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HIGH ORDER NECESSARY OPTIMALITY CONDITIONS

Abstract.

In this paper we present a method for determining some amg&of a sin-
gular trajectory of an affine control system. These vanetiprovide necessary
optimality conditions which may distinguish between maizimg and minimizing
problems. The generalized Legendre-Clebsch conditionsuarexample of these
type of conditions.

1. Introduction

The variational approach to Majer minimization control lggams can be roughly summarized
in the following way: letx* be a solution on the intervat;[ te] relative to the control*; if
the pair(x*, u*) is optimal, then the cone of tangent vectors to the reachsdtlatx*(te) is
contained in the subspace where the cost increase. If thereoastraints on the end-points,
then the condition is no more necessary; nevertheless iit fiHs been proved that particular
subcones of tangent vectors, the regular tangent cones,tbaye contained in a cone which
depends on the cost and on the constraints. Tangent vedtogewollection is a regular tangent
cone are named good trajectory variations, see [8].

The aim of this paper is to construct good trajectory vasiaiof a trajectory of an affine
control process which contains singular arcs, i.e. arcsajédtory relative to the drift term of
the process. It is known, [2], that the optimal trajectoryaafaffine control process may be of
this type; however the paix*, 0) may satisfy the Pontrjagin Maximum Principle without being
optimal. Therefore it is of interest in order to single outnaaier number of candidates to the
optimum, to know as many good trajectory variations as we can

In [5] good trajectory variations of the paix*, 0) have been constructed by using the
relations in the Lie algebra associated to the system atdimgoof the trajectory. The variations
constructed in that paper are of bilateral type, i.e. bothdhections+v and —v are good
variations. In this paper | am going to find conditions whidhgte out unilateral variations,
i.e. only one direction need to be a variation. Unilateraiatéons are of great interest because,
contrary to the bilateral ones, they distinguish betweerimizing and minimizing problems.

2. Notations and preliminary results

To each familyf = (fg, f1, ..., fm) of C® vector fields on a finite dimensional manifdid
we associate the affine control procégson M

m
) X=fo00+ Y uifio  uj| <e
i=1
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where the control = (uq, ..., um) is a piecewise constant map whose values belong to the
hypercubdluj| < «. We will denote by(t, tg, v, u) the value at time of the solution of%s
relative to the controli, which at timetg is equal toy. We will omit tg if it is equal to 0, so that
S, y,u) = §(,0,y,u); we will also use the exponential notation for constant cdnhap,
for example exgfg -y = §(t, y, 0).

We want to construct some variations of the trajectory x(t) = exptfg - Xg, t € [to, t1]
at timet € [tg, t1]. We will consider trajectory variations produced by neelike control
variations concentrated at The definition is the following:

DEFINITION 1. A vectorv € Ty, ()M is a right (left) trajectory variation of kat « if for
eache € [0, €] there exists a control map(e) defined on the interv40, a(e)], lim._, o+ a(e) =
0, such that ge) depends continuously erin the L topology and the map— exp(—a(e) fg)-
S@le), X¢(1), u(e)), (¢ — S(ale), Xs(r — a(e)), u(e))) hasv as tangent vector at = 0.

The variations at indicates the controllable directions of the referencgettary from
x¢(7); they are local objects at(r) and in any chart ak(z) they are characterized by the

property
@) S(@(e), X (1), U(e)) = Xs(r + ale)) + € v+ 0(e) € R(r + a(e), x¢(to))

whereR(t, x) is the set of points reachable in tirhérom x.

The transport along the reference flow generated by the @atdram timer to timet; of a
variation atr is a tangent vector to the reachable set at tifnia the pointx;(t1). The transport
of particular trajectory variations, the good ones, givss to tangent vectors whose collection
is a regular tangent cone. The definition of good variatigrthé following:

DEFINITION 2. Avectorv € Tyx(;)M is a goodright variation (left variation) at of order
k if there exists positive numbets € and for eache € [0, €] a family of admissible control
maps, ¥ (c), ¢ € [0, T] with the following properties:

1. uc(c) is defined on the intervd0, ac]
2. for eache, ¢ — Uc(C) is continuous in the & topology

3. exp[-(1 + a)ek] fo - Sf(aek,xf(r + ek), Uc(C)) = X¢(r) + ecv + 0(¢) (expekfo .
Sf(aek, X(t — (1+ a)ek), Ue(C)) = X¢(t) 4+ ecv + 0(¢€)) uniformly w.r.t. c.

The good trajectory variations will be simpler named g-aoins. Standing the definitions,
the variations of a trajectory are more easily found thamitariations. However a property
proved in [8] allows to find g-variations as limit points ofifectory ones. More precisely the
following Proposition holds:

PROPOSITIONL. Let | be an interval contained iffitg, t1] and let g € L1(1) be such
that g(t) is a right (left) trajectory variation at t for each t in the sk, (L ™), of right (left)
Lebesgue points of g. For eachet L™, (t € L™), let[0, a; (¢)] be the interval as in Definition
1 relatively to the variation ¢). If there exists positive numbers N and s such that for each
relLt, (t €eL7),0< ar(e) < (Ne)S, then for each te LT g(t) is a right variation, (for
eachte L™, g(t) is a left variation), at t of order s.

Let r be fixed; to study the variations atwve can suppose without loss of generality that
is an open neighborhood of @ R". Moreover by Corollary 3.3 in [5], we can substitute to the
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family f the family¢ whereg; is the Taylor polynomial off; of order sufficiently large. We can
therefore suppose thats an analytic family of vector fields dR".

Let me recall some properties of analytic family of vectoedds. LetX = {Xq, X1, ...,
Xm} be(m+ 1) indeterminatel (X) is the Lie algebra generated Bywith Lie bracket defined
by

[ST]=ST-TS.
L(X) denotes the set of all formal serigs > 4 Pk, eachP homogeneous Lie polynomial of
degreek. For eachs e L (X) we set

X, sk
expS= ) ol
k=0

and k+1 -k
28]
(=Dktlz
| = -
og(ld + 2) kZ "
=0
The following identities hold
expllogZ) =Z log(expS) = S.

Formula di Campbell-Hausdor{B]
For eachP, Q e L(X) there exists an uniqug € L (X) such that

expP -expQ = expZ
andZ is given by
1
Z=P+Q+5[P.Ql+

Letu be an admissible piecewise constant control defined on teevai [0, T (w)]; by the Camp-
bell Hausdorff formula we can associateutan element ot (X), logu, in the following way: if
ut) = (@}, ..., o) inthe interval(tj _1. tj) then

m m
explogu = exp(T (U) — tg_1) (xO + ZwM) S expy (XO + Zw%xi>
i=1 i=1

If f is an analytic family, then log is linked to & (T (u), y, u) by the following proposition [6]
ProPOSITIONZ2. If f is an analytic family of vector fields on an analytic maniféMidthen
for each compact KC M there exist T such that, [bg; u denotes the serie of vector fields

obtained by substituting ilegu, f; for X;, thenvy € K andvu, T(u) < T, the serieexp log u-
y converges uniformly tof & (u), y, u).

In the sequel we will deal only with right variations. The saitieas can be used to construct
left variations.

To study the right trajectory variations it is useful to oduce Logu defined by
exp(Logu) = exp—T (u)Xq - exp(logu) .

By definition it follows that ify belongs to a compact set afidu) is sufficiently small, then
exp(—T (u)) fo - S(T (u), y, u) is defined and it is the sum of the serie éxpg;u)y; notice that
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exp(Logsu)y is the value at timd (u) of the solution of the pullback system introduced in [4]
starting aty.

Let u(e) be a family of controls which depend continuouslyeand such thaT (u(e)) =
0(1). Such a family will be named control variation if

(3) Logu(e) = Zeji Y!

with Yi' € LieX andjj < jj4+1. Let jj be the smallest integer for Whid‘f(xf(r)) # 0; Yiis
namedf-leading termof the control variation at because it depends on the famiilgnd on the
timer.

The definition of exp and Proposition 2 imply that¥if is anf-leading term of a control
variation, then

exp(—T (U(e)) - ST (U(e)), X¢ (1), U(€)) = X¢(7) + €)1 Y (x¢(1)) + o(e 1) ;

therefore by Definition 1,ij (X()) is a variation ofxs at t of order YVjj. Since the set of
variation is a cone, we have:

PROPOSITION3. Let® be an element dfie X; if a positive multiple of® is thef-leading
element at of a control variation, ther®: (x¢ (7)) is a variation atzr.

3. General Result

The results of the previous section can be improved by usiegelations in Lid at x¢ (7). The
idea is that these relations allow to modify the leading t@fma given control variation and
therefore one can obtain more than one trajectory varidit@mn a control variation.

Let us recall some definitions given by Susmann, [6], [7].

DeFINITION 3. Anadmissible weighfor the process (1) is a set of positive numbérs;
(o, 11, - .., Im), which verify the relationgyl < l;, Vi.

By means of an admissible weight, one can give a weight to kemtket in LieX, [6]. Let
A be a bracket in the indeterminaXés; |Al; is the number of times that; appears im.

DEFINITION 4. Letl = {lg, 14, ...,Im} be an admissible weight, theveight of a bracket

@ is given by
m
Il =Y lil®}; .
i=0

An elemen® € Lie X is saidl-homogeneous if it is a linear combination of brackets wiith t
samel-weight, which we name theweight of the element.

The weight of a bracketd, with respect to the standard weight {1, 1, ..., 1} coincides
with its length and it is denoted By®||.

The weight introduce a partial order relation in e

DEFINITION 5. Let® € Lie X; following Susmann [7] we say tha& is | f-neutralizedat
a point y if the value at y o8y is a linear combination of the values of brackets with less
weight, i.e.9¢(y) = >« <I>f1 ), 1® ], < 1©]). The numbemax||®j || is theorder of the
neutralization
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Let N be a positive integer; witlsy we denote the subspace of Xespanned by the
brackets whose length is not greater tidrand with Qy we denote the subspace spanned by
the brackets whose length is greater tiNarLie X is direct sum ofSy and Q.

DEFINITION 6. Let u be any controllogy u andLogy u are the projections dbgu and
Logu respectively, on$.

DEFINITION 7. An elementd € Sy is a N-good element if there exists a neighborhood
V of0in Sy and a a mapu:V — L1, such that V) is contained in the set of admissible
controls and
Logy u(@®) =+ 0.

Notice that there exidil-good elements whatever is the natuxal
We are going to present a general result.

- THEOREM1. Let Z be an N-good element and ldte an admissible weight. Z >yl
Y'! I-hnomogeneous element such thatitb | Y' ||, thenp < bj ifi < j. If there exists j such

that for eachi< j, Y! is|f-neutralized atr with order not greater than N andjb< bj 1, then

1. ij (X¢(7)) is a variation atr of order ||Yj I

2. if @ is a bracket contained inp§ [ @[l < bj, then£d¢(x¢ (7)) is a variation atr of
order || ®||;.

Proof. We are going to provide the proof in the case in which therailg one element which
is If-neutralized atr. The proof of the general case is analogous. By hypothesi® thxist
I-homogeneous elemeritg!, c; = |W! | < 1YL, such that:

@ YExe() =Y oW (x¢(1)) -
Letu be an admissible control; the control defined ine[bT(u)] by
Seu(t) = (€17 lougt/e), ..., em—loymt/eloy)

is an admissible control; such control will be denotedsby. The mape — Jcu is continuous
in the L1 topology andT (Scu) goes to 0 withe.

LetY be any element of (X); 8c(Y) is the element obtained by multiplying each indeter-
minateX; in Y by €i. The definition ofs.u implies:
Logdeu = §¢ Logu.
8¢ YL = ePry; andse (Y oy W) = Y o€ Wi therefore
8 (Y=Y aje®reiwly

vanishes ax; (7). By hypothesis there exists a neighborha6df 0 € Sy and a continuous map
u:V — L1such that

Logyu(@®) =Z+ .
Set®(e) = — Y ajeP1CWI; ©(e) depends continuously fromand since(by — ¢j) < 0,
®(e) € V if € is sufficiently small. Therefore the control variatiérau(® (¢)) proves the first
assertion.
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Let @ satisfies the hypothesis;df ande are sufficiently smalb-® + ®(¢) € V and
8cU(®(€) + o D)

ia a control variation which hasleading term equal t6®. The second assertion is proved.
|

For the previous result to be applicable, we need to know H@N-good controls are
made. The symmetries of the system give some informatiohisrstibject.

Let me recall some definitions introduced in [6] and in [4].

DEFINITION 8. Thebad bracketsre the brackets itie X which contain > an odd num-
ber of times and eachXan even number of times. LBtbe the set of bad brackets

B={A, |Algpisodd |Alj iseveni=1,..., m}.
The set of thebstructionss the set

B* =Lie (Xg,B) \ {aXg, aeR}.
PROPOSITION4. For each integer N there exists a N-good element which bsltm§*.

Proof. In [6] Sussmann has proved that there exists an eledeat3 and aclt map,T, from
a neighborhood of & Sy in L1 such that the image af is contained in the set of admissible
controls and

logyU(@®) =V + 0.
This result is obtained by using the symmetries of the pmcBtandard arguments imply that it
is possible to construct@! mapu from a neighborhood of @ Sy to L1 such that the image
of u is contained in the set of admissible controls and

Logyu(®) =E+06

with E € B*.
a

The previous proposition together with Theorem 1 imply tiat trajectory variations are
linked to the neutralization of the obstruction.

Theorem 1 can be used to find g-variations if fiheneutralization holds on an interval
containingz.

4. Explicit optimality conditions for the single input case

In this section | am going to construct g-variations of agcépry of an affine control process at
any point of an interval in which the reference control isstantly equal to 0. It is known that
if x* is a solution of a sufficiently regular control process surt t

go(X*(t1)) = ),

min
yeR(ty,x*(to))NS

then there exists an adjoint variablé) satisfying the Pontrjagin Maximum Principle and such
that for eachr and for each g-variation, of x* att

At)v <0.
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Therefore the g-variations | will obtain, provide necegsaonditions of optimality for the sin-
gular trajectory.

For simplicity sake | will limit myself to consider an affinéngle input control process
X = fo(x) +ufy(x)

and | suppose that the control which generate the refereajetory, x*, which we want to
test, is constantly equal to 0 on an intervatontainingz so thatx*(t) = xs(t), vt € I. The
fl-neutralization of the obstructions dnprovides g-variations at. In [4] it has been proved
that if each bad bracke®, ||©||| < pisfl-neutralized orx (1), then all the obstructions whose
I-weight is not greater thap arefl-neutralized orxs (). Moreover if® is a bracket which is
fl-neutralized orl, then [Xq, @] is fl-neutralized onl . Therefore to know which obstructions
arefl-neutralized onl it is sufficient to test those bad brackets whose first elenseagual to
X1. Letl be an admissible weighitinduces an increasing filtration in Lié

O=YcYlc.-.cYc..

vi = span{® : @]} < pi}, pi < pi+1- Let pj be such that each bad bracket whose weight is
less than or equal tpj is fl-neutralized on an interval containing We know thatYfJ X (7)) is

a subspace of g-variation atwhich are obviously bilateral variations. Unilateral gration can

be contained in the set dfhhomogeneous elements belonging‘(#oﬂ(xf(r)). Notice that each

subspace(f' (X¢ (7)) is finite dimensional and that the sequemtﬁ(xf(r))} become stationary for
i sufficiently large. Therefore we are interested only in tlegnents ofSy with N sufficiently
large. LetN be such that each[f' (X¢(7)) is spanned by brackets whose length is less than
The following Lemma proves that it is possible to modify theight! in order to obtain a weight
1 with the following properties:

1. each bracket which i-neutralized at is fI-neutralized at;
2. thel-homogeneous elements are linear combination of brackeishveontain the same

numbers both oK than of X1.

LEMMA 1. Letl be an admissible weight; for each integer N there exists amissible
weightl with the following properties: ifb and® are brackets whose length is not greater than
N, then

L [I®f < I©] implies|| @[ < IO
2. @[l = IO and | @]l1 < [IO]l1, implies|| @[y < [|O]lp
3. @[l = 1O1li, I*ll1 = ©l1 and [ @[lo < [IOllo, implies|| Pl < IOl

Proof. The set of brackets whose weight is not greater tNais a finite set therefore ifp, €3
are positive numbers sufficiently small, thies: {Ig — €g, |1 + €1} is an admissible weight for
which the properties 1), 2) and 3) hold.

a

In order to simplify the notation, we will use the multipltéze notation for the brackets:

XY =[X,Y], ZXY=[Z, XY], etc.
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It is known, [10], that each brackeb, in Lie X is linear combination of brackets right normed,
i.e. of the following type:
XgXPZ...XP, ijefol...},

which contains bottXq than X1 the same number of times df; therefore it is sufficient to test
the neutralization of right normed bad brackets.

Any N-good elementZ, of Lie X can be written as:

Z= Z g D
®; right normed bracket; we nanag coefficienof ®; in Z.

LEMMA 2. Let N > 2n + 3. The coefficient of 3<X(2)n+1xl in any N-good element is
positive if n is even and negative if n is odd; the coefficiér)(%?‘lxoxl is always positive.

Proof. Let Z be aN-good element and let us consider the control process

X1 =u
X2=X1

X4+l = Xr21
Xn+2 = Xn+1 .

Take as reference trajectoxy(t) = 0. The reachable s&(t, 0) is contained, for any positive

t, in the half space,1 > 0 and hence- ax(:H cannot be a variation at any time. The only

elements in Lié which are different from 0 in O are:

9
X = —,
(Xt ox1
- C0
XhXps = (=1 ,i=1,...,n
0 9% +1
9
X X3 xr = (-2
Xn+1

If the coefficient olexgr‘HXl in Z were equal to 0, then O will be locally controllable [6],
which is an absurd. Therefore it is different from 0; its shys to be equal t6—1)" because
otherwise—ﬁ would be a variation. The first assertion is proved.

The second assertion is proved by using similar argumemigedo the system:

X1 =u
X2=X]2_n

Let us now compute explicitly some g-variations. We redsdkt

adkY =[X, Y], ad}"ly =[X,adY].
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THEOREM2. If there exists an admissible weightuch that each bad bracket bfveight
less than(2n + 1)Ig + 211 is fl-neutralized on an interval containing then

(—D)"[X1, ad X ] (¢ (1)

is a g-variation atr.

Proof. We can suppose that the weidhtas the properties 1), 2) and 3) asin Lemma 1. Therefore
the brackets of-weight equal to B + (2n + 1)l contains 2X41 and (2n+1)Xq. The brackets
which have as first elemeig are the adjoint with respect ¥ of brackets which by hypothesis
arefl-neutralized on the intervdl and therefore arél-neutralized. Since the only bad bracket
of I-weight (2n + 1)l + 211 which has as first elemerx4, is xle)”“xl the theorem is a
consequence of Theorem 1 and of Lemma 2.

O

Notice that the theorem contains as particular case thekwmeivn generalized Legendre-
Clebsch conditions. In fact it is possible to choesguch that each bracket whichfiseutralized
on | with respect to the weight0, 1) is f-neutralized with respect to the weight= (o, 1);
moreover bearing in mind that only a finite set of bracketsait®e considered, we can suppose
that if two brackets contain a different number Xf, then the one which contains le¥g
has lesd-weight and that two brackets have the sdrmneeight if and only if they contain the
same number both ofg than of X1. Since each bad bracket contains at least Xypthen the
only bad bracket whose weight is less th@n + 1)o + 2 contains twoX; and(2i + 1) Xo,

i =0,...,(n—1); among these the only ones which we have to conside)(@b%”rlxl. Set

s = span{®; which containg times X1} .

X XA X)e (1) € SHxe(1), =1 ..., (n—1)

Theorem 2 implies that—l)n(X1xgn+lX1)f(Xf(‘L')) is a g-variation ofx; at z; therefore ifx*
is optimal, then the adjoint variable can be chosen in suchyathat

EDMOXIXE XD (1) <0, tel

condition which is known as generalized Legendre-Clebscidition.

The following example shows that by using Theorem 2 one cdaimlfurther necessary
conditions which can be added to the Legendre-Clebsch ones.

ExAmMPLE 1. Let:

2 3 2
9 9 9 2 3\ a2 X2 9
fp = —4+X—+X3—+|=2-=5|—+=—
0 amf+zam'F3aM'F(2 6)8@ 2 a%g
9
f = —.
X2

The generalized Legendre-Clebsch condition implies #(atlxgxl)f(xf(r)) = % isag-
variation atr. Let us apply Theorem 2 with the weight (1, 1); the bad brackets dfweight

less than 7 are:

X1XoX1, X1X3X1, X3XoX1, XZXZX1XoX1, XZXoX1X3X1,
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the only one different from O along the trajectory(D.(lXSXl)f which is atxs (1) a multiple
(Xfxoxl)f(xf(l )). Therefore it if|-neutralized. Theorem 1 implies thﬁ(Xlxgxl)f(xf(r))
= iaiXS, and (X X3Xs(x(1)) = diXG are g-variations.

Another necessary optimality condition can be deduced ffbeorem 1 and Lemma 2.

THEOREM 3. If there exists an admissible weighsuch that all the bad brackets whose
I-weight is less thargl+ 2n |1 are fl-neutralized on an interval containing then

(X3 XX (x4(1))
is a g-variation atr.

Proof. We can suppose that the weidli$ such that the brackets with the salneeight contain
the same number both of; than of Xg. Since there is only one bracke)(%”_lxoxl which

contain 21 X; and 1Xq, the theorem is a consequence of Theorem 1 and of Lemma 2.
|

Notice that this condition is active also in the case in whiehdegree of singularity isoco.
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