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A REMARK ABOUT MINIMAL SURFACES WITH FLAT
EMBEDDED ENDS

Abstract. In questo lavoro si prova un teorema di ostruzione all’esizh di super-
ficie minime complete nello spazio Euclideo aventi soltatde piatte lisce. Nella
dimostrazione confluiscono tecniche di geometria algabi$pinori su supeficie
di Riemann compatte) e differenziale (herisson e formulaalotonicita). Come
corollario si ottiene che una superficie minimale di genase dvente tre code
piatte lisce e tipo spinoriale pari non & immergibile miaimente ink3.

1. Introduction

In this paper we prove a non-existence result for certainptet® minimal surfaces having em-
bedded flat ends and bounded curvature. The obstructioesiesn found by means of an alge-
braic herisson (see (11) and [14]). In particular we show {@eeorem 5.2) the non-existence of
untwisted genus 2 minimal surfaces having 3 embedded flat end

We systematically use the theory developed by Kusner anchitcfef. [5]). A short ac-
count of itis given in § 1. The minimal surfaces are studiedngans of holomorphic spinors on
compact Riemann surfaces. This fits very well with D. Mumfepitevious work (cf. [8]), more-
over some new hidden geometry appears (see Remark 5.2)eJtitsrof § 1, except Proposition
5.2, are due to the previous mentioned authors.

In 8 2 we recall the spin representation of a minimal surfamkgrove our result. The main
tool is a well known singularity (or monotonicity) formulaf( [4] and [3]). Theorem 5.2 works
out a heuristic argument of Kusner and Schmitt (cf. [5] § T8hie easiest non trivial case.

2. Spin bundles on a compact Riemann surface

Let X be a compact connected Riemann surface of ggnuReferences for the basic facts we
need can be found in the first chapter of [1] or in [9]. [Zébe an abelian sheaf 0% and denote
by H' (X, F),i = 0,1, its coomology groupsl,—IO(X, F) is the space of global sections &t
Seth!' (F) = dim (H' (X, 7)).

Let Ox andwyx denote respectively the structure and the canonical limeleuof X. Let
D= Zidzl pi, d = deg D), be an effective divisor witklistinctpoints. Fix a spin bundle oX,
i.e. aline bundld on X such that.2 = wx (cf. [5] and [8]). The isomorphisnp : LQL — wx
defines a spin structure of. We say thatL is even (odd) if9(L) is even (odd). Consider the
line bundleL (D) = L ® Ox(D), L(D)2 = wyx (2D). We identify L (D) with the sheaf of
the meromorphic sections &f having simple poles d. The Riemann-Roch and Serre-duality
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theorems give:
hO(L(D)) —h(L(D))=d and h(L(D)) =hOL(-D)).
HereL (—D) is the sheaf of the holomorphic sectionslofanishing atD. The sheaf inclusion
L(—D) c L(D) defines the quotient shedf= L (D)/L(—D). SetV = HO(X, £), dim(V) =
hO(£) = 2d.
Fix coordinateqU;, z } centred inp;, zj (pj) = O, we assume thas € Uj if and only if

i = j. We trivialise the previous line bundles &h. If s andt are sections ok (D) defined on
Ui, we write:

(1) s=1a_1z " +ao+ Yy ang pb:  t={b a1zt +bio+ ) binZ' 14
n>0 n>0
Where;i2 = ¢ (¢ ® ¢j) = dz is provided by the spin structure. The truncated expansions
§=(a_1z +a0)s. t'=(bi_1z T +bio)g
1 1

define elements of (Uj, £). Multiplication providesst € I'(Uj, wx(2D)), a meromorphic
differential onX with (double) pole aD. The residues:

(2) 8, —1bi 0 + bi,—18j 0 = Regy (st)
are well defined. Accordingly we set:

(3 (s p =a,_1bio-

The form (3) defined ol (U;, L (D)) isintrinsic. To see this (cf. [5]) introduce the meromorphic
functionh = 2, h(p;) = g‘i’—j ashj _1 # 0. We have:

1
s tp = Eh(pi)Respi (t2) if bj,_1 #0and(s, t)p = Regy (st)if bj _1 =0.
The symmetric part of (3) is (2) and both vanishidfU;, L(D — 2p;)). Then

(4 Bs,)=) (stp =) a _1bio.
i i

defines a bilinear form olW. The symmetric and the anti-symmetric part®#ére respectively:

1
(5) Q(s, t) S(B(s, 1) + B(t,9) = 2.: Resy (st)

}(B(S, t) — B(t,9)).

(6) Q(s, 1) 5

We have three maximal isotropic space(@f
I) Vi ={g _1=0}j=1..d = {images of local holomorphic sectigns
1) Vo = {image of global section df (D)}.
M Vo={seV, a0=0i=1...,d}={seV : B(t,s) =0foranyt of Vq}.
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Observe thaV¥/; and (hence)/ areintrinsic. The exact sequence
0— H%X, L(=D)) > H%X, L(D)) - L(D)/L(-D)

identifiesHO(X, L(D))/HO(X, L(—D)) andV, = imag&t). By Riemann-Roch ditfVs) = d.
The isotropy ofV, follows from the global residues theorem. We idenifiyn Vo = V(D) with
HO(X, L)/HO(X, L(—D)). SetS(D) = Vp N V, and

K(D) =t~ L(s(D)) = {s e HOX,L(D) : s= (a{-’_lzi—l + Za,nzln) gj) nearp ] .

n>0

Note thatk (D) N HO(X, L) = HO(X, L (—D)). This gives an isomorphisid (D)/HO(X,
L(—D)) = S(D).

REMARK 5.1. If hO(L(—D)) =0, e.g. ifd > g — 1, the space§(D) andV (D) can be
identified respectively wittk (D) and HO(X, L). In particular, following Mumford (cf. [8]),
we identify HO(X, L) with V(D) which is the intersection of two maximal isotropic spaces:
V1 NVo = V(D). From this it follows that the parity dﬁO(L) is invariant under deformation.
The formsB and<2 were introduced in [5].

Next we consideg2. The restriction of2 to any Q-isotropic space equaB, in particular
B=Q:Vox Vo> C:

Q)= a_1bo=—) bi_13,0.
i i

Define, composing with, the anti-symmetric forn®’ on HO(X, L(D)). Set

ker(©2) = {se Vo : Q(s,t) = 0foranyt € Vo}

7
% ker(Q) = {s e HO(X, L(D)) : ©/(s,t) =0 foranyt e HO(X, L(D))}

We may identify ketS2) and ket?’)/HO(X, L(—D)).

PROPOSITIONS.1 (THEOREM15 OF [5]). We have:
i) hO(L(D)) = dim(ker()) mod 2and d= dim(ker(2)) mod 2
i) ker(Q) = V(D) ® S(D) andker(Q') = K (D) + HO(X, L);
iii) dim(S(D)) + dim(V (D)) = d mod 2
Proof. i) Q andQ’ are anti-symmetricii) Clearly V(D) = Vo NV andS(D) = Vo NV

are contained kef2). Conversely les = sp+ 51 € ker(2), 5 € V;,i = 0,1. One has
B(s1, v) = 0= B(v, 5p) for anyv € V. Taket € V, thenB(s,t) = Q(s,t) = 0:

0=B(sp+s1.1) = B(so. 1) + B(s, 1) = B(sp. ) + B(t, sp) = Q(t, s0) .

HenceQ(t, sp) = O for allt € V,. SinceVs is maximal isotropicsg € Vo, in the same way
s1 € V. iii) It follows fromi) andii).

|
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REMARK 5.2. If hO(L) = 0 andd is odd, Proposition 5.1 implies the existencesoé
HO(L(D)) such thas = {ai,_lzfl +Y =0 a;,nzin} ¢i near all the pointg; .

REMARK 5.3. One has dif§(D)) < dim(V1) = d and the Clifford inequality 2 dinvs N
vy < 2h0(L) < g — 1 (cf. [9)).

We can prove the following:

PROPOSITIONS.2. If D = ) p; anddimK (D) = d = deg D) thend < g+ 1. Assume
d=g+1landg> 1lord = gandg> 3. Then X is hyperelliptic and the points pf D are
Weierstrass points of X. If & g+ 1 and g> 1then L isisomorphic tdx (D —2p;). Ifd =g
and g> 3 L is isomorphic taOx (D — B) where B is a Weierstrass point distinct from the p

Proof. If d > gwe havehO(L(—D)) = 0 and hencel = dimS(D) = dim K (D). This holds
if and only if @' = 0, i.e. HO(X, L(D)) = K(D) and then kei2) = S(D). Now ii) of
Proposition 5.1 implie& (D) = HO(X, L)/HO(X, L(=D)) = 0. It follows thath9(L) = 0.

From Riemann Roch theorem we get thereﬂm?(al_(pi ) = hoL(- pi))+1=1foralli.
The sheaf inclusioh (p;) c L(D) provides sections

oi e HOX, L(p)) € K(D), oj #0.

If i # | theoj are holomorphic orpj, thenoj(pj) = 0 (oj € K(D)). Therefore the zero
divisor, (o), of o; containsD — p;, henceg = degL(p;j)) > d —1:d < g+ 1. We write:

(8) (i) =D—pi + B,

where B; is an effective divisor of degreg + 1 — d. For anyi andj, | # i. We obtain:
D - 2p; + Bj = D — 2pj + Bj, = denotes the linear equivalence. We get

Bi +2p; = Bj +2p; .

If d = g+1we haveB; = Bj = 0and 2 = 2p;: X is hyperelliptic and they; are Weierstrass
points. The (8) shows thét is isomorphic taOx (D — 2p;).

Assumed = g andg > 3. The B; are points ofX. The first 3 relations:
By +2pp=By+2py; By +2p3=B3+2p;; Bz+2py=By+2p3

give 3 “trigonal” series orX. If X were non-hyperelliptic only two of such distinct series can
exist (one ifg > 4 see [1]). Then two, say the firsts, of the above equationseléie same
linear series:

B1+2p2 =Bz +2p1 = B1+2p3 =B3+2p;.
We obtain 2y = 2p3: X is hyperelliptic, which gives a contradiction.

Now X is hyperelliptic and letp be its hyperelliptic involution. Assume thag is not a
Weierstrass point, i.ep(p1) # p1. SetB; = B. Any degree 3 linear series of has a fixed
point. Sincepy # p;j fori # 1 andB + 2p; = B;j + 2p;, it follows thatB = p;. From (8) we
obtain

L(pp=(j)=D-p1+B=D,
thenL = Ox(D — p1) = Ox(Xj-1 pi). This is impossible:L has not global sections. It
follows that all thep; are Weierstrass points. Frobh— 2p; + B = L we getwx = Ox (2D —
4py + 2B), thenB is a Weierstrass point: = Ox (D — B), 2B = 2p;j, andB # p; foralli.
|
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3. Spinors and minimal surfaces

Let X be a genugy compact connected surfad® = ); p; a degreed divisor with distinct
points. LetF : X — D — R3 be a complete minimal immersion having bounded curvatude an
embedded ends. Then (cf. [11], [5] and [13]) there are a gpictsireL on X, and sections of
andt of L (D) such that

) F(g) = Re/[‘p,q] <32 2 (s2 +t2) , 2st) +C

where p is a fixed point andC is a constant vector. The (9) is the spin representationef th
minimal surface~ (X — D). We set

(SZ — tz, i (SZ + t2> R 28t> = (w1, w2, w3) .

Starting with two sections df (D), s andt, formula (9) is a well defined immersion if and only
if the following conditions hold:

A) Refy(a)l,a)z,a)g) =0, foranyy e Hy(X — D, Z) (period);

B) {s=t = 0} = ¥ (immersion).

DEFINITION 5.1. The immersion E X — D — R3 is untwistedif L is even andwistedif
L is odd (see [5] about its topological meaning). We say theX D) has embedded flat ends
ifRqui(wj) =0foranyi=1,...,dand j=1,2 3.

Let IT = spars, t) be the plane space generatedstandt. We have:

PROPOSITIONS.3 ([5] THEOREM13). Ifin (9) Y = F(X — D) is complete then

i) Y has flat embedded ends if and onljlitc K (D),
ii) iIf Y has flat embedded ends thEm HO(X, L) = {0}.

Proof. i) Up to a rotation we may assunseholomorphic at the poinp; € D. Locally s =
{80+ ...J¢ andt = {bi,,lzfl +Dbjo...}¢i. Nowb; _1 # 0 otherwiseF extends orp; and
F (X — D) is not complete. We now have:

iRes, <t2+32> = 0=Resg, (t2—32> =0 = bj_1bio=0
Reg(st) =0 = b _130=0.

Therefore we obtaitn; o = & o = 0 and then thas andt belong toK (D). The converse is
clear. i) Sincet has a pole ap; IT1 N HO(X, L) # {0} only if s € HO(X,L) N K(D) =
HO(X, L(=D)). Thes should vanish to any point d, but thenwz = st would be a holomor-
phic differential. The period condition A implies (cf. [9)3 = st = 0, s = 0 a contradiction.
|

REMARK 5.4. (not used it in the sequel). A class of very importantriatad curvature
minimal surfaces are the one with horizontal embedded emu$act the actually embedded
minimal surfaces have parallel ends (c.f. [2]). Assume thd®) s, t give the representation
of a surface with horizontal embedded ends. This meansDhat D1 U Dy, D1 ¢ h~1(0)
and Dz ¢ h™Y(c0), h = §. Thatiss € HO(X,L(Dp) andt € HO(X,L(Dy)). From
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iResy (t2 + s?) = 0 and Reg; (t2 — s?) = 0 we see that Rgs(t?) = 0, pj € D1: t € K(Dy)
and similarlys € K(D»).

From now onF : X — D — R3 will denote a complete minimal immersion wiftat em-
bedded endswvhereX is a genugy compact and connected Riemann surface@nd Zidzl pi,
degD) = d.

Let p : X — Y be a non constant holomorphic map aBdc X be the branch divisor,
without multiplicity, of p. DefineH : Y — p(D) — R3 by

(10) Hay= )Y  F(p.
{p:p(P)=0q}

The above summation is taken with multiplicity, is the trace ofF by p. SetT = p(D) and
E = p~1(T). There is also a well defined trace map for holomorphic difféial forms

Tr(p) : HO (X — E,wx_g) = HO(Y = T, wy_7) .

This is defined as follows. Takg ¢ p(B) N T and letU be an open simply connected set
coordinated byy : U — C. We assume thai~1(U) = Up:p(p)=q) Wp Where the restriction
plw, = pp : Wp — U are biholomorphisms. The compositions

Zp=y,0pr—>U

are coordinate maps of. If ® € HO(X — E,wx_g) and® = {ap(zp)dzp} on pfl(U) we
put
THE@®©) = Y. apzpdy.
{p:p(P)=0}
Then one extends Tp)(®) onY — T by taking care of the multiplicity.

LEmmA 5.1. If the ends points jPare branches op, i.e. D C B, then H is constant.

Proof. (Compare with [14]). SeB = p1 + --- + pp, WwhereD = ZFI:l pi,d <b. Uptoa
translation we have
F(p) = Re / (@1, w2, w3)
[Q.p]
whereQ ¢ D. Set
Q) =Tr(p)(wj).
We shall show that th&; extends to abelian an differential ¥f We assume this for a moment
and prove the lemma. Sket= p(Q), we obtain:

H(s) — H(L) =Re/ (21, Q29, 23).
[L.s]

Since the right side is well defined then the left one turnstolie zero. In fact any non trivial
holomorphic differential has a non-zero real period (cf).[& follows that H is constant.

We prove now that th€; extend holomorphically. Takg; in D and seto(pj) = S. We
may choose coordinates= z of X, z(p;j) = 0, andy of Y, y(S) = 0, such thap locally is
written: y = z", n > 1. Expanding neap; we get

wj = {Cj 72+ o] (Z)} dz
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wheregj () is a holomorphic function. Itis elementary that
1
Tr(z") {z’zdz} =-Tr (z”d;) =0 (n>1).

All the above terms appear in the defining sums dfpJtwj) = @j. This implies thats;
extends holomorphically ;.

a

We still assume that the endsBf F : X — D — R3, are in thebranchlocus ofp : D C B.
Consider the disjoint union

(11) B=DUB UB”

whereB’ = {P € B— D : P is of total ramification forp}. Setk = degB’ (if B’ = ¢ k = 0).
We have:

THEOREMDA.1. With the previous assumptiond k.

Proof. Assume by contradiction that> d. SetB’ = {Qq, ..., Qk}. Up to a translation take
F(p) = Rej[Ql’ p] (@1, @2, @3). ThenH(q) = Rez{piq}f[Ql,pl (w1, w2, w3) is constant.
Since theQ; have total ramificatioH (0 (Q;j)) = nF(Qj), hence

nF(Qj) = H(p(Qi)) = H(p(Q1) =nF(Q1) =0.
We see thaF (Qj) = 0,i = 1,..., k and thatF(X — D) has a point of multiplicityk > d
at the origin. On the other hand it is well known that a minimaiface withd embedded ends
cannot have &-ple point ifk > d (see [4] or [3] for two quite different proofs). This provisle
the contradiction.
|

COROLLARY 5.1. Let X be a hyperelliptic curve and E X — D — R3 be a complete
immersed minimal surface with flat embedded ends. Assurhéhthands points ;P D are
Weierstrass points of X. Theleg D) > g + 1.

Proof. Let p be the hyperelliptic 2 : 1 covering of the Riemann sph&s#és the set of hyperel-
liptic points degB) = 2g + 2, andB’ = B — D.
O

COROLLARY5.2. LetD= P+ .-+ Py, assuma@imK (D) =d = g+1ordimK (D) =
d = g and g> 3. Then there are not complete minimal immersion&of X — D with flat
embedded ends.

Proof. Use Proposition 5.2 and then Corollary 5.1.
O

THEOREMA.2. Minimal untwisted immersions of genus 2 having 3 flat endsad@xist.

Proof. Arguing by contradiction we would hav@(L (D)) = 3,h%(L) = 0 (L is even) and that
dim(K (D)) is odd (by Proposition 5.i)). From Proposition 5.3 we would obtain dii (D)) >
2 and then dinK (D) = 3. This contradicts Corollary 5.2.

|



66 G.P. Pirola

LetF : X — D — RS be as before. The flat ends are in the branch ef {3' the extended
Gauss map of (X — D). Therefore Theorem 5.1 applies and stronger restrictibosld hold
(see [14]). We give an example of this. We recall (cf. [12Btth has vertical fluxf t2 = w and
s?2 = h2w have notcomplexperiods. It means that there are meromorphic functlopandL»
on X such thatlL; = w andd Ly = h2w.

PrRoOPOSITIONS.4. If F has vertical flux, then h has not points of total ramificati

Proof. Define the Lopez-Ros [6] deformation Bf= F1: F) : X — D — R3=C xR, 1R,

A >0
1—
Fy = (ALl— —L2,2Re/ hw).
A [p.al

The spin representation &, is (ﬁs, %t) Note thatF, (X — D) has flat ends ab. If h had

a total branch point then, by a result of Nayatami (cf. [10]2} the dimension of the bounded
Jacobi fields of; , A > 0, would be 3. Therefore (see [#), cannot have only flat ends.

a
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