxg whereV (xg) is the infimum of (3) over the class of those square integrable
evolutions which have initial datum xg. (The term “with stability” refers to the fact that we
only consider the square integrable evolutions of the gyste

Of course, Eq. (2) has no meaning in general. One case in ithitdkes sense is the case
thatB = —AD is a bounded operatodistributedcontrol action). In this case the problem has
been essentially studied in [7] but for one crucial aspeat we describe below.

More in general, large classes of boundary control systemsbe put in the form (2), as
shown in [6], where two main classes have been singled caifji$t one which corresponds to
“hyperbolic” systems and the second one which correspantjzarabolic” systems.

We illustrate the two classes introduced in [6]:

e The class that models in particular most control problemshfe heat equation: the semi-
groupe™t is holomorphic (we assume exponentially stable for sinigliand imD =
im[—A~1B] € dom(—A)?, 7 < 1.

e The class that models in particular most control problemstiing and membrane equa-
tions: ™ is aCg-semigroup A—1B € £(X) and

T *
(@) / 1B*eA b 2dt < kr [x]12.
0

It is sufficient to assume that the previous inequality hétsisone value ofT since then
it holds for everyT.

As we said, for simplicity of exposition, we assume expoizstability. The simplification
which is obtained when the semigroup is exponentially stébthat the class of the controls is
LZ(O, +o00; U), independent okg. However, this condition can be removed.

The crucial result in the case dfstributed control actioris as follows (see [14] for the
finite dimensional theory and [7] for distributed systemghwdistributed control action):

THEOREM1. If AD € L(U, X), then M(xg) is finite for every x if and only if there exists a
solution to(Dl) and in this case VXg) is a continuous quadratic form on X:(g) = (Xg, PXg)-
The operator P of the quadratic form is theaximalsolution to(Dl).

The result just quoted can be extended to both the classesuoidary control systems
introduced in [6], see [9, 11]. Rather than repeating thg l@mg proof, it is possible to use a
device, introduced in [10, 8], which associates to the bamndontrol system an “augmented”
system, with distributed control action. From this digttéd system it is possible to derive many
properties of th€DI) of the original boundary control system. This device issitated in sect. 2.

With the same method it is possible to extend the next result:



On the solutions 125

THEOREM2. If V (Xg) > —o0o, i.e. if (DI) is solvable, then

(5) M(iw) = F(—iwiol —ADu+Du,u) >0 VweR.

The functionI1(i w) was introduced in [12] and it is called tf@pov function.

As the numbei w are considered “frequencies”, condition (5) is a speciadtiency do-
main condition”.

At the level of the frequency domain condition we encounterugial difference between
the class of “parabolic” and “hyperbolic” systems:

THEOREM3. In the parabolic case if ¥xg) > —oo, then R> 0. Instead, in the “hyper-
bolic” case, we can have ¥g) > —oo even if R= —al, o > 0.

Proof. Itis clear that
M(iw) = F((wl —ATIBU )
(B = —AD) and lim,| o (iwl — A)"1Bu= 0 because i = im[-A~1B] < dom(—A)”
(here we use exponential stability, but the proof can be tedaip the unstable case.) Hence,
0 < limy|— 400 (iw) = (u, Ru) for eachu € U. This proves thaR > 0.
Clearly an analogous proof cannot be repeated in the “hyietflzase; and the analogous
result does not hold, as the following example shows:

the system is described by
Xt = —Xg 0<6 <1, t>0 x(t, 0) = u(t)

(this system is exponentially stable since the free evaus zero fort > 1).
The functionalF (x, u) is

Foxw = X0 5 ) — alul?

so that
oe 2 2
2000 = [ X g, — aluO Pyt

If X(0, 8) = 0then
Rz, 6) = e a2

so that
(U, M) = [1—a]u.

This is nonnegative for each < 1 in spite of the fact thaR = —«| can be negative. Hence, in
the hyperbolic boundary control casee condition R > 0 does not follows from the positivity
of the Popov function

a

It is clear that the frequency domain condition may hold e¥éme (DI) is not solvable, as
the following example shows:

ExamMPLE 1. The example is an example of a scalar system,
X=-X+0u y=X.

Itis clear thatl1(iw) > 0, is nonnegative; buP B = C, i.e. PO = 1, is not solvable.
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A problem that has been studied in a great deal of papers oidem of finding additional
conditions which imply solvability of théDI) in the case that the frequency domain condition (5)
holds. A special instance of this problem is the importanté.problem of stability theory.

This problem is a difficult problem which is not completelyh&a even for finite dimen-
sional systems. Perhaps, the most complete result is itif @Bystem is finite dimensional and
II({iw) > 0, then a sufficient condition for solvability ¢Dl) is the existence of a number
such that defl (i wg) # O.

It is easy to construct examples which show that this caomlis far from sufficient.

In the context of hyperbolic systems, the following ressilpioved in [11].

THEOREMA4. Letcondition (4) hold and let the systeméectly controllableUnder these
conditions, if the Popov function is nonnegative then tlegists a solution t¢DI) and, moreover,
themaximalsolution P of(Dl) is the strong limit of the decreasing sequetiég}, where R is
the maximal solution of thedl)

1
(6) 2%e (A, P(X + Du)) 4+ F(x 4+ Du, u) + E{||u||2 +Ix1?} = 0.

The last statement is important because it turns outRhalves a Riccati equation, while
there is no equation solved yin general.

The proof of Theorem 4 essentially reproduces the finite dsimmal proof in [14]. Hence,
the “hyperbolic” case is “easy” since the finite dimensiopedof can be adapted. In contrast
with this, the “parabolic” case requires new ideas and itliffitult”. Consistent with this, only
very partial results are available in this “parabolic” caaed under quite restrictive conditions.
These results are outlined in sect. 3.

Before doing this we present, in the next section, the keg ttat can be used in order to
pass from a boundary control system tg‘angmented” but distributedcontrol system.

2. The augmented system

A general model for the analysis of boundary control systems proposed by Fattorini ([4]).
Let X be a Hilbert space and a linear closed densely defined operator, X — X. A second
operatorr is linear fromX to a Hilbert spacéJ.

We assume:

Assumption We have: done € domt andr is continuous on the Hilbert space demwith the
graph norm.

The “boundary control system” is described by:

@)

x(0) = Xp

X =o0X
X=U

2 .
whereu(-) € LlOC(O, +o00; U).

We must define the “strong solutiong{-; Xg, u) to system (7). Following [3] the function
X(-) = X(-; Xp, U) is a strong solution if there exists a sequefiGg-)} of Cl-functions such that
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Xn(t) € domo for eacht > 0 and:

Xn() = oXn() = 0 inLf (0. +00: X)
8) Xn(0) — X in X

TXn () = U() in L2 (0, +00; U)
and

e Xn(-) converges uniformly tox(-) on compact intervals in[0, +o0).

In the special case that the sequergé) is stationaryxn(-) = X(-), we shall say thax(-) is a
classicalsolution to problem (7).

Assumption 1. Let us consider the “elliptic” problemx = u. We assume that it is “well
posed”, i.e. that there exists an operadbe L£(U, X) such that

X = Duiff {ox =0andtx = u}.
Moreover we assume that the operafodefined by
domA = domv N kert AX = oX
generates a strongly continuous semigroupXon

As we said already, for simplicity of exposition, we assutra the semigroup”! is expo-
nentially stable.

Now we recall the following arguments from [1]. Classicalgimns to Eq. (7) solve
9) X = A(X — Du) x(0) = Xxg.

Letu(-) be an absolutely continuous control apd) = x(t) — Du(t). Then,&(-) is a classical
solution to

(10) E=A:—Du £ =£(0) =x(0) — Du(0)

and conversely.

As the operatoA generates €g-semigroup, it is possible to write a “variation of constnt
formula for the solutiore. “Integration by parts” produces a variation of constamtsriula,
which contains unbounded operators, for the functon. This is the usual starting point for
the study of large classes of boundary control systemseddstwe “augment” system (9) and
we consider the system:

(11) { £ = At — Dv

U=v

Here we consider formally(-) as a new “input”, see [10, 8].

Moreover, we note that it is possible to stabilize the presisystem with the simple feed-
backv = —u, sincee®! is exponentially stable.

The cost that we associate to (11) is the cost

+00
(12) J(Xg; u) = /(‘J F (@) + Du(t), u(t)) dt.
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This cost does not depend explicitly on the new inpgy: it is a quadratic form of the state,
which is nowE = [&, u].
Itis proved in [9] that the value functioW(&q, ug) of the augmented system has the follow-
ing property:
V(§0 + Dupg, Up) = V(Xp) .
We apply the stabilizing feedback = —u and we write down th€DI) and the Popov
function for the stabilized augmented system. (D8 is

(13) 2Re(AZ, WE) + (E,QE)>0 VE edomd, WD =0.
where
| A =D - £
5] --[5]
0= Q S*+QD p_| D
| DQ+S R+ D*S*+SD+D*QD |~ - | '
The Popov function is:
. M(iw)
14 P =
(14) (=17

It is clear that the transformations outlined above fromdtiginal to the augmented system do
not affect the positivity of the Popov function and thabfiTI (i w) is bounded from below, then
wST2P(iw) is bounded from below.

In the next section we apply the previous arguments to thetbas the operatoh generates
a holomorphic semigroup and InC (dom(—A)Y), y < 1.

3. “Parabolic” case: from the Frequency domain condition tothe (DI)

We already said that in the parabolic case only partial tesué available. In particular, available
results require that the control be scalar so & an element oiX. This we shall assume in
this section. We assume moreover that the operAttias only point spectrum with simple
eigenvaluegy and the eigenvectong, form a complete set iiX. Just for simplicity we assume
that the eigenvalues are real (hence negative). Moreovegssume that we already wrote the
system in the form of a distributed (augmented and stakijizentrol system. Hence we look
for conditions under which there exists a solutidhto (13).

We note thatD € X x U and thatP(iw) is a scalar function: it is the restriction to the
imaginary axis of the analytic function

P(2) = -Dzl + A7 10zl — 4)~1D.

The functionP(2) is analytic in a strip which contains the imaginary axis &iitterior.

We assume thalP(iw) > 0 and we want to give additional conditions under which (13)
is solvable. In fact, we give conditions for the existenceacfolution to the following more
restricted problem: to find an operat and a vector] € (domA)’ such that

(15) 2%e (A, WE) + (E, QE) = |((E, q)) |2 VE e domA.

The symbol((-, -)) denotes the pairing gtlomA)’ and donA.
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The previous equation suggests a form for the solibn
+00 +o0
(16) (B, WE) =/0 (efAtE,QeAtE)dt—/o (E, eMa) 2 dt.

However, it is clear that in general the operatérso defined will not be continuous, unlegs
enjoys further regularity. We use known properties of tlaetional powers of the generators of
holomorphic semigroups and we see thats bounded ifg € [dom(—.A%)]" with & < 1/2.

It is possible to prove that if a solutioiV to (15) exists then there exists a factorization
P(iw) = m*(iw)m(iw)

and m(iw) does not have zeros in the right half plane. This observatiggests a method
for the solution of Eq. (15), which relies on the computatadra factorization ofP(iw). The
factorization of functions which takes nonnegative valises classical problem in analysis. The
key result is the following one:

LEMMA 1. If P(iw) > Oand if [In P(iw)|/(1 + wz) is integrable, then there exists a
function m(z) with the following properties:

e M(2) is holomorphic and bounded e z > 0;

o P(iw) = m(—iw)m(iw);

e letz=x+iy, x > 0. The following equality holds:

| Lo X d 0
17 nim@)| = — nPiw)———— Vz=x+iy, X .
an i@l = o [ nPiw) Gt d iy, x>
See [13, p. 121], [5, p. 67].
A function which is holomorphic and bounded in the right hdéine and which satisfies (17)
is called arouter function.

The previous arguments show that an outer factd? @) exists whenP(iw) > 0 and when
P(iw) decays forlw| — +oo of the order 1|w|ﬁ, B < 1. Let us assume this condition (which
will be strengthened below). Under this conditiBiiz) can be factorized and, moreover,

1 [+ X
— / INP(iw) 55— dw
2r ] X2 + (0 — y)?

1 [+ M X

— In dw
27 Jooo 1402 X2+ (0 —Y)?

In|m(2)|

A

= In|

14 22

This estimates implies in particular that the integgfifg Im(x+iy) |2 dy are uniformly bounded
in x > 0. Paley Wiener theorem (see [5]) implies that

+o00 .
m(iw) = / e 'tmt) dt, m(-) e L0, +00) .
0

The functionm(t) being square integrable, we can write the integral

oo .
/ e~ Sgmt) dt
0
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and we can try to solve the following equation fpr
+oo . +o0 N
(18) / eA'Sqm(t) dt = —s = / et'toeMtpat.
0 0

This equation is suggested by certain necessary condifiwrife solvability of (1) which are
not discussed here.
We note that

(19) s € dom(—A4)1~ for eache > 0.

It turns out that equation (18) can alwaysfbemally solved, a solution being

(. )
m(—2)

Ok = (v, q) =

sincem(z) does not have zeros in the right half plane.

Moreover, we can prove that the operatérdefined by (16jormally satisfies the condition
WD = 0. Hence, this operatd will be the required solution of (15) if it is a bounded operat
i.e. if g € [dom(—A%)]’.

An analysis of formula (17) shows the following result:

THEOREMS5. The vector q belongs tadom(—.A*)Y/2=€)’ for somee > 0 if there exist
numbersy < 1and M > 0 such that

oY TI({w) > M
for |w| large.

Examples in which the condition of the theorem holds exes, [9].
Let ¢x = —zx € R. The key observation in the proof of the theorem is the foiitmy
equality, derived from (17):

1
1+s
N i/+OQ[|C>91;3‘V‘2ei :

2 J_oo K Is|¥ 11+ <2
1
142

1 [t .
log ¢ 13~ m(g) > / llog ¢k 1*~% P(i k)] ——; ds
—00

ds.

1 [t Y b
+5 [ Toaudsl Pigs)]

The first integral is bounded belowjf < 3 — 2¢ and the second one is bounded below in
any case.

We recapitulate: the conditiap e (dom(—.A*)Y/2=€) holds if P(i w) decays ato of order
less than 3. We recall (14) and we get the result.
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