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ON THE DIRICHLET PROBLEM
FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS
AND APPLICATIONS TO OPTIMAL CONTROL

Abstract.

We construct a generalized viscosity solution of the Digthroblem for fully
nonlinear degenerate elliptic equations in general dosaynthe Perron-Wiener-
Brelot method. The result is designed for the Hamilton-Ba&eliman-lsaacs
equations of time-optimal stochastic control and difféi@rgames with discon-
tinuous value function. We study several properties of #megalized solution, in
particular its approximation via vanishing viscosity aegularization of the do-
main. The connection with optimal control is proved for asdgtinistic minimum-
time problem and for the problem of maximizing the expectschpe time of a
degenerate diffusion process from an open set.

Introduction

The theory of viscosity solutions provides a general frapréwor studying the partial differ-
ential equations arising in the Dynamic Programming apgrda deterministic and stochastic
optimal control problems and differential games. This tigés designed for scalar fully nonlin-
ear PDEs

Q) F (X, u(x), Du(x), D2u(x)) =0inQ,
whereQ is a general open subsetRN , with the monotonicity property

@ Fx,r,p, X) < F(x,s,p,Y)
if r <sandX — Y is positive semidefinite
so it includes &t order Hamilton-Jacobi equations andd?order PDEs that are degenerate
elliptic or parabolic in a very general sense [18, 5].
The Hamilton-Jacobi-Bellman (briefly, HIB) equations ie theory of optimal control of
diffusion processes are of the form

(3) supL®u =0,

aeA
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whereq is the control variable and, for eaeh £ is a linear nondivergence form operator

92u au
b* — 4+ c%u— 2,
0 X +o X +

4) L% = —ai"J?

where f andc are the running cost and the discount rate in the cost fumalib is the drift of
the systema = %aaT ando is the variance of the noise affecting the system (see Se8tR).
These equations satisfy (2) if and only if

5) & (0] > 0andc () = 0, forall x € 2, a € A, & RV,

and these conditions are automatically satisfied by operatoming from control theory. In the
case of deterministic systems we h = 0 and the PDE is of 4t order. In the theory of
two-person zero-sum deterministic and stochastic diffiegames the Isaacs’ equation has the
form

6 sup inf £%Pu=0,
( ) aeEﬂGB

whereg is the control of the second player aé-# are linear operators of the form (4) and
satisfying assumptions such as (5).

For many different problems it was proved that the value fionds the unique continuous
viscosity solution satisfying appropriate boundary ctinds, see the books [22, 8, 4, 5] and the
references therein. This has a number of useful consegsiebeeause we have PDE methods
available to tackle several problems, such as the numeraallation of the value function,
the synthesis of approximate optimal feedback controlgnasotic problems (vanishing noise,
penalization, risk-sensitive control, ergodic problesisgular perturbations.. ). However, the
theory is considerably less general for problems wiidtontinuousvalue function, because it
is restricted to deterministic systems with a single cdl@rowhere the HIB equation is of first
order with convex Hamiltonian in thp variables. The pioneering papers on this issue are due
to Barles and Perthame [10] and Barron and Jensen [11], wditferent definitions of non-
continuous viscosity solutions, see also [27, 28, 7, 39, th4] surveys and comparisons of the
different approaches in the books [8, 4, 5], and the refa®titerein.

For cost functionals involving the exit time of the statenfrthe set2, the value function
is discontinuous if the noise vanishes near some part of dhedary and there is not enough
controllability of the drift; other possible sources of atigitinuities are the lack of smoothness
of 32, even for nondegenerate noise, and the discontinuity anipatibility of the boundary
data, even if the drift is controllable (see [8, 4, 5] for exdes). For these functionals the value
should be the solution of the Dirichlet problem

F(x,u, Du,D2u) =0 ing,
) { ( )

u=g onag,

whereg(x) is the cost of exiting2 atx and we assumg € C(3€2). For 2nd order equations, or
1st order equations with nonconvex Hamiltonian, there are nalldefinitions of weak solution
and weak boundary conditions that ensure existence andemégs of a possibly discontinuous
solution. However a global definition of generalized santbf (7) can be given by the following
variant of the classical Perron-Wiener-Brelot method iteptial theory. We define

S {w € BUSQQ) subsolution of (1) w < g on 3}
Z = {W e BLSQXQ) supersolution of (L)W > gon iR},
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where BU SQ(Q) (respectively,BL SC(Q2)) denote the sets of bounded upper (respectively,
lower) semicontinuous functions @@, and we say that : @ — R is a generalized solution of
) if
(8) u(x) = supw(x) = inf W(x).

weS WeZ
With respect to the classical Wiener’s definition of genieeal solution of the Dirichlet problem
for the Lapalce equation in general nonsmooth domains BEg &lso [16, 26]), we only replace
sub- and superharmonic functions with viscosity sub- ampessolutions. In the classical theory
the inequality sup.s w < infyycz W comes from the maximum principle, here it comes from
theComparison Principléor viscosity sub- and supersolutions; this important itdsalds under
some additional assumptions that are very reasonabled®tiB equations of control theory, see
Section 1.1; for this topic we refer to Jensen [29] and Crinighii and Lions [18]. The main
difference with the classical theory is that the PWB solufir the Laplace equation is harmonic
in Q and can be discontinuous only at boundary points wherés very irregular, whereas here
u can be discontinuous also in the interior and even if the Bagnis smooth: this is because
the very degenerate ellipticity (2) neither implies regidiag effects, nor it guarantees that the
boundary data are attained continuously. Note that if ailcoatis viscosity solution of (7) exists
it coincides withu, and both the sup and the inf in (8) are attained.

Perron’s method was extended to viscosity solutions byi [8] (see Theorem 1), who
used it to prove general existence results of continuougisak. The PWB generalized solution
of (7) of the form (8) was studied indipendently by the authand Capuzzo-Dolcetta [4, 1] and
by M. Ramaswamy and S. Ramaswamy [38] for some special chsgsiations of the form (1),
(2). In [4] this notion is calle@nvelope solutioand several properties are studied, in particular
the equivalence with the generalized minimax solution dftfiin [41, 42] and the connection
with deterministic optimal control. The connection withrpuit-evasion games can be found in
[41, 42] within the Krasovskii-Subbotin theory, and in oaper with Falcone [3] for the Fleming
value; in [3] we also study the convergence of a numericaseh

The purposes of this paper are to extend the existence aial fraperties of the PWB
solution in [4, 1, 38] to more general operators, to prove s@@w continuity properties with
respect to the data, in particular for the vanishing viggasiethod and for approximations of
the domain, and finally to show a connection with stochagttintal control. For the sake of
completeness we give all the proofs even if some of themviottee same argument as in the
quoted references.

Let us now describe the contents of the paper in some detafbubsection 1.1 we recall
some known definitions and results. In Subsection 1.2 weeptiog existence theorem under
an assumption on the boundary datdhat is reminiscent of the compatibility conditions in
the theory of $t order Hamilton-Jacobi equations [34, 4]; this conditiorpli®s that the PWB
solution is either the minimal supersolution or the maximabsolution (i.e., either the inf or
the sup in (8) is attained), and it is verified in time-optirnahtrol problems. We recall that the
classical Wiener Theorem asserts that for the Laplace iequeaty continuous boundary function
g is resolutive(i.e., the PWB solution of the corresponding Dirichlet desb exists), and this
was extended to some quasilinear nonuniformly ellipticagiqums, see the book of Heinonen,
Kilpelainen and Martio [25]. We do not know at the momenthifstresult can be extended to
some class of fully nonlinear degenerate equations; haweeg@rove in Subsection 2.1 that the
set of resolutive boundary functions in our context is atbgeder uniform convergence as in the
classical case (cfr. [26, 38]).

In Subsection 1.3 we show that the PWB solution is consistéthtthe notions of general-
ized solution by Subbotin [41, 42] and Ishii [27], and it s#s the Dirichlet boundary condition
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in the weak viscosity sense [10, 28, 18, 8, 4]. Subsectioris2devoted to the stability of the
PWB solution with respect to the uniform convergence of therlary data and the operatér
In Subsection 2.2 we consider merely local uniform perttioba of F, such as the vanishing
viscosity, and prove a kind of stability provided the Sets simultaneously approximated from
the interior.

In Subsection 2.3 we prove that for a nested sequence of getsQ, of Q such that
Un ©@n = @, if un is the PWB solution of the Dirichlet problem p, the solutionu of (7)
satisfies

9) u(x) = Iirr1n un(X), X €.

This allows to approximate with more regular solutions, whena < is not smooth an®2n are
chosen with smooth boundary. This approximation procedoes back to Wiener [44] again,
and it is standard in elliptic theory for nonsmooth domairteere (9) is often used tdefine

a generalized solution of (7), see e.g. [30, 23, 12, 33]. IbsBation 2.3 we characterize the
boundary points where the data are attained continuousigrins of the existence of suitable
local barriers.

The last section is devoted to two applications of the previheory to optimal control. The
first (Subsection 3.1) is the classical minimum time probfendeterministic nonlinear systems
with a closed target. In this case the lower semicontinuouelepe of the value function is the
PWB solution of the homogeneous Dirichlet problem for thdéiiBan equation. The proof we
give here is different from the one in [7, 4] and simpler. Theand application (Subsection 3.2)
is about the problem of maximizing the expected discounted that a controlled degenerate
diffusion process spends fa. Here we prove that the value function itself is the PWB sofut
of the appropriate problem. In both cagps: O is a subsolution of the Dirichlet problem, which
implies that the PWB solution is also the minimal supersotut

It is worth to mention some recent papers using related msthd@he thesis of Bettini
[13] studies upper and lower semicontinuous solutions ef@auchy problem for degenerate
parabolic and 4t order equations with applications to finite horizon diffetial games. Our
paper [2] extends some results of the present one to bouwdéug problems where the data
are prescribed only on a suitable partaget. The first author, Goatin and Ishii [6] study the
boundary value problem for (1) with Dirichlet conditionsthre viscosity sense; they construct
a PWB-type generalized solution that is also the limit ofragpmations ofQ2 from the outside,
instead of the inside. This solution is in general differieom ours and it is related to control
problems involving the exit time frorg, instead of.

1. Generalized solutions of the Dirichlet problem
1.1. Preliminaries
Let F be a continuous function
F:QxRxRN x S(N) > R,

whereQ is an open subset &N, S(N) is the set of symmetritl x N matrices equipped with
its usual order, and assume thkasatisfies (2). Consider the partial differential equation

(10) F(x, u(x), Du(x), D2u(x)) =0inQ,
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whereu : Q@ — R, Du denotes the gradient afand D2u denotes the Hessian matrix of second
derivatives ofu. From now on subsolutions, supersolutions and solutiotisi@equation will be
understood in the viscosity sense; we refer to [18, 5] fordb#nitions. For a general subdet

of RN we indicate withU SC(E), respectivelyL SC(E), the set of all function€ — R upper,
respectively lower, semicontinuous, and wBitJ SCG(E), BLSC(E) the subsets of functions
that are also bounded.

DEFINITION 1. We will say that equation (10) satisfies tBemparison Principlé for all
subsolutionay € BU SQ(Q) and supersolutions W BL SG(Q) of (10) such thaiv < W on
9%, the inequalityw < W holds inQ.

We refer to [29, 18] for the strategy of proof of some compariprinciples, examples and
references. Many results of this type for first order equestican be found in [8, 4].

The main examples we are interested in are the Isaacs eqggiatio

(11) supinf £%Pu(x) = 0
a B
and
(12) inf supL*Pu(x) = 0,
B«
where
3%u

+ b?"’g(x)—u +c®Bou— P (x).

o ]
£4Pux) = —a”-’ﬁ(x) ™
1

9% 9X|
HereF is

F(X,r, p, X) = supiréf{—trace(a“’ﬂ(x)X) +b%Bx) - p+ctPor — F4B ).
o

If, forall x € Q,a%# (x) = %O‘a’ﬁ(X)(O‘a’ﬁ(X))T, whereo®# (x) is a matrix of ordeiN x M, T
denotes the transpose matiat-#, b*-# c*# {28 are bounded and uniformly continuous in
Q, uniformly with respect tax, 8, thenF is continuous, and it is proper if in additia®? > 0
for all a, 8.

Isaacs equations satisfy the Comparison Principke i bounded and there are positive
constantK 4, K5, andC such that

(13) F(x, t, p, X) — F(X, 8,0, Y) <max{Kjtrace(Y — X), K1t —=9)}+ Kolp—ql,
forallY < Xandt <s,

(14) lo®P(x) — a®P(y)|
(15) Ib%P (x) — b*P (y)|

< Clx—y| forallx,y e Qandalle, 8

< Clx—y| forallx,y e Qandalle, g,

see Corollary 5.11 in [29]. In particular condition (13) &tisfied if and only if
max(A%P(x), <P (x)} > K > 0forallx e Q, « € A, B B,

wherer®# (x) is the smallest eigenvalue &®-#(x). Note that this class of equations contains
as special cases the Hamilton-Jacobi-Bellman equatiomptdhal stochastic control (3) and
linear degenerate elliptic equations with Lipschitz caéfits.
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Given a functioru : Q — [—o0, +0o¢], we indicate withu* andu,, respectively, the upper
and the lower semicontinuous envelopaupthat is,

u*(xX) = lim supu(y) : Q, ly—x|<r},
x) o puly) iy e ly —X| <r}

Us (X) rIiQnOinf{U(y) YEQ, ly—Xx =r}.

PrRoPOSITION]. Let S (respectively Z) be a set of functions such that fowadt S (re-
spectively We Z) w* is a subsolution (respectively Ws a supersolution) of (10). Define the
function

u(x) := supw(x), x € , (respectively x) := inf W(x)).
weS Wez

If u is locally bounded, then®uis a subsolution (respectively s a supersolution) of (10).

The proof of Proposition 1 is an easy variant of Lemma 4.2 8}.[1

PrROPOSITION2. Letwn € BUSC(2) be a sequence of subsolutions (respectively &V
BL SC(Q) a sequence of supersolutions) of (10), such thatx) N\, u(x) for all x € Q (respec-
tively Wh(X) ' u(x)) and u is a locally bounded function. Then u is a subsolutiesfectively
supersolution) of (10).

For the proof see, for instance, [4]. We recall that, for aggale subseE of RN andx € E,

the second order superdifferentialwht X is the subseﬂé’Jru()?) of RN x S(N) given by the
pairs(p, X) such that

1
ux) < u®) + p~(x—f<)+§x<x—f<)~(x—>%)+o(|x—>%|2)

for E > x — X. The opposite inequality defines the second order subeiffel ofu at X,
IZTu).
LEMMA 1. Let u* be a subsolution of (10). If,ufails to be a supersolution at some point
X € ©, i.e. there existp, X) € Jé’fu*(i) such that
F(X, ux(%), p, X) <0,

then for all k > 0 small enough, there existsU € — R such that |} is subsolution of (10)
and

Uk (X) > u(x), supy(Ug —u) >0,
Uk(X) = u(x) for all x € 2 such thatx — X| > k.

The proof is an easy variant of Lemma 4.4 in [18]. The lastltegthis subsection is Ishii's
extension of Perron’s method to viscosity solutions [27].

THEOREM1. Assume there exists a subsolutignamnd a supersolutionuof (10) such that
Uy < up, and consider the functions
UX) := supw(X):u; <w <Up, w* subsolution 0f10)},
W(x)

inf{w(X) : Uy < w < up, wy supersolution of10)} .

Then U*, W* are subsolutions of (10) and.,lJJW, are supersolutions of (10).
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1.2. Existence of solutions by the PWB method

In this section we present a notion of weak solution for theratary value problem

2 _ .
(16) { F(x,u, Du, D%u) =0 ing,

u=g onoag,
whereF satisfies the assumptions of Subsection 1.1@ndQ — R is continuous. We recall
thatS, Z are the sets of all subsolutions and all supersolutions&fdéfined in the Introduction.

DEFINITION 2. The function defined by

Hg(¥) = supw(x),
weS

is thelower envelope viscosity solutippr Perron-Wiener-Brelot lower solutionf (16). We will
refer to it as thdower e-solution The function defined by
Hg(X) := inf W(x),
g(X) WAt (x)

is theupper envelope viscosity solutipor PWB upper solutionof (16), brieflyjupper e-solution
IfHg = Hg, then

is the envelope viscosity solutionr PWB solutionof (16), brieflye-solution In this case the
data g are calledesolutive

Observe thaH j < Wg by the Comparison Principle, so the e-solution exists ifitlegual-
ity > holds as well. Next we prove the existence theorem for etisols, which is the main
result of this section. We will need the following notion dbbal barrier, that is much weaker
than the classical one.

DEFINITION 3. We say thatw is alower (respectivelyuppe) barrier at a point xe 9 if
w € S (respectivelyw € Z) and

Jim w(y) = g00).

THEOREM2. Assume that the Comparison Principle holds, and $iag are nonempty.
i) If there exists a lower barrier at all points & 9<2, then Hy = miny.z W is the e-solution
of (16).
ii) Ifthere exists an upper barrier at all points& 02, then Hy = max, s w is the e-solution
of (16).
Proof. Let w be the lower barrier at € 32, then by definitiorw < ﬂg. Thus
(Hg)«(Xx) = Il)r)ggf Hg(y) = Ilg;lr;(f w(y) =g(x).

By Theorem 1(ﬂg)* is a supersolution of (10), so we can conclude (@é)* € Z. Then
(Hg)x = Hg > Hg,s0Hg = HgandHq € 2.
|
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ExampPLE 1. Consider the problem

17 {—aumwm¢m+uawmuy+amwm=o inQ,

u(x) = g(x) onag,

with the matrixajj (x) such thata;(x) > u > 0 for all x € Q. In this case we can show
that all continuous functions o#2 are resolutive. The proof follows the classical one for the
Laplace equation, the only hard point is checking the sugsitipn principle for viscosity sub-
and supersolutions. This can be done by the same methodsidadthe same assumptions as
the Comparison Principle.

1.3. Consistency properties and examples

Next results give a characterization of the e-solution astpise limit of sequences of sub and
supersolutions of (16). If the equation (10) is of first ordkis property is essentially Subbotin’s
definition of (generalized) minimax solution of (16) [41,]42

THEOREM 3. Assume that the Comparison Principle holds, and $iag are nonempty.

i) If there exists ue S continuous at each point @2 and such that u= g ond<, then there
exists a sequenaen € S such thatwn  Hg.

ii) If there existal € Z continuous at each point 6f2 and such thati = g ona<2, then there
exists a sequence ¢ Z such that W \ Hg.

Proof. We give the proof only foii), the same proof works fdi). By Theorem 2Hg =
miny <z W. Givene > 0 the function

(18) Ue (X) :=sugw(X) : w € §, w(x) = u(x) ifdist (x, Q) < €},
is bounded, ands < uc for e < §. We define

V(X):

Aim_(Ug/n)(X)

and note that, by definitionHg > ue
supersolution of (10) in the set

v

(ue)s, and thenHg > V. We claim that(ue)x is

Qe = {Xx e Q:dist(x, Q) > ¢}.

To prove this claim we assume by contradiction thab, fails to be a supersolution gte Q..
Note that, by Proposition Iuc)* is a subsolution of (10). Then by Lemma 1, for kI~ 0
small enough, there exist such thatJ is subsolution of (10) and

(19) supUk — Ue) > 0, Ur(X) = Ue(X) if |x —y| > k.
Q

We fix k < dist(y, 0Q2) — €, so thatUg(X) = ue(x) = u(x) for all x such that distx, 92) < e.
ThenUy (x) = u(x), soUy e S and by the definition ofie we obtainU)® < u.. This gives a
contradiction with (19) and proves the claim.

By Proposition 2V is a supersolution of (10) i®. Moreover ifx € 3, for all ¢ > 0,
(Ue)x(X) = g(x), becauselc (x) = u(x) if dist (x, 32) < € by definition,u is continuous and
u=gondQ. ThenV > gona, and soV € Z.
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To complete the proof we defingn := (uz/n)*, and observe that this is a nondecreasing
sequence i whose pointwise limit is= V by definition ofV. On the other hand, < Hg by
definition of Hg, and we have shown théig =V, sown ' Hg.

|

CoROLLARY 1. Assume the hypotheses of Theorem 3. Thgislthe e-solution of (16 if
and only if there exist two sequences of functionse S, Wh € Z, such thatwn = Wh = g on
aQ and forall x e Q

wn(X) = Hg(X), Wh(X) = Hg(x) asn— oo.

REMARK 1. Itis easy to see from the proof of Theorem 3, that in ¢asiie e-solutiorHg
satisfies

Hg(X) = supue(x) X € Q,
€

where
(20) Ue(X) ;= sugw(X) :w € S, w(X) =ux) forx € Q\ O},

and @, € €]0, 1], is any family of open sets such tha@, < Q, ® 2 ©s for e < § and
U, ©c = €.

EXAMPLE 2. Consider the Isaacs equation (11) and assume the suffioieditions for the
Comparison Principle.

o If
g=0andf*f(x)>0forallx e Q, a € A, BB,

thenu = 0 is subsolution of the PDE, so the assumptipof Theorem 3 is satisfied.
¢ If the domaing2 is bounded with smooth boundary and there exist A andu > 0 such
that
aiPoogig) > pgPforall pe B, xe @, £ e RN,

then there exists a classical solutioof

inf £%Pu=0 inQ,
peB
ng OnaQ,

see e.g. Chapt. 17 of [24]. Thenis a supersolution of (11), so the hypothesis of
Theorem 3 is satisfied.

Next we compare e-solutions with Ishii’s definitions of noomtinuous viscosity solution
and of boundary conditions in viscosity sense. We recatlatianctionu e BU SQ(Q) (respec-
tively u € BLSQ(Q)) is aviscosity subsolutiofrespectively aviscosity supersolutigrof the
boundary condition

(22) u=gorF(,u, Du, D2u) =00ndQ,
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ifforall x € 9 andg € C2(Q) such thati—¢ attains a local maximum (respectively minimum)
atx, we have

(U= g)(x) <0 (resp. > 0) or F(x, u(x), Dp(x), D?p(x)) < 0 (resp. = 0).

An equivalent definition can be given by means of the semi]ét‘s%(x), J%fu(x) instead of
the test functions, see [18].

PropPOSITIONS. If Hg: Q — Ris the lower e-solution (respectiveIHg is the upper

e-solution) of (16), then_ﬁl is a subsolution (respectivelﬁg* is a supersolution) of (10) and
of the boundary condition (21).

Proof. If H is the lower e-solution, then by Propositionﬂ;ﬁ is a subsolution of (10). It
remains to check the boundary condition.

Fix any € 9Q such thaﬂi;(y) > g(y), and¢ € C2(Q) such thaﬂia — ¢ attains a local
maximum aty. We can assume, without loss of generality, that

Hiy =¢(y). HE—d)x) <—[x—yPforallx e QN B(y.r).

By definition ofﬂa, there exists a sequence of poirts— y such that

1
Hg = )xn) = = foralin.

Moreover, sincelig is the lower e-solution, there exists a sequence of funstign € S such
that

1
Hg(xn) — n< wn(Xn) for all n.

Since the functionun — ¢ is upper semicontinuous, it attains a maximunygag Q N B(y, r),
such that, fon big enough,

2 3
- < (wn — @) (Yn) < —Iyn = YI°.
Soasn — o©

Yn =Y, wn(yn) = ¢(y) = HG(Y) > 9(y).

Note thatyn ¢ 92, becausen € 92 would imply wn(yn) < 9(yn), Which gives a contradiction
to the continuity ofg aty. Therefore, sincevn, is a subsolution of (10), we have

F(Yn, wn(Yn), D (yn), D%p(yn)) <0,

and lettingn — oo we get

F(y. Hy(). Dg(y). D% (y)) <0,

by the continuity ofF.
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REMARK 2. By Proposition 3, if the e-solutiokig of (16) exists, it is a non-continuous
viscosity solution of (10) (21) in the sense of Ishii [27]. €Be solutions, however, are not
unique in general. An e-solution satisfies also the Dirichieblem in the sense that it is a non-
continuous solution of (10) in Ishii's sense aRg(x) = g(x) for all x € 9%, but neither this
property characterizes it. We refer to [4] for explicit exales and more details.

REMARK 3. Note that, by Proposition 3, if the e-solutiéty is continuous at all points of
91 with Q1 C @, we can apply the Comparison Principle to the upper and Isesticontinu-
ous envelopes dflg and obtain that it is continuous @;. If the equation is uniformly elliptic
in 21 we can also apply if21 the local regularity theory for continuous viscosity sauas
developed by Caffarelli [17] and Trudinger [43].

2. Properties of the generalized solutions

2.1. Continuous dependence under uniform convergence ofétdata

We begin this section by proving a result about continuoyseddence of the e-solution on
the boundary data of the Dirichlet Problem. It states thatgét of resolutive data is closed
with respect to uniform convergence. Throughout the papedenote with/ the uniform
convergence.

THEOREM4. Let F : @ x R x RN x S(N) — R be continuous and proper, and let

On : 92 — R be continuous. Assume th@n}n is a sequence of resolutive data such that
gn=3g 0ndQ. Then g is resolutive and §{= Hg on Q.

The proof of this theorem is very similar to the classical forehe Laplace equation [26].
We need the following result:

LEMMA 2. Forallc > 0, H(gic) < Hg+¢ andﬁ(g+c) <Hg+c.
Proof. Let
Sc ;= {w € BUSQER) : w is subsolution of (1Q) w < g+ conaQ}.

Fix u € 8¢, and consider the functiom(x) = u(x) — c. SinceF is proper it is easy to see that
vedS. Then

ﬂ(g+c) = Supu < supv+c:= ﬂg +cC.
ueSc veS

a

of Theorem 4.Fix ¢ > 0, the uniform convergence impli@s:Vn>m: ghn—e < g < gn+e.
Sincegn is resolutive by Lemma 2, we get

Hg, —€ = H(g,—e) = Hg = H(g,4¢) = Hgy t€.

ThereforeHg, = H 4. The proof thatHg, = Hyg, is similar.
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Next result proves the continuous dependence of e-sokutidgih respect to the data of the
Dirichlet Problem, assuming that the equatidhsare strictly decreasing in uniformly inn.

THEOREMS5. Let iy : © x R x RN x S(N) — R is continuous and proper, go$2 — R
is continuous. Suppose that, V§ > 0 Je such that

Fn(X,r _57 p’ X) +€ =< Fn(x’rv p’ X)

forall (x,r, p, X) € @ xR xRN x S(N),and ;=F onQ x R x RN x S(N). Suppose g is
resolutive for the problems

Fn(x,u, Du,D2u) =0 inQ,

(22) { u=g onos2.

Suppose g: 32 — R is continuous, g=>g ond2 and g, is resolutive for the problem

2 _ .
23) { Fn(X,u, Du, D?u) =0 in <,

Uu=gn onog.

Then g is resolutive for (16) andgr;l:g Hg, where I—,Qn is the e-solution of (23).

Proof. Step 1. For fixed > 0 we want to show that there existssuch that for alih > m:
|ﬂ8 —Hgl <3, whereHé‘ is the e-solution of (22).
We claim that there exists such thatHg —§ < Hg andHg < Hg +dforalin > m.

Then
n o =n _yn
Hg—-d<Hg<Hg=Hg+é=Hg+3.
This proves in particuIaHé‘zgﬂg and Hé‘j)ﬁg, and thenﬁg = Hg, sog is resolutive for

(16).
It remains to prove the claim. Let

Sg := {v subsolution ofF, = 0N, v < gonadQ}.

Fix v € 88, and consider the functiom = v — §. By hypothesis there exists ansuch that

Frn(X, u(x), p, X) + € < Fn(X, v(X), p, X), for all (p, X) € JSZZ’Jru(x). Then using uniform
convergence oFy at F we get

F(x, u(x), p, X) < Fn(X, u(x), p, X) + € < Fa(x, v(x), p, X) <0,

sov is a subsolution of the equatidfy, = 0 because]é”rv(x) = Jé’+u(x).

We have shown that for all € 88 there exista) € S such thatv = u + §, and this proves
the claim.

Step 2. Using the argument of proof of Theorem 4 with the Enabl

Fm(x,u, Du, D2u) =0 inQ,

(24) { Uu=gn onag,

we see that fixing > 0, there exist such that for alh > p: |ﬂ$ - ﬂg‘| < §forallm.

Step 3. Using again arguments of proof of Theorem 4, we sedixiveg § > 0O there exists
g such that foralh,m > q: [Hg — Hg' | < 6.
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Step 4. Now také > O, then there existp such that for alh, m > p:

IHG — Hgl < [HG — HG |+ HG — H'l + [HF' — Hgl < 35.

Similarly |ﬁgmm — Hgl < 3. ButHg, = ﬁg‘m, and this complete the proof.

2.2. Continuous dependence under local uniform convergeerof the operator

In this subsection we study the continuous dependence oluéiens with respect to perturba-
tions of the operator, depending on a parambtehat are not uniform over aft x R x RN x
S(N) as they were in Theorem 5, but only on compact subse®s:oR x RN x S(N). A typical
example we have in mind is the vanishing viscosity approkimna but similar arguments work
for discrete approximation schemes, see [3]. We are ablags f the limit under merely local
perturbations of the operator by approximatidgvith a nested family of open se®, solving
the problem in eacl., and then letting, h go to 0 “withh linked toe” in the following sense.

DEFINITION 4. Letvﬁ, Uu:Y > R, fore >0,h>0Y cRN. we say thatzﬁ converges
tou as(e, h) N\ (0, 0) with h linked toe at the point x, and write

(25) v (X) = u(X)

lim
(,M)\(0,0)
h<h(e)

if for all y > 0, there exist a functioh :]0, +-00[—]0, +00[ andé > 0 such that
lvfy(y) —u(x)| <y, forally e Y : |x — y| < h(e)

forall e < h < he).

To justify this definition we note that:

i) it implies that for anyx anden Y\ O there is a sequend®g, \, 0 such thatvf]: (Xn) — u(x)
for any sequenca such thaix — xn| < hp, e.9.xy = x for all n, and the same holds
for any sequenchy, > hp;

i) iflimpy o vf,(x) exists for all smalk and its limit ase “\ 0 exists, then it coincides with the
limit of Definition 4, that is,

lim (X)) = lim lim vE(X) .
(e.n)\(0,0) h(X) e\.0h\,0 h 0
h<h(e)

REMARK 4. If the convergence of Definition 4 occurs on a compacksethere the limit
u is continuous, then (25) can be replaced, foxadl K and redefinindh if necessary, with

i, (y) —u(y)| <2y, forally € K : |[x—y| < h(e),

and by a standard compactness argument we obtain the unifamsergence in the following
sense:

DEFINITION 5. Let K be a subset @N andvﬁ, u: K — Rforall ¢, h > 0. We say that
vy, converge uniformlyon K to u as(e, h) N\ (0, 0) with hlinked toe if for any y > Othere are

€ > 0andh :]0, +00[—]0, +o0[ such that

suplvf, —ul <y
K
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forall € <€, h < h(e).

The main result of this subsection is the following. Recadltta family of functionsy, :
Q — Ris locally uniformly bounded if for each compact d€tC 2 there exists a consta@tc
such that sup |vf,| < Ck for all h, e > 0. In the proof we use the weak limits in the viscosity
sense and the stability of viscosity solutions and of théchiet boundary condition in viscosity
sense (21) with respect to such limits.

THEOREM6. Assume the Comparison Principle hold®,# ¢ and let_ ube a continuous
subsolution of (16) such that & g ond. For anye €]0, 1], let ©¢ be an open set such that
O¢ C Q, and for h€]0, 1] let v, be a non-continuous viscosity solution of the problem

(26)

Fh(X, u, Du, D2u) = 0 in O,
u(x) = u(x) or Fy(X, u, Du, D2u) =0 0ndO,

where F, : © x R x RN x S(N) — R is continuous and proper. Suppogé, } is locally
uniformly boundedyy, > uin , and extendy, := U in Q \ ©. Finally assume that
converges uniformly to F on any compact subsef2ok R x RN x S(N) as h N\, 0, and
B¢ 2 Os if € <8, Jgee<1 Oc = Q2.

Thenvy, converges to the e-solutiongtdf (16) with h linked tae, that is, (25) holds for all

X € Q; moreover the convergence is uniform (as in Def. 5) on anypeminsubset of2 where
Hg is continuous.

Proof. Note that the hypotheses of Theorem 3 are satisfied, so thieities Hg exists. Consider
the weak limits

v(X) = Iirr]r]\lr(;f*vﬁ(x) = Bsgginf{vﬁ(y) iIX—y| <8, 0<h<é},
Ve(x) = limsup‘vf(x) = inf sup{vf(y): [x —y| <&, O<h <38}.
h\.0 >0

By a standard result in the theory of viscosity solutions, [46, 18, 8, 4]y, andv, are respec-
tively supersolution and subsolution of

20 in@
@7) { F(x,u, Du, D?u) =0 in O,

u(x) = u(x) or F(x, u, Du, D2u) =0 0NJO .

We claim tha®, is also a subsolution of (16). Indeef] = uin 2\ ©, sove = u in the interior
of 2\ ©¢ and then in this set it is a subsolution. @ we have already seen that = (v¢)* is
a subsolution. It remains to check what happen®®a. GivenX € 90, we must prove that
forall (p, X) € JSZZ’JTS (X) we have

18t Caseve (X) > u(X). Sincev, satisfies the boundary condition 86®, of problem (27),
then for all(p, X) € J(%’Jrie (X) (28) holds. Then the same inequality holds for (@l X) €

JSZZ’JTS (X) as well, becausészz’Jri6 X) C Jé‘*ﬂe (X).
€

2" Casewe (R) = UR). Fix (p, X) € 325 (%), by definition

Te(X) <Ve(R)+ p- (X=X + %X(X—ﬁ)-(X—ﬁ)JrO(IX—)?IZ)
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for all x — X. Sinceve > u andve (X) = u(X), we get
1
UOO < UR) + P (X = ) + 5 XX = %) - (X = %) +0(lx = 1),

thatis(p, X) € J£’+g()?). Now, sinceu is a subsolution, we conclude
F(X,0e(X), p, X) = F(X, u(x), p, X) <0.
We now claim that
(29) Ue < v, <Te < HginQ,

whereuc is defined by (20). Indeed, sinag is a supersolution i®, andv, > u, by the
Comparison Principle, > w in ®¢ for anyw € § such thatw = u on3®,. Moreoverv, = u
on§2\ B¢, SO We geb, > Uc in . To prove the last inequality we note thag is a supersolution
of (16) by Theorem 3, which impliege < Hg by Comparison Principle.

Now fix x € 2, ¢ > 0,y > 0 and note that, by definition of lower weak limit, there exist
h =h(x, ¢, y) > 0such that

ve(X) —y < vR(Y)
forall h < handy € & n B(x, h). Similarly there existk = k(x, ¢, y) > 0 such that
vh(Y) S Te(X) +¥

forallh < kandy € QN B(x, k). From Remark 1, we know thalg = sup. U, so there exists
€ such that

Hg(X) — ¥ < Ue(x), foralle <€.
Then, using (29), we get
Hg(X) — 2y < vi(y) < Hg(X) + ¥

for all e <&, h < h:=min{h, k} andy € € n B(x, h), and this completes the proof.
Od

REMARK 5. Theorem 6 applies in particulanif, are the solutions of the following vanish-
ing viscosity approximation of (10)

(30) { —hAv+ F(x,v, Dv,D%) =0 in®,,

v=u ondO¢ .
SinceF is degenerate elliptic, the PDE in (30) is uniformly ellgpfor all h > 0. Therefore
we can choose a family of nestéd with smooth boundary and obtain that the approximating
vy, are much smoother than the e-solution of (16). Indeed (38)ahelassical solution if, for
instance, eitheF is smooth and~(x, -, -, -) is convex, or the PDE (10 is a Hamilton-Jacobi-
Bellman equation (3 where the linear operat6fs have smooth coefficients, see [21, 24, 31].
In the nonconvex case, under some structural assumptibas;antinuity of the solution of
(30) follows from a barrier argument (see, e.g., [5]), anehtiit is twice differentiable almost
everywhere by a result in [43], see also [17].
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2.3. Continuous dependence under increasing approximatioof the domain

In this subsection we prove the continuity of the e-solutib(l6) with respect to approximations
of the domain2 from the interior. Note that, if¢ = v¢ for all h in Theorem 6, then¢ (x) —
Hg(x) for all x € Q ase \ 0. This is the case, for instanceff is the unique e-solution of

F(x,u,Du,D2u) =0 in@®,
u=u onoo.,

by Proposition 3. The main result of this subsection extehisremark to more general ap-
proximations ofQ2 from the interior, where the conditioB, C € is dropped. We need first a
monotonicity property of e-solutions with respect to ther@asing of the domain.

LEMMA 3. Assume the Comparison Principle holds andigt< @, < RN, H&, respec-

tively Hg be the e-solution if21, respectively2,, of the problem
2 — in O
31) { F(x,u, Du,D%u) =0 inQ;,
u=g onoaQ; ,

with g : ©, — R continuous and subsolution of (31) witkd 2. If we define

H~1(X) _ Hgl(X) ifx e 51 _
g gx)  ifxeQ\Qq,
then I—g > I—Té in Q.

Proof. By definition of e-solutioan2 > gin Qo, SO Hg is also supersolution of (31) if24.
ThereforeHg > H& in Q1 becausd—léL is the smallest supersolution €&y, and this completes
the proof.

|

THEOREM7. Assume that the hypotheses of Theorem t®id with ucontinuous and2
bounded. Let2n} be a sequence of open subset®psuch that2n € Q1 andJ,, @n = Q.
Let un be the e-solution of the problem

F(x,u, Du,D2u) =0 inQp,
u=u onagy.

(32) {

Ifwe extend y ;= uin Q \ Qn, then Lk(x) 7 Hyg(x) for all x € Q, where Hj is the e-solution
of (16).

Proof. Note that for aln there exists amn > 0 such that2,, = {x € Q : dist(x, Q) > en} <
Qn. Consider the e-solution,, of problem

F(x,u,Du,D2u)=0 inQ,.
u=u on a2, -

If we setue, = uin Q\Qe,, by Theorem 6 we get,, — Hgin 2, as remarked at the beginning
of this subsection. Finally by Lemma 3 we havg > un > Ue, in 2, and saup — Hg in Q.

|
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REMARK 6. If Q2 is not smooth and- is uniformly elliptic Theorem 7 can be used as
an approximation result by choosisgh with smooth boundary. In fact, under some structural
assumptions, the solutiam, of (32) turns out to be continuous by a barrier argument @eg,
[5]), and then it is twice differentiable almost everywhégea result in [43], see also [17]. If, in
addition,F is smooth and~ (X, -, -, -) is convex, or the PDE (10) is a HIB equation (3) where the
linear operator€£® have smooth coefficients, ther is of cIassCz, see [21, 24, 31, 17] and the
references therein. The Lipschitz continuityupf holds also ifF is not uniformly elliptic but it
is coercive in thep variables.

2.4, Continuity at the boundary

In this section we study the behavior of the e-solution atolany points and characterize the
points where the boundary data are attained continuousiyéans of barriers.

PrRoPOSITION4. Assume that hypothesis(respectively i)) of Theorem 2 holds. Then the
e-solution H of (16) takes up the boundary data g continuouslygé&x €, i.e. limy— x, Hg(X)
= g(Xp), if and only if there is an upper (respectively lower) barrig xqo (see Definition 3).

Proof. The necessity is obvious because Theoreimitplies thatHg € Z, soHg is an upper
barrier atx if it attains continuously the data at

Now we assum&V is an upper barrier at. ThenW > Hg, becauséV € Z andHyg is the
minimal element ofZ. Therefore

<H < liminf H < limsupH < lim W(y) = s
900 < Hg0 < liminf Ho(y) < limsupHg(y) < fim W(y) = g9

S0 limy— x Hg(y) = g(x) = Hg(X).
a

In the classical theory of linear elliptic equations, lotarriers suffice to characterize
boundary continuity of weak solutions. Similar results ¢snproved in our fully nonlinear
context. Here we limit ourselves to a simple result on thedhiet problem with homogeneous
boundary data for the Isaacs equation

: a,B o, B , B ;
(33) Sgplrt}f{_a” Ux;x; + b uy, +ctPu— 2Py =0 inQ,
u=20 onoQ.

DEFINITION 6. We say that We BLSQ(B(xg, 1) N ©) withr > Ois anupper local barrier
for problem (33) at y € aQ2 if
i) W > Ois a supersolution of the PDE in (33) in(&, r) N &,
i) W(xg) =0, W(x) > u > O0forall |[x —xg| =T,
iii ) W is continuous at
PROPOSITION5. Assume the Comparison Principle holds for (33%f > 0 for all «, 8,

and let Hy be the e-solution of problem (33). Ther kkes up the boundary data continuously
at xg € 992 if and only if there exists an upper local barrier W af.x
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Proof. We recall thatHg exists because the functian= 0 is a lower barrier for all points
x € 9§ by the fact thatf %# > 0, and so we can apply Theorem 2. Consider a supersolution
of (33). We claim that the functiow defined by

PW(X) Aw(x) if xe B r)Ne,

V(X)={ w(X) if x e 2\ B(xg,r),

is an upper barrier aty for p > 0 large enough. It is easy to check thdd/ is a supersolution
of (33) in B(xg,r) N 2, soV is a supersolution irB(xg, r) N Q (by Proposition 1) and in
Q\ B(xg, r). Sincew is bounded, by property) in Definition 6, we can fixo ande > 0 such
thatV (x) = w(x) for all x € @ satisfyingr — e < [x — Xg| < r. ThenV is supersolution even
on dB(xg, r) N Q. Moreover it is obvious tha > 0 ond2 andV (xg) = 0. We have proved
thatV is supersolution of (33) i2.
It remains to prove that lign, x, V (X) = 0. Since the constant 0 is a subsolution of (33) and

w is a supersolution, we have > 0. Then we reach the conclusion by andiii ) of Definition
6.

|

ExamMPLE 3. We construct an upper local barrier for (33) under theragsions of Propo-
sition 5 and supposing in addition

IQisC2%ina neighbourhood ofy € 922,

there exists an™ such that for al8 either

(34) aﬁ*’ﬂ(Xo)ni (Xp)nj(x0) =c>0
or
(35) o (xo) by x; (x0) + B P (x)i (x) = € > 0

wheren denotes the exterior normal o andd is thesigned distancérom 92

dist(x, 9Q) ifxeQ,

oo = { _dist(x, 9Q) ifx e RN\ Q.

Assumptions (34) and (35) are the natural counterpart f@eds equation in (33) of the con-
ditions for boundary regularity of solutions to linear etjoas in Chapt. 1 of [37]. We claim
that

W(x) =1— e—8(d00+AIx=Xol?)
is an upper local barrier a for a suitable choice of, A > 0. Indeed it is easy to compute
—at"’ (x0) W x; (x0) + b"*F (x0) Wi (x0) + < (x)Wi(xg) — 17 (xg) =
—sai""” (x0)d x; (X0) + 8%} (x0)dy, (X0)dx; (X0) + 855" (x0)dy, (%)
—250Tr[a%P (xg)] — TP (xg) .

Next we choose™ as above and assume first (34). In this case, since the ceefficire bounded
and continuous andlis C2, we can makaV a supersolution of the PDE in (33) in a neighborhood
of xg by takings large enough. If, instead, (35) holds, we choose firsmall and ther$ large

to get the same conclusion.
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3. Applications to Optimal Control

3.1. A deterministic minimum-time problem

Our first example of application of the previous theory is tinge-optimal control of nonlinear
deterministic systems with a closed and nonempty tafget RN. For this minimum-time
problem we prove that the lower semicontinuous envelopketalue function is the e-solution
of the associated Dirichlet problem for the Bellman equatidhis result can be also found in
[7] and [4], but we give here a different and simpler proofn€ider the system

(36)

{ yr(t) = f(yt),at)) t>0,
y(0) =X,

wherea € A :={a: [0, co) — A measurablgis the set of admissible controls, with

A a compact spacd, : RN x A — RN continuous

@87 3L > Osuchthat f(x,a) — f(y,a) - (x—y) < L|x — y[2,

forall x,y € RN, a € A. Under these assumptions, for amye A there exists a unique
trajectory of the system (36) defined for glithat we denotg/x(t, a) or yx(t). We also define
the minimum time for the system to reach the target using tinérala € A:

inf{t >0:yx(t,a) eT}, if{t>=0:yx(t,a)el}#4d,
400 otherwise

tx(a) := {

Thevalue functiorfor this problem, namechinimum timdunction, is

Tx) = inf ty@), xeRN.
acA

Consider now the Kruzkov transformation of the minimum time

1-eT® | jf T(x) < o0,

v = { 1, otherwise

The new unknown is itself the value function of a time-optimal control prebi with a discount
factor, and from its knowledge one recovers immediatelyrtti@mum time functionT. We
remark that in general has no continuity properties without further assumptidnsyever, it is
lower semicontinuous iff (x, A) is a convex set for alk, so in such a case = v, (see, e.g.,
[7, 4]).

The Dirichlet problem associated tdyy the Dynamic Programming method is

(38)

v+HX Dv)=0, inRN\T,
v=20, inol’,

where
H(x, p) :=max{—f(x,a) - p} —1.
acA
A Comparison Principle for this problem can be found, fotamsge, in [4].

THEOREMS8. Assume (37). Then is the e-solution and the minimal supersolution of (38).
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Proof. Note that by (37) and the fact that = 0 is a subsolution of (38), the hypotheses of
Theorem 3 are satisfied, so the e-solution exists and it ipersalution. Itis well known that,

is a supersolution aof + H(x, Dv) = 0in RN \ T, see, e.g., [28, 8, 4]; moreovef > 0 onaT,

SO vy is a supersolution of (38). In order to prove thatis the lower e-solution we construct a
sequence of subsolutions of (38) converging.to

Fix e > 0, and consider the set
e :={x e RN :dist(x, aT) < ¢},
let Te be the minimum time function for the problem with tard&t, andve its Kruzkov trans-

formation. By standard results [28, 8, 4] is a non-continuous viscosity solution of

v+ H(x, Dv) =0, inRN \ ¢,
v=0orv+ H(X,Dv)=0, inal,.

With the same argument we used in Theorem 6, we can seetlimta subsolution of (38). We
define

u(x) = supv’(x)
€

and will prove thau = v,.

By the Comparison Principle} < vy for all ¢ > 0, thenu(x) < v«(x). To prove the
opposite inequality we observe it is obviouslinand assume by contradiction there exists a
pointX ¢ I" such that:

(39) SUPYe (X) < SUpv; () < v« (X).

Consider first the casg. (X) < 1, thatis, T« (X) < 4+o00. Then there exist$ > 0 such that
(40) TXR) < Te(R) — 8 < +oo, foralle > 0.

By definition of minimum time, for alk there is a controde such that
¢ R 1)
(41) tz (@) §T€(x)+§ < 4o00.

Let zc € I'¢ be the point reached at timg(ag) by the trajectory starting from, using control
a.. By standard estimates on the trajectories, we have fer all

1261 = Iyg (5 @) = (IR +V2MT(R)) MTH

whereM := L + sup| f (0, a)| : a € A}. So, for someR > 0, z € B(0, R) for all . Then we
can find subsequences such that

(42) Ze, > € 0T, th:=t"(a,) > T, asn - oo.

From this, (40) and (41) we get

(=2}

(43) T<TR) —=.

N
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Lety,, be the solution of the system

{ y=f(y.a,) t<t,
y(tz(@e,)) =2,

that is, the trajectory moving backward franusing control,,, and sekn := ¥ (0). In order
to prove thatxn — X we consider the solutiog,, of

{ y=f(y,a, t<tn,
y(tn) = Zep »

that is, the trajectory moving backward frazg, and using controd,,. Note thatyc,(0) = X.
By differentiating|ye, — Ve, 12, using (37) and then integrating we get, fortak tp,

th
Yen ) — Ve, (DI < |2ey — 212 +/t 2L 1Yen (S) — Ve, (9)12ds.

Then by Gronwall’s lemma, for atl < tp,

Yen ) = Ve, O] < |26, — zleb7Y

which gives, fort = 0,

1% = Xn| < |z, — zle"™.
By lettingn — oo, we get thakn — X.

By definition of minimum timeT (xn) < tp, S0 lettingn — oo we obtainT,(X) < T, which
gives the desired contradiction with (43).

The remaining case i8,(X) = 1. By (39) T*(X) < K < +oo for all €. By using the
previous argument we get (42) with< +oo and T,(X) < t. This is a contradiction with
T«(X) = 400 and completes the proof.

|

3.2. Maximizing the mean escape time of a degenerate diffusi process

In this subsection we study a stochastic control problemnigass a special case the problem
of maximizing the expected discounted time spent by a cthetraliffusion process in a given
open set? € RN. A number of engineering applications of this problem aséelil in [19],
where, however, a different cost criterion is proposed andralegeneracy assumption is made
on the diffusion matrix. We consider a probability spa€g, F, P) with a right-continuous
increasing filtration of complete sub-ields {#;}, a Brownian motiorB; in RM Fi-adapted, a
compact setd, and callA the set of progressively measurable procesgédaking values inA.
We are given bounded and continuous mapsom RN x A into the set ofN x M matrices
andb : RN x A — RN satisfying (14), (15) and consider the controlled stodhasfferential
equation

dX; = o%(Xt)d B — b* (Xp)dt, t >0,

soB | S0

For anya. € A (SDE) has a pathwise unique solutidfs which is 7 -progressively measurable
and has continuous sample paths. We are given also two bdwarde uniformly continuous
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mapsf,c: RN x A R, c*(x) > cp > O for all x, «, and consider the payoff functional
tx(c.) t
Jx,a):=E (/ fot(Xp)e™ Jo C"‘S(Xs)dsdt> i
0

whereE denotes the expectation and
tx(a) :=inf{t > 0: Xt ¢ Q},

where, as usualy (¢) = +oo if Xt € @ forallt > 0. We want to maximize this payoff, so we
consider the value function

v(X) == sup J(X, ).
acA

Note that forf = ¢ = 1 the problem becomes the maximization of the mean discduirte
E(1 — e (@) spent by the trajectories 68 DE) in .

The Hamilton-Jacobi-Bellman operator and the Dirichlaeihpem associated to by the
Dynamic Programming method are

F(x, u, Du, D2u) := miR{—aﬁ ()Ux;x; +b¥(X) - Du+c*()u — F(x)},
oxe
where the matrixajj ) is 3001, and

2 _ .
(44) { F(x,u, Du,D?u)=0 inQ,

u=20 onos2,

see, for instance, [40, 35, 36, 22, 32] and the referencesithé he proof that the value function
satisfies the Hamilton-Jacobi-Bellman PDE is based on theabByc Programming Principle

9/\tx t O AL
(45) v(X) = sup E (/ fot (Xp)e™ Jo S X St 4 yy(Xgap )€ o”C"S<Xs>dS),
0

acA

wherety = tx(a.), for all x € Q and all Fi-measurable stopping timés Although the DPP
(45) is generally believed to be true under the current aptions (see, e.g., [35]), we were able
to find its proof in the literature only under some additiocahditions, such as the convexity of
the set

{@*(x), b*(x), F¥(X), c¥(X)) : @ € A}

for all x € , see [20] (this is true, in particular, when relaxed comstrarle used), or the inde-
pendence of the variance of the noise from the control [18],d% (x) = o (x) for all X, or the
continuity ofv [35]. As recalled in Subsection 1.1 a Comparison Principtg€44) can be found
in [29], see also [18] and the references therein.

In order to prove that is the e-solution of (44), we approximaewith a nested family of
open sets with the properties

(46) O CQ, €€]0,1], O 2 B;fore <3, | O =Q.
€

For eache > 0 we callve the value function of the same control problem wiithreplaced with

te (@) == inf{t > 0: Xt ¢ Oc}
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in the definition of the payoffl. In the next theorem we assume that eaclsatisfies the DPP
(45) withty replaced withtg.
Finally, we make the additional assumption

(47) f¥x)>0forallx e Q, o € A.

which ensures that = 0 is a subsolution of (44). The main result of this subsectiothe
following.

THEOREM9. Under the previous assumptions the value functiesithe e-solution and the
minimal supersolution of (44), and

v= Sup ve = lim ve.
O<e<1 e\O

Proof. Note thatve is nondecreasing as \; 0, so lim\ ove exists and equals the sup. By
Theorem 3 withg = 0, u = 0, there exists the e-solutidfig of (44). We consider the functions
ue defined by (20) and claim that

Uge < (ve)s < v} < Hp.
Then

(48) Ho= sup wve,
O<e<1
becauseHp = sup. up. by Remark 1. We prove the claim in three steps.

Step 1. By standard methods [35, 9], the Dynamic Programmnmgiple forve implies
thatve is @ non-continuous viscosity solution of the HamiltonaldeBellman equatiorr = 0
in ®¢ andv is a viscosity subsolution of the boundary condition

(49) u=0orF(x,u,Du, D2u) =00nd0O,,

as defined in Subsection 1.3.

Step 2. Sincéve )« is a supersolution of the PDE = 0 in © and(ve)« > 0 0nd©,, the
Comparison Principle implie@¢ )+« > w for any subsolutionw of (44) such thatv = 0 on9®..
Sinced®, C Q\ Oy by (46), we obtairuy. < v, by the definition (20) ofiy,.

Step 3. We claim that; is a subsolution of (44). In fact we noted before that it is a
subsolution of the PDE i@, and this is true also i€ \ ®. wherev} = 0 by (47), whereas the
boundary condition is trivial. It remains to check the PDRlapoints ofd®,. Givenx € 90,
we must prove that for ah € C2(Q) such that} — ¢ attains a local maximum &, we have

(50) F(%, v} (R), D (R), D2 (R)) < 0.

1st Case:w}(X) > 0. Sincev; satisfies (49), for alp € C2(®,) such thab? — ¢ attains a
local maximum ak (50) holds. Then the same inequality holds forgak C2(Q) as well.

2nd Casew} (X) = 0. Sincev} — ¢ attains a local maximum &, for all x nearX we have
Vi) = vER) = ¢(X) — d(R) .
By Taylor’s formula forg atX and the fact that} (x) > 0, we get

Do (X) - (x — X) = o(|x — X]) ,
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and this impliedD¢ (X) = 0. Then Taylor’s formula fop gives also
(x = %) - DZpR)(x — %) = o(x — &),
and this impliesD2¢ (%) > 0, as it is easy to check. Then
F(%, v (%), D$(%), D% (%)) = F(%,0,0, D?p(R) <0

becaus@® > 0 andf® > 0 for all x andw. This completes the proof thaf is a subsolution of
(44). Now the Comparison Principle yield$ < Hg, sinceHg is a supersolution of (44).

It remains to prove that = supy_.<1 ve- To this purpose we take a sequergey, 0 and
define

" (@) ¢ s %o
IhX,a):=E / faT(Xt)e*fo (Xs)dsyy ) .
0

We claim that

Iian In(X, @) =supdn(X, o) = J(X, ) for all . andx .
n

The monotonicity oty follows from (46) and it implies the monotonicity df, by (47). Let

T= supt§”(a.) <tx(a),

and note thaty(«.) = +o0 if T = +00. Inthe case < +o0, Xten € 90, implies X; € 9%,
sot = tx(a.) again. This and (47) yield the claim by the Lebesgue monotmmyergence
theorem. Then

v(X) = supsupJIn(X, «.) = supsupIn(X, «,) = SUPvVe, = SUPVe ,
o N n o n €

S0 (48) givesy = Hp and completes the proof.
|

REMARK 7. From Theorem 9 it is easy to get\erification theorenby taking the su-
persolutions of (44) as verification functions. We considgresynthesig®), that is, a map
a) 1 Q@ > A, and say it is optimal ato if J(Xo, @*) = v(xo). Then Theorem 9 gives im-
mediately the following sufficient condition of optimalityf there exists a verification function
W such that Wo) < J(Xo, a®), thena () is optimal at %; moreover, a characterization of
global optimality is the followingz(") is optimal in€2 if and only if J(-, «(")) is a verification
function

REMARK 8. We can combine Theorem 9 with the results of SubsectiotoZa@proximate
the value functiorv with smooth value functions. Consider a Brownian moti&nin RN F;-
adapted and replace the stochastic differential equati¢8DE) with

d% = o (X)d B — b* (Xp)dt + v/2h dBt, t >0,

for h > 0. For a family of nested open sets with the properties (46%icter the value function

vy, of the problem of maximizing the payoff functiondlwith t replaced withtg. Assume for
simplicity thata®, b%, c*, f% are smooth (otherwise we can approximate them by molliboati
Thenuy, is the classical solution of (30), whefe is the HIB operator of this subsection and
u = 0, by the results in [21, 24, 36, 31], and it is possible to kgeize an optimal Markov
control policy for the problem witla, h > 0 by standard methods (see, e.qg., [22]). By Theorem
6 vﬁ converges t@ ase, h \ 0 with h linked toe.
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