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THE ROLE OF THE LAGRANGE CONSTANT IN SOME

NONLINEAR WAVES EQUATIONS

Sommario. Let M(α) be the Lagrange constant associated to an irrational number
α. In this note we point out how this constant plays a role in thestudy of some
partial differential equations, more precisely nonlinearwaves equations.

1. Introduction and Motivation

In what follows we shall see how the study of solutions of somepartial differential equations
leads to problems in number theory.

Our motivation was the study of certain nonlinear wave equations. The technic used to
solve such problems depend in an essential way on the space dimension (for example the parity)
or/and on the rationality of the ratio between the period andthe interval lenght (when one
search for periodic solutions). Hence some results in number theory, especially in diophantine
approximations are needed. It is an established fact, today, that the diophantine approximations
play a fundamental role in dynamical systems. We begin by considering two problems:

1.1. Problem 1

Consider the existence of weak solutions for the following periodic-Dirichlet problem for a one-
dimensional semilinear wave equation

ut t − uxx + g(u) = f (t, x) on ]0, 2π/α[×]0, π [
u(t, 0) = u(t, π) = 0 on [0, 2π/α]

u(0, x) − u(2π/α, x) = ut (0, x) − ut (2π/α, x) = 0 on [0, π ],

whereα is a positive irrational number which is not the square root of an integer,g : R → R is
continuous andf ∈ H := L2(]0, 2π/α[ × ]0, π [).

We shall denote byL the abstract realization inH of the wave operator with the periodic-
Dirichlet conditions on ]0, 2π/α[ × ]0, π [. ThusL is self-adjoint and its spectrum is the closure
of the set of the eigenvalues:

σ(L) = {n2 − α2m2 : n ∈ N0, m ∈ N}.

Then it is essential to know the structure of the spectrumσ(L) and consequently the prop-
erties of the operatorL . Indeed, we have for the linear associated problem, the following simple
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result:

THEOREM2.1. The linear periodic-Dirichlet problem

ut t − uxx = f (t, x) on ]0, 2π/α[×]0, π [
u(t, 0) = u(t, π) = 0 on [0, 2π/α]

u(0, x) − u(2π/α, x) = ut (0, x) − ut (2π/α, x) = 0 on [0, π ],

has a weak solution for each f∈ H if and only if

inf
(m,n)∈Z×Z0

|(αm)2 − n2| > 0.(1)

We clearly see that the condition (1.1) which is crucial is a problem of diophantine
approximations. If (1.1) is satisfied, 0/∈ σ(L), henceL is invertible and we can solve the
nonlinear problem above by (for example) fixed point theory.For more details in this direction
we refer to [3].

1.2. Problem 2

We consider the Dirichlet problem for the semilinear equation of the vibrating string:

(2)

{

uxy + f (u) = 0, (x, y) ∈ �,

u|∂� = 0,

where� ⊂ R2 is a bounded domain, convex relative to the characteristic linesx ± y = const.
It is assumed that0 = ∂� = ∪4

j =10 j , where0 j ∈ Ck for each j , for somek ≥ 2, and the
endpoints of the curve0 j are the so-called vertices of0 with respect to the linesx ± y = const.
A point (x0, y0) ∈ 0 is said to be a vertex of0 with respect to the linesx ± y = const if one of
the two linesx ± y = x0 ± y0 has an empty intersection with�. The domain� can be regarded
as a “curved rectangle”. More precily:

The domain� ⊂ R2 is assumed to be bounded, with a boundary0 = ∂� satisfying:

A1) 0 = ∂� = ∪4
j =10 j , 0 j = {(x, y j (x))|x0

j ≤ x ≤ x1
j }, y j (x) ∈ Ck([x0

j , x1
j ]) for any

j = 1, 2, 3, 4 and for somek ≥ 2.

A2) |y′
j (x)| > 0, x ∈ [x0

j , x1
j ], j = 1, 2, 3, 4.

A3) The endpointsPj = (x0
j , y j (x

0
j )) of the curves01, ...,04 are the vertices of0 with

respect to the linesx = const., y = const. By this we mean that for anyj = 1, ...,4
one of the two linesx = x0

j , y = y j (x
0
j ) has empty intersection with� and there are no

other points on0 with this property.

These conditions imply that the domain� is strictly convex relative to the lines
x = const., y = const. Therefore, following [8], we can define homeomorphismsT+, T− on
the boundary0 as follows:

T+ assigns to a point on the boundary the other boundary point with the samey coordinate.
T− assigns to a point on the boundary the other boundary point with the samex coordinate.
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Notice that each vertexPj is fixed point of eitherT+ or T−. We defineF := T+ ◦ T−. It is
easy to see thatF preserves the orientation of the boundary. (See the following figure).

x

y

P T P
+

FP

Let 0 = {(x(s), y(s))| 0 ≤ s < l } be the parametrization of0 by arc length, so thatl is
the total length of0. For each pointP ∈ 0, we denote its coordinate byS(P) ∈ [0, l [. Then
the homeomorphismF can be lifted to a continuous mapf1 : R → R, which is an increasing
function ontoR such that 0≤ f1(0) < l and

f1(s + l ) = f1(s) + l , s ∈ R, and S(F(P)) = f1(S(P)) (mod l ), P ∈ 0.

The function f1 is calledthe lift of F [13]. If we inductively set fk(s) := f1( fk−1(s)) for
integerk ≥ 2, then it is known that the limit

lim
k→∞

fk(s)

kl
=: α(F) ∈ [0, 1]

exists and is independent ofs ∈ R. The numberα(F) is calledthe winding numberor rotation
numberof F . The following cases are possible:

(A) α(F) = m
n is a rational number, andFn = I whereI is the identity mapping of0 onto

itself.

(B) α(F) = m
n is a rational number,Fn has a fixed point on0, but Fn 6= I .

(C) α(F) is an irrational number, andFk has no fixed point on0 for anyk ∈ N.

The solvability of problem (2) is quite different in the three cases (A), (B), (C) (see [6] and
[3]). The cases (A) and (B) are classical. For the case (C) we have the following result due to
Fokin [6].

Let L be the linear differential operator onH := L2(�) associated to problem (2) andσ(L)

its spectrum.

THEOREM2.2. [6]Suppose that for the domain� condition (C) holds. Then L is selfadjoint
and the linear problem

{

uxy + h(x, y) = 0, (x, y) ∈ �,

u|∂� = 0,
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has a unique solution u in H for any h∈ H if and only if for some C(α) > 0 and any rational
number m/n,

|α − m/n| ≥ C(α)/n2(3)

We see that this problem leads again to diophantine appoximations. Moreover it has been
shown that the conditions 1 and 3 are equivalent. In the sequel we shall characterize the irrational
numbers which satisfies these conditions and we shall give further results. For the solvability of
the nonlinear problem and more details we refer to our recentpapers [1], [2] and the works of
Lyashenko [9],[10], and Lyashenko and Smiley [11].

2. Diophantine Approximations

As we have seen, these existence theorems require some results of number theory. Those results
can essentially be found in [12] but we reproduce them here for the reader’s convenience, because
of the lack of availability of [12] and because our presentation is simpler [3].

Let α ∈ R \ Q and letQα be the quadratic form defined onZ × Z0 by

Qα(m, n) := (αm)2 − n2.

We want to determine a class ofα such that

|Qα(m, n)| ≥ cα > 0,

for somecα > 0 and all
(m, n) ∈ Z × Z0,

such thatQα(m, n) 6= 0. Now, |Qα(0, n)| = n2 ≥ 1 for all n ∈ Z0, and hence we can restrict
ourself to the(m, n) ∈ Z0 × Z0 such thatQα(m, n) 6= 0, i.e. to all(m, n) ∈ Z0 × Z0, because,
α being irrationnal,Qα(m, n) 6= 0 for (m, n) ∈ Z0 × Z0. As

Qα(m, n) = Q|α|(|m|, |n|),

we can further assume, without loss of generality, thatα > 0 and

(m, n) ∈ N0 × N0.

Define1α and1′
α respectively by

1α := inf
(m,n) 6=(0,0)

|Qα(m, n)|, 1′
α := lim inf

|m|+|n|→∞
|Qα(m, n)|.

Clearly,1α ≤ 1′
α and1′

α > 0 if and only if 1α > 0. Indeed, if1′
α > 0, there existsR > 0

such that
inf

|m|+|n|≥R
|Qα(m, n)| ≥ 1′

α/2 > 0,

and,α being irrationnal,

|Qα(m, n)| = |αm + n||αm − n| 6= 0,

for all (m, n) 6= (0, 0), and hence has a positive lower bound on the finite set{(m, n) 6= (0, 0) :
|m| + |n| < R}.
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Let
α := [a0, a1, . . .]

be the continuous fraction decomposition ofα. Recall that it is obtained as follows; puta0 :=
[α], where [.] denotes the integer part. Thenα = a1 + 1

α1
with α1 > 1, and we seta1 := [α1].

If a0, a1, . . . , an−1 andα1, α2, . . . , αn−1 are known, thenαn−1 = an−1 + 1
αn

, with αn > 1
and we setan := [αn]. It can be shown that this process does not terminate if and only if α is
irrational. The integersa0, a1, . . . are the partial quotients ofα; the numbersα1, α2, . . . are the
complete quotients ofα and the rationals

pn

qn
= [a0, a1, . . . , an] = a0 +

1

a1 +
1

a2 + . . . +
1

an
,

with pn, qn relatively prime integers, are the convergents ofα and are such thatpn/qn → α as
n → ∞. It is well known that thepn, qn are recursively defined by the relations

p0 := a0, q0 := 1, p1 := a0a1 + 1, q1 := a1,

pn := an pn−1 + pn−2, qn := anqn−1 + qn−2.

The following Lemma is useful to find1′
α.

LEMMA 2.1. To each irrational numberα corresponds a unique (extended) number M(α) ∈
[
√

5,∞] (called the Lagrange constant) having the following properties

(i) For each positive numberµ < M(α) there exist infinitely many pairs(pi , qi ) with qi 6= 0,

such that
∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

≤
1

µq2
i

.

(ii) If M (α) is finite, then, for eachµ > M(α), there are only finitely many pairs(pi , qi )

satisfying the inequality
∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

≤
1

µq2
i

.

Dimostrazione.Let

µi := q−2
i

∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

−1
= q−1

i |αqi − pi |−1, i ≥ 1,

M(α) := lim sup
i→∞

µi ∈ R ∪ {+∞}.

It then follows from the elementary properties of the upper limit that M(α) satisfies the condi-
tions of the lemma, with the exception of the estimateM(α) ≥

√
5. But a well known theorem

of Hurwitz [14] asserts that for infinitely many pairs(pi , qi ) one has

∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

<
1

√
5q2

i

,

so that the proof is complete.
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If we set

M(α) :=
{

M ∈ R
+
0 : infinitely many(pi , qi ) satisfy

∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

≤
1

Mq2
i

}

,

then the above Lemma clearly states thatM(α) = supM(α).

PROPOSITION2.1. M(α) is finite if and only if the sequence(ai )i∈N of partial quotients of
α is bounded.

Dimostrazione.We have

µi = q−2
i |α −

pi

qi
|−1 = q−2

i |(−1)i qi (αi+1qi + qi−1)|

=
∣

∣

∣

∣

αi+1 +
qi−1

qi

∣

∣

∣

∣

=
∣

∣

∣

∣

[ai+1, ai+2, . . .] +
1

[ai , ai−1, . . . , a1]

∣

∣

∣

∣

= |[ai+1, ai+2, . . .] + [0, ai , ai−1, . . . , a1]|
= |[ai+1] + θi + ηi |,

with 0 < θi , ηi < 1 for all positive integersi . Thus, if(ai )i∈N is unbounded, one has

lim sup
i→∞

µi ≥ lim sup
i→∞

([ai+1] − 2) = +∞,

andM(α) = ∞. If (ai )i∈N is bounded, say, byM, then

M(α) = lim sup
i→∞

µi ≤ lim sup
i→∞

([ai+1] + 2) < ∞.

PROPOSITION2.2. If α ∈ R+ \ Q, then

1′
α = 2α/M(α).

Dimostrazione.We have

|Qα(pi , qi )| = |αqi − pi ||αqi + pi | = µi
−1|α + (pi /qi )|,

and hence
lim inf
i→∞

|Qα(pi , qi )| = 2α/M(α).

Now let

N (α) := {M ∈ R
+
0 : infinitely many pairs of integers(p, q)

with q 6= 0 satisfy|α − (p/q)| ≤ 1/Mq2} ⊃ M(α).

It is known [14] (see also the interesting paper [15]) that ifM > 2 and M ∈ N (α), then
M ∈ M(α), and that, for eachα ∈ R \ Q,

√
5 ∈ M(α). Thus,

M(α) = supM(α) = supN (α),

and hence, forµ > M(α), only finitely many pairs of integers(p, q) with q 6= 0 satisfy the
inequalities

Qα(p, q) ≤ µ−1(α + (p/q)) ≤ µ−1(2α + (1/µq2)),
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which imply that

1′
α = lim inf

|p|+|q|→∞

[

Qα(p, q) −
1

µ2q2

]

≥ 2α/µ.

Consequently,1′
α ≥ 2α/M(α), so that the equality holds.

Now, as1′
α > 0 if and only if1α > 0, we also have the following characterizations.

COROLLARY 2.1. 1α > 0 if and only if M(α) < ∞, i.e. if and only if the sequence
(a j ) j ∈N is bounded above.

Below we give a straightforward approach to Corollary 2.1, but which need much material.

Dimostrazione.Noting that the minimum1α is preserved under equivalence of forms, we con-
struct an equivalent form which is more natural. Letα = [a0; a1, · · · ]. The form of Qα al-
lows us to assume thatα > 0. Also, we have thatQα(x, y) = −α2Q 1

α

(y, x), implying that

1α = α2Q 1
α

. Whenα < 1 we have1
α = [a1; a2, · · · ]. Therefore, we may assume thatα > 1.

We consider the equivalent form

f (x, y) = Qα(y, x − a0y) = −(x − (α + a0)y)(x − (−α + a0)y).

We note that this is of the formg(x, y) = ±(x − r y)(x − sy) wherer = [c0; c1, · · · ] > 1
ands = −[0, c−1; c−2, · · · ]. In 1879 A. Markoff (see also T.Cusick and M. Flahive ’s book [4],
Appendix 1) proved in his original paper that the minimum of suchg equals

r − s

sup{[ci ; ci+1, · · · ] + [0; ci−1, · · · ]}
.

Noting that for alli ,

ci < [ci ; ci+1, · · · ] + [0; ci−1, · · · ] < ci + 2,

we obtain that the minimum of any form equivalent tog is zero if and only ifci is unbounded.
In our case we haver = α + a0 = [2a0; a1, · · · ] and−s = α − a0 = [0; a1, · · · ].

For example, for the golden numberα := 1+
√

5
2 , we haveα = [1, 1, 1 · · · ] and then1α >

0. Finaly let
6 := {α : α ∈ R \ Q, M(α) < ∞},

then it can be shown that6 is a dense, uncountable, and null subset of the real line.

3. Further Results

In this section we continue the study of6. Two reals numbersα, β are said to be equivalent, if
there exist integersa, b, c, d, such that|ad − bc| = 1, and

β =
aα + b

cα + d
.

There is an old result which states that ifα andβ are two equivalent irrational numbers, then
M(α) = M(β). This result was generalized by T.Cusick and M. Mendes France in 1979 [5]
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proving (among others results) that ifβ = aα+b
cα+d with ad − bc 6= 0, anda, b, c, d ∈ Z, then

M(α) ≤ M(β)|ad − bc|. As consequence,M(α) is finite if and only if M(β) is finite (which
was already observed by O. Perron in the begining of this century).

THEOREM2.3. Letα andβ two irrational numbers such that

β =
aα + b

cα + d

with ad− bc 6= 0, and a, b, c, d ∈ Z. Then

M(α)

|ad − bc|
≤ M(β) ≤ |ad − bc|M(α)

Dimostrazione.Let M ∈ M(α). Then there exist infinitely many pairs(pi , qi ) with qi 6= 0,

such that
∣

∣

∣

∣

α −
pi

qi

∣

∣

∣

∣

≤
1

Mq2
i

.

Now
∣

∣

∣

∣

β −
api + bqi

cpi + dqi

∣

∣

∣

∣

= |ad − bc|
|α − (pi /qi )|

|c(pi /qi ) + d||cα + d|
Let ε > 0. Then there existiε such that

1

|cα + d|
≤

1 + ε

|c(pi /qi ) + d|
, for all i ≥ iε

and

∣

∣

∣

∣

β −
api + bqi

cpi + dqi

∣

∣

∣

∣

≤
(1 + ε)|ad − bc|

M(c(pi /qi ) + d)2q2
i

=
(1 + ε)|ad − bc|

M

1

(cpi + dqi )
2

for all i ≥ iε . Therefore

M

(1 + ε)|ad − bc|
∈ N (β), for all ε > 0

Now if ε → 0, we get
M

|ad − bc|
≤ M(β)

and then
M(α)

|ad − bc|
≤ M(β).

Rewriteα = −dβ+b
cβ−a . Then the second inequality follows immediatly, so that theproof is com-

plete.

As a first simple consequence of this theorem we have the following classical result

COROLLARY 2.2. If α andβ are equivalent then M(α) = M(β).
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Dimostrazione.The proof is immediate. By the theoremM(α) ≤ M(β). On the other hand, we
have

α =
−dβ + b

cβ − a
,

where(−d)(−a) − bc = ad − bc. ThenM(β) ≤ M(α), which finishes the proof.

Now using the above propositions we easily obtain the following result.

COROLLARY 2.3. Under the hypothesis of Theorem 2.3, we have

M(α) < ∞ ⇐⇒ M(β) < ∞

i.e.
1α > 0 ⇐⇒ 1β > 0

i.e. the sequence of partial quotients ofα is bounded above if and only if the sequence of partial
quotients ofβ is bounded above.

To illustrate the results of this section we return to the Problem 2 in the Introduction. For�
we consider the following domain:

�(a, b) := {(x, y) ∈ R2 | 0 < x + y < a, 0 < x − y < b}.

In this particular case, the winding numberα(F) of the corresponding diffeomorphismF for
�(a, b) is given by

PROPOSITION2.3. α(F) = a
a+b for all �(a, b) where F is the corresponding diffeomor-

phism.

Dimostrazione.It is easy to see thatS(F(P)) − S(P) =
√

2 a, for all P ∈ 0. Moreover the
function

g(s) := f1(s) − s −
√

2 a

where f1 is the lift of F , is such thatg(s+ l ) = g(s) andg(0) = f1(0)−
√

2a ∈ ] − l , l [ where
l =

√
2(a + b). SinceS(F(P)) = f1(S(P)) (modl ), we can write:

g(S(P)) = f1(S(P)) − S(P) −
√

2 a = S(F(P)) − S(P) −
√

2 a + nP

wherenP ∈ Z, and from aboveg(S(P)) = nPl . If P = 0, thenn0l = g(0) ∈ ] − l , l [ and
n0 = 0. Sinceg is continuous,nP is constant and thennP = n0 = 0 and henceg(s) = 0 i.e.
f1(s) = s +

√
2 a. Therefore

α(F) = lim
k→∞

fk(0)

kl
=

k
√

2 a

k
√

2(a + b)
=

a

a + b

which finishes the proof.

Consequently we can writeα(F) = a/b
a/b+1 and if we setβ := a/b 6∈ Q it is clear thatα(F)

andβ are equivalent and from corollary 2.2,
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β ∈ 6 ⇐⇒ α(F) ∈ 6.

More generally ifα(F) can be writtenα(F) = aβ+b
cβ+d , with a, b, c, d ∈ Z, ad− bc 6= 0 and

β 6∈ Q , then from corollary 2.3

β ∈ 6 ⇐⇒ α(F) ∈ 6.
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