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A REMARK ABOUT MINIMAL SURFACES WITH FLAT

EMBEDDED ENDS

Abstract. In questo lavoro si prova un teorema di ostruzione all’esistenza di super-
ficie minime complete nello spazio Euclideo aventi soltantocode piatte lisce. Nella
dimostrazione confluiscono tecniche di geometria algebrica (spinori su supeficie
di Riemann compatte) e differenziale (herisson e formula dimonotonicità). Come
corollario si ottiene che una superficie minimale di genere due avente tre code
piatte lisce e tipo spinoriale pari non è immergibile minimalmente inR3.

1. Introduction

In this paper we prove a non-existence result for certain complete minimal surfaces having em-
bedded flat ends and bounded curvature. The obstructions have been found by means of an alge-
braic herisson (see (11) and [14]). In particular we show (see Theorem 5.2) the non-existence of
untwisted genus 2 minimal surfaces having 3 embedded flat ends.

We systematically use the theory developed by Kusner and Schmitt (cf. [5]). A short ac-
count of it is given in § 1. The minimal surfaces are studied bymeans of holomorphic spinors on
compact Riemann surfaces. This fits very well with D. Mumford’s previous work (cf. [8]), more-
over some new hidden geometry appears (see Remark 5.2). The results of § 1, except Proposition
5.2, are due to the previous mentioned authors.

In § 2 we recall the spin representation of a minimal surface and prove our result. The main
tool is a well known singularity (or monotonicity) formula (cf. [4] and [3]). Theorem 5.2 works
out a heuristic argument of Kusner and Schmitt (cf. [5] § 18) in the easiest non trivial case.

2. Spin bundles on a compact Riemann surface

Let X be a compact connected Riemann surface of genusg. References for the basic facts we
need can be found in the first chapter of [1] or in [9]. LetF be an abelian sheaf onX and denote
by H i (X,F), i = 0, 1, its coomology groups,H0(X,F) is the space of global sections ofF .
Sethi (F) = dim

(

H i (X,F)
)

.

Let OX andωX denote respectively the structure and the canonical line bundle of X. Let
D =

∑d
i=1 pi , d = deg(D), be an effective divisor withdistinctpoints. Fix a spin bundle ofX,

i.e. a line bundleL on X such thatL2 = ωX (cf. [5] and [8]). The isomorphismφ : L⊗L → ωX
defines a spin structure ofX. We say thatL is even (odd) ifh0(L) is even (odd). Consider the
line bundleL(D) = L ⊗ OX(D), L(D)2 = ωX(2D). We identify L(D) with the sheaf of
the meromorphic sections ofL having simple poles atD. The Riemann-Roch and Serre-duality
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theorems give:

h0(L(D)) − h1(L(D)) = d and h1(L(D)) = h0(L(−D)) .

HereL(−D) is the sheaf of the holomorphic sections ofL vanishing atD. The sheaf inclusion
L(−D) ⊂ L(D) defines the quotient sheafL = L(D)/L(−D). SetV = H0(X,L), dim(V) =
h0(L) = 2d.

Fix coordinates{Ui , zi } centred inpi , zi (pi ) = 0, we assume thatpi ∈ U j if and only if
i = j . We trivialise the previous line bundles onUi . If s andt are sections ofL(D) defined on
Ui , we write:

(1) s ≡







ai,−1z−1
i + ai,0 +

∑

n>0

ai,nzn
i







ζi ; t ≡







bi,−1z−1
i + bi,0 +

∑

n>0

bi,nzn
i







ζi

whereζ2
i = φ(ζi ⊗ ζi ) = dzi is provided by the spin structure. The truncated expansions:

s′ =
(

ai,−1z−1
i + ai,0

)

ζi , t ′ =
(

bi,−1z−1
i + bi,0

)

ζi

define elements of0(Ui ,L). Multiplication providesst ∈ 0(Ui , ωX(2D)), a meromorphic
differential onX with (double) pole atD. The residues:

(2) ai,−1bi,0 + bi,−1ai,0 = Respi (st)

are well defined. Accordingly we set:

(3) (s, t)pi = ai,−1bi,0 .

The form (3) defined on0(Ui , L(D)) is intrinsic. To see this (cf. [5]) introduce the meromorphic
functionh = s

t , h(pi ) = ai,−1
bi,−1

asbi,−1 6= 0. We have:

(s, t)pi =
1

2
h(pi )Respi (t

2) if bi,−1 6= 0 and(s, t)pi = Respi (st) if bi,−1 = 0 .

The symmetric part of (3) is (2) and both vanish on0(Ui , L(D − 2pi )). Then

(4) B(s, t) =
∑

i

(s, t)pi =
∑

i

ai,−1bi,0 .

defines a bilinear form onV . The symmetric and the anti-symmetric part ofB are respectively:

Q(s, t) =
1

2
(B(s, t) + B(t, s)) =

∑

i

Respi (st)(5)

�(s, t) =
1

2
(B(s, t) − B(t, s)) .(6)

We have three maximal isotropic space ofQ:

I) V1 = {ai,−1 = 0}i=1,...,d = {images of local holomorphic sections}.
II) V2 = {image of global section ofL(D)}.

III) V0 = {s ∈ V, ai,0 = 0, i = 1, . . . , d} = {s ∈ V : B(t, s) = 0 for anyt of V1}.
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Observe thatV1 and (hence)V0 areintrinsic. The exact sequence

0 → H0(X, L(−D)) → H0(X, L(D))
τ−→ L(D)/L(−D)

identifiesH0(X, L(D))/H0(X, L(−D)) andV2 = image(τ). By Riemann-Roch dim(V2) = d.
The isotropy ofV2 follows from the global residues theorem. We identifyV1 ∩ V2 = V(D) with
H0(X, L)/H0(X, L(−D)). SetS(D) = V0 ∩ V2 and

K (D) = τ−1(S(D)) =







s ∈ H0(X, L(D) : s ≡



ai,−1z−1
i +

∑

n>0

ai,nzn
i



 ζi ) nearpi







.

Note thatK (D)∩ H0(X, L) = H0(X, L(−D)). This gives an isomorphismK (D)/H0(X,

L(−D)) ∼= S(D).

REMARK 5.1. If h0(L(−D)) = 0, e.g. ifd > g − 1, the spacesS(D) andV(D) can be
identified respectively withK (D) and H0(X, L). In particular, following Mumford (cf. [8]),
we identify H0(X, L) with V(D) which is the intersection of two maximal isotropic spaces:
V1 ∩ V2 = V(D). From this it follows that the parity ofh0(L) is invariant under deformation.
The formsB and� were introduced in [5].

Next we consider�. The restriction of� to anyQ-isotropic space equalsB, in particular
B = � : V2 × V2 → C:

�(s, t) =
∑

i

ai,−1bi,0 = −
∑

i

bi,−1ai,0.

Define, composing withτ , the anti-symmetric form�′ on H0(X, L(D)). Set

(7)
ker(�) = {s ∈ V2 : �(s, t) = 0 for anyt ∈ V2}

ker(�′) =
{

s ∈ H0(X, L(D)) : �′(s, t) = 0 for anyt ∈ H0(X, L(D))
}

We may identify ker(�) and ker(�′)/H0(X, L(−D)).

PROPOSITION5.1 (THEOREM15 OF [5]). We have:

i ) h0(L(D)) = dim(ker(�′)) mod 2and d= dim(ker(�)) mod 2;

i i ) ker(�) = V(D) ⊕ S(D) andker(�′) = K (D) + H0(X, L);

i i i ) dim(S(D)) + dim(V(D)) = d mod 2.

Proof. i) � and�′ are anti-symmetric.i i ) Clearly V(D) = V2 ∩ V1 and S(D) = V2 ∩ V0
are contained ker(�). Conversely lets = s0 + s1 ∈ ker(�), si ∈ Vi , i = 0, 1. One has
B(s1, v) = 0 = B(v, s0) for anyv ∈ V . Taket ∈ V2 thenB(s, t) = �(s, t) = 0:

0 = B(s0 + s1, t) = B(s0, t) + B(s1, t) = B(s0, t) + B(t, s0) = Q(t, s0) .

HenceQ(t, s0) = 0 for all t ∈ V2. SinceV2 is maximal isotropics0 ∈ V2, in the same way
s1 ∈ V2. i i i ) It follows from i ) andi i ).
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REMARK 5.2. If h0(L) = 0 andd is odd, Proposition 5.1 implies the existence ofs ∈
H0(L(D)) such thats ≡

{

ai,−1z−1
i +

∑

n>0 ai,nzn
i

}

ζi near all the pointspi .

REMARK 5.3. One has dim(S(D)) ≤ dim(V1) = d and the Clifford inequality 2 dimV2 ∩
V1 ≤ 2h0(L) ≤ g − 1 (cf. [9]).

We can prove the following:

PROPOSITION5.2. If D =
∑

pi anddim K (D) = d = deg(D) then d≤ g + 1. Assume
d = g + 1 and g> 1 or d = g and g> 3. Then X is hyperelliptic and the points pi of D are
Weierstrass points of X. If d= g+1 and g> 1 then L is isomorphic toOX(D −2pi ). If d = g
and g> 3 L is isomorphic toOX(D − B) where B is a Weierstrass point distinct from the pi .

Proof. If d ≥ g we haveh0(L(−D)) = 0 and henced = dim S(D) = dim K (D). This holds
if and only if �′ = 0, i.e. H0(X, L(D)) = K (D) and then ker(�) = S(D). Now i i ) of
Proposition 5.1 impliesV(D) = H0(X, L)/H0(X, L(−D)) = 0. It follows thath0(L) = 0.

From Riemann Roch theorem we get thereforeh0(L(pi )) = h0(L(−pi )) + 1 = 1 for all i .
The sheaf inclusionL(pi ) ⊂ L(D) provides sections

σi ∈ H0(X, L(pi )) ⊂ K (D), σi 6= 0 .

If i 6= j the σi are holomorphic onp j , thenσi (p j ) = 0 (σi ∈ K (D)). Therefore the zero
divisor, (σi ), of σi containsD − pi , henceg = deg(L(pi )) ≥ d − 1: d ≤ g + 1. We write:

(8) (σi ) = D − pi + Bi ,

where Bi is an effective divisor of degreeg + 1 − d. For anyi and j , j 6= i . We obtain:
D − 2pi + Bi ≡ D − 2p j + B j , ≡ denotes the linear equivalence. We get

Bi + 2p j ≡ B j + 2pi .

If d = g+1 we haveBi = B j = 0 and 2p j ≡ 2pi : X is hyperelliptic and thepi are Weierstrass
points. The (8) shows thatL is isomorphic toOX(D − 2pi ).

Assumed = g andg > 3. TheBi are points ofX. The first 3 relations:

B1 + 2p2 ≡ B2 + 2p1; B1 + 2p3 ≡ B3 + 2p1; B3 + 2p2 ≡ B2 + 2p3

give 3 “trigonal” series onX. If X were non-hyperelliptic only two of such distinct series can
exist (one ifg > 4 see [1]). Then two, say the firsts, of the above equations define the same
linear series:

B1 + 2p2 ≡ B2 + 2p1 ≡ B1 + 2p3 ≡ B3 + 2p1 .

We obtain 2p2 ≡ 2p3: X is hyperelliptic, which gives a contradiction.

Now X is hyperelliptic and letϕ be its hyperelliptic involution. Assume thatp1 is not a
Weierstrass point, i.e.ϕ(p1) 6= p1. SetB1 = B. Any degree 3 linear series onX has a fixed
point. Sincep1 6= pi for i 6= 1 andB + 2pi ≡ Bi + 2p1 it follows that B = p1. From (8) we
obtain

L(p1) ≡ (σi ) ≡ D − p1 + B = D ,

then L ≡ OX(D − p1) ≡ OX
(
∑

i>1 pi
)

. This is impossible:L has not global sections. It
follows that all thepi are Weierstrass points. FromD − 2p1 + B ≡ L we getωX ≡ OX(2D −
4p1 + 2B), thenB is a Weierstrass point:L = OX(D − B), 2B ≡ 2pi , andB 6= pi for all i .
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3. Spinors and minimal surfaces

Let X be a genusg compact connected surfaceD =
∑

i pi a degreed divisor with distinct
points. LetF : X − D → R3 be a complete minimal immersion having bounded curvature and
embedded ends. Then (cf. [11], [5] and [13]) there are a spin structureL on X, and sections ofs
andt of L(D) such that

(9) F(q) = Re
∫

[ p,q]

(

s2 − t2, i
(

s2 + t2
)

, 2st
)

+ C

where p is a fixed point andC is a constant vector. The (9) is the spin representation of the
minimal surfaceF(X − D). We set

(

s2 − t2, i
(

s2 + t2
)

, 2st
)

= (ω1, ω2, ω3) .

Starting with two sections ofL(D), s andt , formula (9) is a well defined immersion if and only
if the following conditions hold:

A) Re
∫

γ (ω1, ω2, ω3) = 0, for anyγ ∈ H1(X − D, Z) (period);

B) {s = t = 0} = ∅ (immersion).

DEFINITION 5.1. The immersion F: X − D → R3 is untwistedif L is even andtwistedif
L is odd (see [5] about its topological meaning). We say that F(X − D) has embedded flat ends
if Respi (ω j ) = 0 for any i = 1, . . . , d and j = 1, 2, 3.

Let 5 = span(s, t) be the plane space generated bys andt . We have:

PROPOSITION5.3 ([5] THEOREM13). If in (9) Y = F(X − D) is complete then

i ) Y has flat embedded ends if and only if5 ⊂ K (D),

i i ) if Y has flat embedded ends then5 ∩ H0(X, L) = {0}.

Proof. i) Up to a rotation we may assumes holomorphic at the pointpi ∈ D. Locally s =
{ai,0 + . . .}ζi andt = {bi,−1z−1

i + bi,0 . . .}ζi . Now bi,−1 6= 0 otherwiseF extends onpi and
F(X − D) is not complete. We now have:

i Respi

(

t2 + s2
)

= 0 = Respi

(

t2 − s2
)

= 0 ⇒ bi,−1bi,0 = 0

Respi (st) = 0 ⇒ bi,−1ai,0 = 0 .

Therefore we obtainbi,0 = ai,0 = 0 and then thats and t belong toK (D). The converse is
clear. i i ) Sincet has a pole atpi 5 ∩ H0(X, L) 6= {0} only if s ∈ H0(X, L) ∩ K (D) =
H0(X, L(−D)). Thes should vanish to any point ofD, but thenω3 = st would be a holomor-
phic differential. The period condition A implies (cf. [9])ω3 = st = 0, s = 0 a contradiction.

REMARK 5.4. (not used it in the sequel). A class of very important bounded curvature
minimal surfaces are the one with horizontal embedded ends.In fact the actually embedded
minimal surfaces have parallel ends (c.f. [2]). Assume thatin (9) s, t give the representation
of a surface with horizontal embedded ends. This means thatD = D1 ∪ D2, D1 ⊂ h−1(0)

and D2 ⊂ h−1(∞), h = s
t . That iss ∈ H0(X, L(D2)) and t ∈ H0(X, L(D1)). From
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i Respi (t
2 + s2) = 0 and Respi (t

2 − s2) = 0 we see that Respi (t
2) = 0, pi ∈ D1: t ∈ K (D1)

and similarlys ∈ K (D2).

From now onF : X − D → R3 will denote a complete minimal immersion withflat em-
bedded ends, whereX is a genusg compact and connected Riemann surface andD =

∑d
i=1 pi ,

deg(D) = d.

Let ρ : X → Y be a non constant holomorphic map andB ⊂ X be the branch divisor,
without multiplicity, of ρ. DefineH : Y − ρ(D) → R3 by

(10) H(q) =
∑

{p:ρ(p)=q}
F(p) .

The above summation is taken with multiplicity,H is the trace ofF by ρ. SetT = ρ(D) and
E = ρ−1(T). There is also a well defined trace map for holomorphic differential forms

Tr(ρ) : H0 (

X − E, ωX−E
)

→ H0 (

Y − T, ωY−T
)

.

This is defined as follows. Takeq /∈ ρ(B) ∩ T and letU be an open simply connected set
coordinated byy : U → C. We assume thatρ−1(U) = ∪{p:ρ(p)=q}Wp where the restriction
ρ|Wp = ρp : Wp → U are biholomorphisms. The compositions

zp = y · ρp : Wp → U

are coordinate maps ofX. If 2 ∈ H0(X − E, ωX−E) and2 = {ap(zp)dzp} on ρ−1(U) we
put

Tr(ρ)(2) =
∑

{p:ρ(p)=q}
ap(zp)dy .

Then one extends Tr(ρ)(2) on Y − T by taking care of the multiplicity.

LEMMA 5.1. If the ends points Pi are branches ofρ, i.e. D ⊂ B, then H is constant.

Proof. (Compare with [14]). SetB = p1 + · · · + pb, whereD =
∑d

i=1 pi , d ≤ b. Up to a
translation we have

F(p) = Re
∫

[Q,p]
(ω1, ω2, ω3)

whereQ /∈ D. Set
� j = Tr(ρ)(ω j ) .

We shall show that the� j extends to abelian an differential ofY. We assume this for a moment
and prove the lemma. SetL = ρ(Q), we obtain:

H(s) − H(L) = Re
∫

[L ,s]
(�1, �2, �3) .

Since the right side is well defined then the left one turns outto be zero. In fact any non trivial
holomorphic differential has a non-zero real period (cf. [9]). It follows that H is constant.

We prove now that the� j extend holomorphically. Takepi in D and setρ(pi ) = S. We
may choose coordinatesz = zi of X, z(pi ) = 0, andy of Y, y(S) = 0, such thatρ locally is
written: y = zn, n > 1. Expanding nearpi we get

ω j ≡
{

c j z
−2 + g j (z)

}

dz
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whereg j (z) is a holomorphic function. It is elementary that

Tr
(

zn)

{

z−2dz
}

= −Tr

(

znd
1

z

)

= 0 (n > 1) .

All the above terms appear in the defining sums of Tr(ρ)(ω j ) = � j . This implies that� j
extends holomorphically atpi .

We still assume that the ends ofF , F : X − D → R3, are in thebranchlocus ofρ : D ⊂ B.
Consider the disjoint union

(11) B = D ∪ B′ ∪ B”

whereB′ = {P ∈ B − D : P is of total ramification forρ}. Setk = degB′ (if B′ = ∅ k = 0).
We have:

THEOREM5.1. With the previous assumption d> k.

Proof. Assume by contradiction thatk ≥ d. SetB′ = {Q1, . . . , Qk}. Up to a translation take
F(p) = Re

∫

[Q1,p](ω1, ω2, ω3). Then H(q) = Re
∑

{p
ρ→q}

∫

[Q1,p](ω1, ω2, ω3) is constant.

Since theQi have total ramificationH(ρ(Qi )) = nF(Qi ), hence

nF(Qi ) = H(ρ(Qi )) = H(ρ(Q1)) = nF(Q1) = 0 .

We see thatF(Qi ) = 0, i = 1, . . . , k and thatF(X − D) has a point of multiplicityk ≥ d
at the origin. On the other hand it is well known that a minimalsurface withd embedded ends
cannot have ak-ple point if k ≥ d (see [4] or [3] for two quite different proofs). This provides
the contradiction.

COROLLARY 5.1. Let X be a hyperelliptic curve and F: X − D → R3 be a complete
immersed minimal surface with flat embedded ends. Assume that the ends points Pi ∈ D are
Weierstrass points of X. Thendeg(D) > g + 1.

Proof. Let ρ be the hyperelliptic 2 : 1 covering of the Riemann sphere,B is the set of hyperel-
liptic points deg(B) = 2g + 2, andB′ = B − D.

COROLLARY 5.2. Let D = P1+· · ·+ Pd, assumedim K (D) = d = g+1 or dim K (D) =
d = g and g> 3. Then there are not complete minimal immersions inR3 of X − D with flat
embedded ends.

Proof. Use Proposition 5.2 and then Corollary 5.1.

THEOREM5.2. Minimal untwisted immersions of genus 2 having 3 flat ends do not exist.

Proof. Arguing by contradiction we would haveh0(L(D)) = 3, h0(L) = 0 (L is even) and that
dim(K (D)) is odd (by Proposition 5.1i )). From Proposition 5.3 we would obtain dim(K (D)) ≥
2 and then dimK (D) = 3. This contradicts Corollary 5.2.
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Let F : X − D → R3 be as before. The flat ends are in the branch ofh = s
t , the extended

Gauss map ofF(X − D). Therefore Theorem 5.1 applies and stronger restrictions should hold
(see [14]). We give an example of this. We recall (cf. [12]) that F has vertical fluxif t2 = ω and
s2 = h2ω have notcomplexperiods. It means that there are meromorphic functionsL1 andL2
on X such thatdL1 = ω anddL2 = h2ω.

PROPOSITION5.4. If F has vertical flux, then h has not points of total ramification.

Proof. Define the Lopez-Ros [6] deformation ofF = F1: Fλ : X − D → R3 = C × R, λ ∈ R,
λ > 0:

Fλ =
(

λL1 −
1

λ
L2, 2Re

∫

[ p,q]
hω

)

.

The spin representation ofFλ is
(√

λs, 1√
λ

t
)

. Note thatFλ(X − D) has flat ends atD. If h had

a total branch point then, by a result of Nayatami (cf. [10] th. 2), the dimension of the bounded
Jacobi fields ofFλ, λ � 0, would be 3. Therefore (see [7])Fλ cannot have only flat ends.
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Birkäuser Verlag, Basel, Boston, Berlin 1992.

[10] NAYATAMI S.,Morse index and Gauss maps of complete minimal surfaces in Euclidean 3
- Space, Comment. Math. Helvetici68 (1993), 511–537.

[11] OSSERMANR.,A Survey of Minimal Surfaces, New York, Dover pub. 2 Ed. 1986.

[12] PEREZ J., ROS A., Some uniqueness and nonexistence theorems for embedded minimal
surfaces, Math. Ann.295(1993), 513–525.



A remark about minimal surfaces 67

[13] PIROLA G., Algebraic curves and non rigid minimal surfaces in the euclidean space,
preprint, to appear in Pacific Journal of Maths.

[14] ROSENBERGH., TOUBIANA E.,Complete minimal surfaces and minimal herissons, J. of
Diff. Geometry28 (1988), 115–132.

AMS Subject Classification: 53A10.

Gian Pietro PIROLA
Dipartimento di Matematica
Università di Pavia
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